高考数学复习公式

时间:2024-09-03 10:40:16 晓怡 教育 我要投稿
  • 相关推荐

高考数学复习公式汇总

  数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题、从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。下面是小编整理的高考数学复习公式汇总,欢迎阅览!

高考数学复习公式汇总

  高考数学复习公式 1

  1,a(1)=a,a(n)为公差为r的等差数列。

  1-1,通项公式,

  a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

  可用归纳法证明。

  n=1时,a(1)=a+(1-1)r=a。成立。

  假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r

  则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

  通项公式也成立。

  因此,由归纳法知,等差数列的通项公式是正确的。

  1-2,求和公式,

  S(n)=a(1)+a(2)+...+a(n)

  =a+(a+r)+...+[a+(n-1)r]

  =na+r[1+2+...+(n-1)]

  =na+n(n-1)r/2

  同样,可用归纳法证明求和公式。(略)

  2,a(1)=a,a(n)为公比为r(r不等于0)的等比数列。

  2-1,通项公式,

  a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

  可用归纳法证明等比数列的通项公式。(略)

  2-2,求和公式,

  S(n)=a(1)+a(2)+...+a(n)

  =a+ar+...+ar^(n-1)

  =a[1+r+...+r^(n-1)]

  r不等于1时,

  S(n)=a[1-r^n]/[1-r]

  r=1时,

  S(n)=na.

  同样,可用归纳法证明求和公式。

  高考数学复习公式 2

  高三数学知识点之导数公式

  1.y=c(c为常数) y=0

  2.y=x^n y=nx^(n-1)

  3.y=a^x y=a^xlna

  y=e^x y=e^x

  4.y=logax y=logae/x

  y=lnx y=1/x

  5.y=sinx y=cosx

  6.y=cosx y=-sinx

  7.y=tanx y=1/cos^2x

  8.y=cotx y=-1/sin^2x

  9.y=arcsinx y=1/√1-x^2

  10.y=arccosx y=-1/√1-x^2

  11.y=arctanx y=1/1+x^2

  12.y=arccotx y=-1/1+x^2

  三角函数公式

  锐角三角函数公式

  sin α=∠α的对边 / 斜边

  cos α=∠α的邻边 / 斜边

  tan α=∠α的对边 / ∠α的邻边

  cot α=∠α的邻边 / ∠α的对边

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推导

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  辅助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推导公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述两式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  数学圆锥公式知识点

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py

  直棱柱侧面积S=c.h斜棱柱侧面积S=c.h

  正棱锥侧面积S=1/2c.h正棱台侧面积S=1/2(c+c)h

  圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2

  圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l

  弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r

  锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h

  斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长

  柱体体积公式V=s.h圆柱体V=p.r2h

  乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理

  判别式

  b2-4ac=0注:方程有两个相等的实根

  b2-4ac>0注:方程有两个不等的实根

  b2-4ac<0注:方程没有实根,有共轭复数根

  高考数学复习公式 3

  1、函数的单调性

  (1)设x1、x2[a,b],x1x2那么

  f(x1)f(x2)0f(x)在[a,b]上是增函数;

  f(x1)f(x2)0f(x)在[a,b]上是减函数。

  (2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数。

  2、函数的奇偶性

  对于定义域内任意的x,都有f(—x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

  3、解三角形公式

  正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径

  余弦定理:a2=b2+c2—2bc*cosA

  sin(A+B)=sinC

  sin(A+B)=sinAcosB+sinBcosA

  sin(A—B)=sinAcosB+sinBcosA

  sin2A=2sinAcosA

  cos2A=2(cosA)2—1=(cosA)2—(sinA)2=1—2(sinA)2

  tan2A=2tanA/[1—(tanA)2]

  (sinA)2+(cosA)2=1

  4、常用的诱导公式有以下几组:

  公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)=sin(kZ)cos(2k+)=cos(kZ)tan(2k+)=tan(kZ)cot(2k+)=cot(kZ)

  公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin(+)=—sincos(+)=—costan(+)=tancot(+)=cot

  公式三:任意角与—的三角函数值之间的关系:sin(—)=—sincos(—)=costan(—)=—tancot(—)=—cot

  公式四:利用公式二和公式三可以得到—与的三角函数值之间的关系:sin(—)=sincos(—)=—costan(—)=—tancot(—)=—cot

  公式五:利用公式一和公式三可以得到2—与的三角函数值之间的关系:sin(2—)=—sincos(2—)=costan(2—)=—tancot(2—)=—cot

  公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)=coscos(/2+)=—sintan(/2+)=—cotcot(/2+)=—tansin(/2—)=coscos(/2—)=sintan(/2—)=cotcot(/2—)=tansin(3/2+)=—coscos(3/2+)=sin

  高考数学复习公式 4

  积化和差,指初等三角函数部分的一组恒等式。

  公式

  sinsin=-[cos(+)-cos(-)]/2【注意右式前的负号】

  coscos=[cos(alpha 学习规律;+)+cos(-)]/2

  sincos=[sin(+)+sin(-)]/2

  cossin=[sin(+)-sin(-)]/2

  证明

  法1

  积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。

  即只需要把等式右边用两角和差公式拆开就能证明:

  sinsin=-1/2[-2sinsin]

  =-1/2[(coscos-sinsin)-(coscos+sinsin)]

  =-1/2[cos(+)-cos(-)]

  其他的3个式子也是相同的证明。

  (该证明法逆向推导可用于和差化积的计算,参见和差化积)

  法2

  根据欧拉公式,e^ix=cosx+isinx

  令x=a+b

  得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)

  所以cos(a+b)=cosacosb-sinasinb

  sin(a+b)=sinacosb+sinbcosa

  方法

  积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。

  【1】这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其和差的值域应该 是

  [-2,2],而积的值域确是[-1,1],因此除以2是必须的。

  也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:

  cos(-)-cos(+)

  =(coscos+sinsin)-(coscos-sinsin)

  =2sinsin

  故最后需要除以2。

  :扇形计算公式

  扇形面积公式R是扇形半径,n是弧所对圆心角度数,是圆周率

  也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n

  S=npi 高中语文;R^2/360

  S=1/2LR(L为弧长,R为半径)

  S=1/2r平方

  :平方差公式

  表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式

  公式运用可用于某些分母含有根号的分式1/(3-4倍根号2)

  化简1(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23

  [解方程]x^2-y^2=1991

  [思路分析]利用平方差公式求解

  [解题过程]x^2-y^2=1991(x+y)(x-y)=1991

  因为1991可以分成11991,11181

  所以如果x+y=1991,x-y=1,

  解得x=996,y=995

  如果x+y=181,x-y=11,x=96,y=85同时也可以是负数

  所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85

  有时应注意加减的过程。

  平方差公式中常见错误有:

  ①难于跳出原有的定式,如典型错误;(错因:在公式的基础上类推,随意创造)

  ②混淆公式;

  ③运算结果中符号错误;

  ④变式应用难以掌握。三角平方差公式三角函数公式中,有一组公式被称为三角平方差公式(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)这组公式是化积公式的一种 高中英语,由于酷似平方差公式而得名,主要用于解三角形。注意事项

  1、公式的左边是个两项式的积,有一项是完全相同的。

  2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。

  3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。例题一,利用公式计算(1) 10397解:(100+3)(100-3)=(100)^2-(3)^2=100100-33=10000-9=9991(2) (5+6x)(5-6x)解:5^2-(6x)^2=25-36x^2

  高考数学复习公式 5

  三倍角公式

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  三倍角公式推导

  附推导:

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

  上下同除以cos^3(α),得:

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos^2(α)+(1-2sin^2(α))sinα

  =2sinα-2sin^3(α)+sinα-2sin^3(α)

  =3sinα-4sin^3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =(2cos^2(α)-1)cosα-2cosαsin^2(α)

  =2cos^3(α)-cosα+(2cosα-2cos^3(α))

  =4cos^3(α)-3cosα

  即

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  三倍角公式联想记忆

  记忆方法:谐音、联想

  正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

  余弦三倍角:4元3角 减 3元(减完之后还有“余”)

  ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

  另外的记忆方法:

  正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方

  余弦三倍角: 司令无山 与上同理

  和差化积公式

  三角函数的和差化积公式

  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  积化和差公式

  三角函数的积化和差公式

  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

  和差化积公式推导

  附推导:

  首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

  我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

  所以,sina*cosb=(sin(a+b)+sin(a-b))/2

  同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

  同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

  所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

  所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

  同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

  这样,我们就得到了积化和差的四个公式:

  sina*cosb=(sin(a+b)+sin(a-b))/2

  cosa*sinb=(sin(a+b)-sin(a-b))/2

  cosa*cosb=(cos(a+b)+cos(a-b))/2

  sina*sinb=-(cos(a+b)-cos(a-b))/2

  有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。

  我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

  把a,b分别用x,y表示就可以得到和差化积的四个公式:

  sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

  sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

  cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

  cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

  高考数学复习公式 6

  1、函数的单调性

  (1)设x1、x2[a,b],x1x2那么

  f(x1)f(x2)0f(x)在[a,b]上是增函数;

  f(x1)f(x2)0f(x)在[a,b]上是减函数.

  (2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.

  2、函数的奇偶性

  对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

【高考数学复习公式】相关文章:

数学《完全平方公式》教案10-19

高考复习方法技巧04-25

高考语文复习学习计划01-08

高考前各科如何复习02-13

生活中的数学公式说明文01-19

高考复习心得体会03-22

学生高考复习学习计划措施01-08

学生高考备考复习学习计划01-08

数学单元复习教案12-19