一元二次方程教案
作为一无名无私奉献的教育工作者,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?以下是小编为大家整理的一元二次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
一元二次方程教案1
教学内容
根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.
教学目标
掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.
利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.
重难点关键
1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.
教学过程
一、复习引入
1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.菱形的面积公式是什么?
5.平行四边形的面积公式是什么?
6.圆的面积公式是什么?
二、探索新知
现在,我们根据刚才所复习的`面积公式来建立一些数学模型,解决一些实际问题.
例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模.
解:(1)设渠深为xm
则渠底为(x+0.4)m,上口宽为(x+2)m
依题意,得: (x+2+x+0.4)x=1.6
整理,得:5x2+6x-8=0
解得:x1= =0.8m,x2=-2(舍)
∴上口宽为2.8m,渠底为1.2m.
(2) =25天
答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.
例2.如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.
一元二次方程教案2
学习目标
1.进一步理解方程是刻画客观世界的有效模型,
2.通过对实际问题的决实际问题的过程,知道解的一般步骤和关键所在
学习重点:认识不等式
学习难点:字语言转化为数学不等式
教学过程
一、情境引入:
围绕长方形公园的栅栏长280m.已知该公园的面积为4800m2. 求这个公园的长与宽.
二、探究学习:
1.尝试:
通常用一元一次方程解决实际问题要经历怎样的过程?
2.概括总结.
用方程解决实际问题的一般步骤为:找相等关系;设未知数,列方程,解方程,检验,答题。
3.典型例题:
例1、我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元,如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于今为500元。
甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?
例2、建造一个池底为正方形、深度为2米的长方体无盖水池,池壁的造价为100元/平方米
池底的造价为200元/平方米,总造价为6400元,求正方形池底的长。
例3、两个连续奇数的积是323,求这两个数。
4.巩固练习:
(1)在三位数345中,3,4,5是这个三位数的什么?
(2)如果a ,b ,c 分别表示百位数字、十位数字、个位数字,这个三位数能不能写成abc形式?为什么?
(3)有一个两位数,它的两个数字之和是8,把这个两位数的数字交换位置后所得的数乘以原的数就得到1855,求原的'两位数。
(4)已知两个数的和等于12,积等于32,则这两个是
(5)求 x:(x-1)=(x+2):3 中的x.
(6)三个连续整数两两相乘后,再求和,得362,求这三个数。
三、归纳总结:
1、列一元二次方程解决实际问题的一般步骤.
2、解的取舍情况.
4.3用一元二次方程解决问题( 1)
【课后作业】
班级 姓名 学号
1、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,则这个百分数为 ( )
A、10% B、20% C、120% D、180%
2、若两个连续整数的积是56,则它们的和是 ( )
A、±15 B、15 C、-15 D、11
3、一种药品经过两次降价后,每盒的价格由原的60元降至48.6元,那么平均每次降价的百分率是 。
4、某地区开展“科技下乡”活动三年,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是___________。
5、西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0、1元/kg,每天可多售出40kg,另外,每天的房租等固定成本共24元,该经营户要想每天盈利润200元,应将每千克小型西瓜的售价降低多少元?
6、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。
(1)如果要围成面积为45平方米的花圃,AB的长是多少米?
(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。
一元二次方程教案3
学习目标:
1、使学生会用列一元二次方程的方法解决有关增长率的应用题;
2、进一步培养学生分析问题、解决问题的能力。
学习重点:
会列一元二次方程解关于增长率问题的应用题。
学习难点:
如何分析题意,找出等量关系,列方程。
学习过程:
一、 复习提问:
列一元二次方程解应用题的一般步骤是什么?
二、探索新知
1.情境导入
问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.20xx年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,20xx年村长完成了36.3亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长20xx年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?
2.合作探究、师生互动
教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即20xx年实际完成的亩数是30(1+x),第二次增长后,即20xx年实际完成的.亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.
教师引导学生运用方程解决问题:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.
②全村坡耕地还林还草为50×36.3=1 815(亩),国家将补助粮食1 815×500=907 500(斤)=90.75(万斤).
三、例题学习
说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。
例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?
(小组合作交流教师点拨)
时间 基数 降价 降价后价钱
第一次 600 600x 600(1-x)
第二次 600(1-x) 600(1-x)x 600(1-x)2
(由学生写出解答过程)
四、巩固练习
一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
五、课堂总结:
1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。
2、注意解方程中的巧算和方程两个根的取舍问题。
六、反馈练习:
1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()
A.x+(1+x)x=20% B.(1+x)2=20%
C.(1+x)2=1.2 D.(1+x%)2=1+20%
2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()
3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几?
一元二次方程教案4
一、教学目标
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
二、教学重难点
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的'一元二次方程化成标准的一元二次方程。
难点:找对题目中的数量关系从而列出一元二次方程。
三、教学过程
(一)导入新课
师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?
生:老师,这是雷锋叔叔。
师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?
生:是的老师。
师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。
(二)新课教学
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)
(三)小结作业
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。
四、板书设计
五、教学反思
一元二次方程教案5
教材分析
一元二次方程是一种数学建模的方法,它有着广泛的实际背景,可以作为许多实际问题的数学模型。它体现了数学的转化思想,学好一元二次方程是学好二次函数不可或缺的,一元二次方程是高中数学的奠基工程。是本书的重点内容,为后续学习打下良好的基础。
学情分析
1、 经过两年的合作,我们班的学生已比较配合我上课,同时初三学生观察、类比、概括、归纳能力也都比较强,不过对应用题的分析他们还是觉得很头疼,在今后应用题的教学中需进一步加强。
2、 一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,一元二次方程是一次方程向二次方程的转化,是低次方程转向高次方程求解方法的阶梯。一元二次方程又是二次函数的特例。
教学目标
一、知识目标
1、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,,增加对一元二次方程的感性认识.
2、理解一元二次方程的概念.
3、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
二、能力目标
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.
2、由知识来源于实际,树立转化的.思想,由设未知数、列方程向学生渗透方程的思想,进一步提高学生分析问题、解决问题的能力.
四、情感目标
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识
教学重点和难点
教学重点: 一元二次方程的概念和它的一般形式
难点:1、从实际问题中抽象出一元二次方程。2、正确识别一般式中的“项”及“系数”
一元二次方程教案6
教学目标
知识与技能目标
1、构建本章的部分知识框图。
2、复习一元二次方程的概念、解法。
过程与方法
1、通过对本章方程解法的复习,进一步提高学生的运算能力。
2、在解一元二次方程的过程中体会转化等数学思想。
情感、态度与价值观
通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的'成就感.
教学重点
1、一元二次方程的概念
2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;
教学难点
解法的灵活选择;例4和例5的解法。
教学过程
一、创设情境
导入新课
问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)
二、师生互动
共同探究
1、复习概念
例1
例2
2、四种解法
(1)
解法及其关系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四种解法分别解此方程
(4)方法优选
3、方法补充
例4
4、解法纠错
例5
解关于x的方程
错误解法
正确解法
三、小结反思
提炼思想
我们有哪些收获?解方程的思想方法是什么?
四、布置作业
巩固提高
一元二次方程教案7
一、教学目标:
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点、难点:
教学重点:
1.体会方程与函数之间的.联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
教学难点:
1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导 合作交流
四:教具、学具:课件
五、教学媒体:计算机、实物投影。
六、教学过程:
检查预习 引出课题
预习作业:
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
一元二次方程教案8
一、教材分析
1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。
2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2
b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。
3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。
4、教学目标:
(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。
(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。
5、数学思想:由感性认识到理性认识。
6、教学重点:
(1)发现根的`判别式。
(2)用根的判别式解决实际问题。
7、教学难点:
根的判别式的发现
8、教法:启导、探究
9、学法:合作学习与探究学习
10、教学模式:引导——发现式
二、教学过程
(一)自习回顾,引入新课
1、师生共同回顾:一元二次方程的解法
2、解下列一元二次方程。
(1)x2 -1=0 (2)x2 -2x =-1
(3)(x+1)2- 4=0 (4)x2 +2x+2=0
3、为什么会出现无解?
(二)探索
1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。
2、观察(x+ ) 2= 2 在什么情况下成立?
3、学生分组讨论。
4、猜测?
5、发现了什么?
6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时, 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)
7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,_________________________
8、总结:
(1)比较分析学生的讨论分析结果。
(2)由学生总结。
(3)教师根据学生总结情况补充完整。
把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,________________________
(三)应用新知:
1、不解方程判定下列一元二次方程根的情况。
(1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____
(2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____
(3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____
2、根据根的情况,求字母系数的取值范围。
例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。
(1)读题分析:
A、二次项系数是什么? a=_______
B、一次项系数是什么? b=_______
C、常数项是什么? c=_______
(2)建立等式,根据有个常数根 b2-4ac=0
(3)由学生完成解题过程后教师评价
3、证明
例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。
(四)练习
已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。
(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。
三、作业
1、把例1、例2整理在作业本上。
2、有余力的同学把练习题整理在作业本。
四、教学后记
一元二次方程教案9
教学目的 知识技能 使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题.
数学思考 提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想.
解决问题 通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题.
情感态度 通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美.
教学难点 审题,从文字语言中挖掘有价值的信息.
知识重点 会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题.
教学过程 设计意图
教学过程
问题一:列方程解应用题的一般步骤?
师生共同回忆
列方程解应用题的步骤:
(1)审题;(2)设未知数;
(3)列方程;(4)求解;
(5)检验; (6)答.
问题二:矩形的周长和面积?长方体的体积?
问题三:如图,某小区内有一块长、宽比为1:2的矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽.
教师活动:引导学生读题,找到题目中的关键语句.
学生活动:在关键语句中找到反映相等关系的语句,探究解决办法.
教师活动:用多媒体演示分析,解题方法.
做一做
如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子.求剪去的.小正方形的边长.
课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形.已知原长方形的面积是正方形面积的 ,求这个正方形的边长.
问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元.经市场调查发现:如果每件服装降价1元,平均每天能多售出2件.在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的.如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?
学生活动:在众多的文字中,找到关键语句,分析相等关系.
教师活动:用多媒体帮助学生分析试题.提示学生检验解的合理性.
课堂练习:1.经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双.物价局限定每双鞋的售价不得超过进价的120%.如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?
2.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25 %的.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)
复习列方程解应用题的一般步骤.
本题为后面解决有关面积、体积方面问题做铺垫.
提高学生的审题能力.使学生会解决有关面积的问题.
解决体积问题的问题
培养学生用数学的意识以及渗透转化和方程的思想方法.
强调对方程的解进行双重检验.
小结与作业
课堂
小结 利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养.
本课
作业 课本第43页 习题2
课后随笔(课堂设计理念,实际教学效果及改进设想)
一元二次方程教案10
一、出示学习目标:
1.继续感受用一元二次方程解决实际问题的过程;
2.通过自学探究掌握裁边分割问题。
二、自学指导:(阅读课本P47页,思考下列问题)
1.阅读探究3并进行填空;
2.完成P48的思考并掌握裁边分割问题的特点;
3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。
探究3:要设计一本书的封面,封面长27c,宽21c,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1c)?
分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7
设上、下边衬的宽均为9xc,左、右边衬的宽均为7xc,则:
由中下层学生口答书中填空,老师再给予补充。
思考:如果换一种设法,是否可以更简单?
设正中央的'长方形长为9ac,宽为7ac,依题意得
9a·7a=(可让上层学生在自学时,先上来板演)
2.P48-49第8、9题中下层学生在自学完之后先板演效果检测时,由同座的同学给予点评与纠正
9.如图,要设计一幅宽20,长30的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)
注意点:要善于利用图形的平移把问题简单化!
三、当堂训练:
1.如图,在一幅长90c,宽40c的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?
(只要求设元、列方程)
2.要设计一个等腰梯形的花坛,上底长100,下底长180。上下底相距80,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少
一元二次方程教案11
教学内容
间接即通过变形运用开平方法降次解方程.
教学目标
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.
重难点关键
1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
教学过程
一、复习引入
(学生活动)请同学们解下列方程
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=± 或mx+n=± (p≥0).
如:4x2+16x+16=(2x+4)2
二、探索新知
列出下面二个问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的'方程有什么不同呢?
(2)能否直接用上面三个方程的解法呢?
问题1:印度古算中有这样一资骸耙蝗汉镒臃至蕉樱吒咝诵嗽谟蜗罚?八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”.
大意是说:一群猴子分成两队,一队猴子数是猴子总数的 的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?老师点评:问题1:设总共有x只猴子,根据题意,得:x=( x)2+12
整理得:x2-64x+768=0
问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500
整理,得:x2-36x+70=0
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2-64x+768=0 移项→ x=2-64x=-768
两边加( )2使左边配成x2+2bx+b2的形式 → x2-64x+322=-768+1024
一元二次方程教案12
教材分析
1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的'方程归纳出一元二次方程的概念。
学情分析
1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标
1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点
1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
一元二次方程教案13
教学内容: 12.1 用公式解一元二次方程(一)
教学目标:
知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.,数学教案-用公式法解一元二次方程。
教学重、难点与关键:
重点:一元二次方程的意义及一般形式.
难点:正确识别一般式中的“项”及“系数”。
教辅工具:
教学程序设计:
程序
教师活动
学生活动
备注
创设
问题
情景
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的.边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
学生看投影并思考问题
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.
探
究
新
知
1
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
一元二次方程教案14
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题.
2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量.
(2)单位时间增产量=原产量×增长率.
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1。44
1+x=±1。2.
x1=0。2,x2=-2。2(不合题意,舍去).
取x=0。2=20%.
教师引导,点拨、板书,学生回答.
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x.
(2)认真审题,弄清基数,增长了,增长到等词语的关系.
(3)用直接开平方法做简单,不要将括号打开.
练习1.教材P。42中5.
学生分析题意,板书,笔答,评价.
练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨.引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元).
第二次降价后,每件为600(1-x)-600(1-x)x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:平均每次降价为20%.
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.
引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.
2.在解方程时,注意巧算;注意方程两根的取舍问题.
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.
四、布置作业
教材P。42中A8
五、板书设计
12。6 一元二次方程应用(三)
1.数量关系:例1……例2……
(1)原产量+增产量=实际产量分析:……分析……
(2)单位时间增产量=原产量×增长率解……解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、平均增长率、时间
的.基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率
12.6 一元二次方程的应用(三)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题.
2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量.
(2)单位时间增产量=原产量×增长率.
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1。44
1+x=±1。2.
x1=0。2,x2=-2。2(不合题意,舍去).
取x=0。2=20%.
教师引导,点拨、板书,学生回答.
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x.
(2)认真审题,弄清基数,增长了,增长到等词语的关系.
(3)用直接开平方法做简单,不要将括号打开.
练习1.教材P。42中5.
学生分析题意,板书,笔答,评价.
练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨.引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元).
第二次降价后,每件为600(1-x)-600(1-x)x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:平均每次降价为20%.
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.
引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.
2.在解方程时,注意巧算;注意方程两根的取舍问题.
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.
四、布置作业
教材P。42中A8
五、板书设计
12。6 一元二次方程应用(三)
1.数量关系:例1……例2……
(1)原产量+增产量=实际产量分析:……分析……
(2)单位时间增产量=原产量×增长率解……解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、平均增长率、时间的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率
一元二次方程教案15
一、教材
1. 教学内容:
本节课是北师大版九年级上第二章第五小节第一课时。内容是一元二次方程在几何和实际生活中的应用。
2. 本节课在教材中所处的地位和作用:
《 一元二次方程》 这一章是前面所学知识的继续和发展,尤其是一元一次方程、二元一次方程(组)等内容的深入和发展,是方程知识的综合运用。学好这部分知识,为九下学习一元二次函数知识打下扎实的基础,是后继学习的前提。而本节内容是一元二次方程的实际应用,是一元二次方程的最后部分。当然,尽管是最后一部分内容,但在本章的2~4节探索医院二次方程解法的过程中已经涉及到了一些关于一元二次方程的应用题,因此学生对此并不陌生,已经积累了一定的经验。
3. 教学目标
(1)经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤。
(2)通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。
4. 教材的重点:掌握运用方程解决实际问题的方法。
5. 教材的难点:建立方程模型。
二、教法:
选取现实生活中的题材,调动兴趣,探索、解决问题,讲练结合。
三、学法:
通过阅读细化问题、逐步解决问题
四、教学过程:
(一)导入新课,隐射教学目标
1. 观察图片: 古埃及胡夫金字塔,古希腊巴特农神庙,上海东方明珠电视塔,它们都是古今中外历史上著名的建筑,在这些建筑的设计上都运用到了数学一个很奇妙的知识——黄金分割。
2. 释疑: 你想知道黄金分割中的黄金比是怎样求出来的吗?如图,点C把线段AB分成两条线段AC和BC,如果_______________那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比称为黄金比(0.618)。黄金比为什么等于0.618 ?方程能帮助我们解决这个问题吗? 让我们一起来做一做。 解:由=,得AC2=AB·CB 设AB=1, AC=x ,则CB=1-x ,代入上式, x2=1×(1-x) 即:x2+x-1=0 解这个方程,得 x1= , x2=(不合题意,舍去) 所以:黄金比=≈0.618
(二) 一元二次方程还能解决什么问题? 例1:如图,某海军基地位于A处,在其正南方向200海里处有一目标B,在B的正东方向200海里处有一重要目标C.小岛D位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向。一艘军舰沿A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰。 (1)小岛D和小岛F相距多少海里?
(2)已知军舰的速度是补给船的2倍,军舰在 由B到C的途中与补给船相遇于E处,那么相 遇时补给船航行了多少海里?(结果精确到0.1海里) 『分析』(设置一些小问题):
①你能在图中找到表示小岛F的点吗?在本题中, 实际要求的.是什么?
②这是一个路程问题,路程=____________×___________。 在本题中,从出发到相遇,军舰、补给船的航线路线分别是图中的哪些线段?两艘船的时间、速度、路程已知吗?两艘船的时间、速度、路程各有什么关系?
③你能用含有一个未知数的代数式来表示军舰和补给船各自的路程吗?
④你能借助图中的特殊图形解决本题的两个问题吗? 解:
(1)连接DF,则DF⊥BC, ∵AB⊥BC,AB=BC=200海里 ∴AC=AB=200海里,∠C=45° ∴CD=AC=100海里 DF=CF,DF=CD ∴DF=CF=CD=×100=100海里 所以,小岛D和小岛F相距100海里。
(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里 EF=AB+BC―(AB+BE)―CF=(300―2x)海里 在Rt△DEF中,根据勾股定理可得方程:x2=1002+(300-2x)2 整理得, 3x2-1200x+100000=0 解这个方程,得:x1=200-≈118.4 x2=200+(不合题意,舍去) 所以,相遇时,补给船大约航行了118.4 海里。 这部分教学设计意图: 通过前面的学习,学生对一元二次方程在实际问题中的应用已经有了一定的了解,在本课的学习中,我们联系实际选取例题,通过这个例题详细展示了应用题的分析方法、解题过程,要求学生能用自己的语言归纳解题的一般步骤,从而培养学生的阅读能力、建立方程模型解决实际问题的能力。
(三)练一练 例2:如图,在Rt△ABC中,∠C=90°,点P,Q同时由A,B两点出发,分别沿AC,BC方向向点C匀速移动,它们的速度都是1/s.几秒后△PCQ的面积是Rt△ACB面积的一半? 『分析』(设置一些小问题):
①本题同样涉及的是行程问题,在本题中,时间、速度、 路程这三个量哪些是已知的?哪些是未知的?通过假设 未知数,你能将各未知量表示出来吗?未知量和已知之 间有什么关系?未知量与未知量之间有什么关系?
②点P、Q的路程在右图中分别对应哪些线段?在右图中 你还能表示出哪些线段的长?问题中涉及的两个三角形的 面积分别该如何表示? 解:设x秒后,△PCD的面积是RT△ABC的一半, 由题意得: 整理得:
6.答: 答案也必需是完事的语句。 列方程解应用题的关键是:找等量关系,本题中找等量关系的方法是“图示法”,常用的方法还有“列表法”等。
【一元二次方程教案】相关文章:
一元二次方程的解法教案12-30
《一元二次方程的应用》教案03-29
数学《一元二次方程》教案设计04-06
一元二次方程的根的判别式一教案12-29
解一元二次方程教学反思06-23
一元二次方程的解法教学反思04-04
《一元二次方程》教学反思范文通用03-22
实际问题与一元二次方程教学反思04-03
《二次函数与一元二次方程》教学反思08-28