八年级数学教案

时间:2023-01-16 10:54:14 教案 我要投稿

八年级数学教案(通用15篇)

  作为一名人民教师,就不得不需要编写教案,教案有助于顺利而有效地开展教学活动。来参考自己需要的教案吧!以下是小编为大家收集的八年级数学教案,希望能够帮助到大家。

八年级数学教案(通用15篇)

八年级数学教案1

  一、内容和内容解析

  1.内容

  三角形中相关元素的概念、按边分类及三角形的三边关系.

  2.内容解析

  三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

  本节课的教学重点:三角形中的相关概念和三角形三边关系.

  本节课的教学难点:三角形的三边关系.

  二、目标和目标解析

  1.教学目标

  (1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

  (2)理解并且灵活应用三角形三边关系.

  2.教学目标解析

  (1)结合具体图形,识三角形的概念及其基本元素.

  (2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

  (3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

  三、教学问题诊断分析

  在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.

  四、教学过程设计

  1.创设情境,提出问题

  问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

  师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

  【设计意图】三角形概念的获得,要让学生经历其描述的`过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

  2.抽象概括,形成概念

  动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

  师生活动:

  三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

  【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力.

  补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

  师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

  【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

  3.概念辨析,应用巩固

  如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

  1.以AB为一边的三角形有哪些?

  2.以∠D为一个内角的三角形有哪些?

  3.以E为一个顶点的三角形有哪些?

  4.说出ΔBCD的三个角.

  师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

  4.拓广延伸,探究分类

  我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

  师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

八年级数学教案2

  学习重点:函数的概念 及确定自变量的取值范围。

  学习难点:认识函数,领会函数的意义。

  【自主复习知识准备】

  请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。

  【自主探究知识应用】

  请看书72——74页内容,完成下列问题:

  1、 思考书中第72页的问题,归纳出变量之间的关系。

  2、 完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。

  3、 归纳出函数的定义,明确函数定义中必须要满足的条件。

  归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

  补充小结:

  (1)函数的定义:

  (2)必须是一个变化过程;

  (3)两个变量;其中一个变量每取一个值 ,另一个变量有且有唯一值对它对应。

  三、巩固与拓展:

  例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。

  (1)写出表示y与x的函数关系式.

  (2)指出自变量x的取值范围.

  (3) 汽车行驶200千米时,油箱中还有多少汽油?

  【当堂检测知识升华】

  1、判断下列变量之间是不是函数关系:

  (1)长方形的宽一定时,其长与面积;

  (2)等腰三角形的底边长与面积;

  (3)某人的年龄与身高;

  2、写出下列函数的解析式.

  (1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.

  (2)汽车加油时,加油枪的流量为10L/min.

  ①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;

  ②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的.函数关系.

  (3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.

  (4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.

  八年级变量与函数(2)数学教案的全部内容由数学网提供,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

八年级数学教案3

  教学目标

  (一)教学知识点

  1、等腰三角形的概念、

  2、等腰三角形的性质、

  3、等腰三角形的概念及性质的应用、

  1、经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点、

  2、探索并掌握等腰三角形的性质、

  (三)情感与价值观要求

  通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯、

  教学重点

  1、等腰三角形的概念及性质、

  2、等腰三角形性质的应用、

  教学难点

  等腰三角形三线合一的性质的理解及其应用、

  教学方法

  探究归纳法、

  教具准备

  师:多媒体课件、投影仪;

  生:硬纸、剪刀、

  教学过程

  1、提出问题,创设情境

  (师)在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:

  ①三角形是轴对称图形吗?

  ②什么样的三角形是轴对称图形?

  (生)有的三角形是轴对称图形,有的三角形不是。

  (师)那什么样的三角形是轴对称图形?

  (生)满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

  (师)很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

  2、导入新课

  (师)同学们通过自己的思考来做一个等腰三角形。作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

  (生乙)在甲同学的做法中,A点可以取直线L上的任意一点。

  (师)对,按这种方法我们可以得到一系列的等腰三角形、现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,剪出一个等腰三角形。

  (师)按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

  (师)有了上述概念,同学们来想一想。

  (演示课件)

  1、等腰三角形是轴对称图形吗?请找出它的对称轴。

  2、等腰三角形的两底角有什么关系?

  3、顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  (生甲)等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的.两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

  (师)同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

  (生乙)我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。

  (生丙)我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。

  (生丁)我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。

  (生戊)老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。

  (师)你们说的是同一条直线吗?大家来动手折叠、观察。

  (生齐声)它们是同一条直线。

  (师)很好、现在同学们来归纳等腰三角形的性质。。

  (生)我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

  (师)很好,大家看屏幕。

  (演示课件)

  等腰三角形的性质:

  1、等腰三角形的两个底角相等(简写成“等边对等角”)

  2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、

  (师)由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)

  (投影仪演示学生证明过程)

  (生甲)如右图,在ABC中,AB=AC,作底边BC的中线AD,因为

  所以BAD≌CAD(SSS)、

  所以∠B=∠C、

  (生乙)如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以BAD≌CAD、

  所以BD=CD,∠BDA=∠CDA=∠BDC=90°。

  (师)很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范、下面我们来看大屏幕。

  (演示课件)

  (例1)如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数、

  (师)同学们先思考一下,我们再来分析这个题、

  (生)根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形内角和为180°,就可求出ABC的三个内角。

  (师)这位同学分析得很好,对我们以前学过的定理也很熟悉、如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

  (课件演示)

  (例)因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等边对等角)、

  设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x、

  于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。

  在ABC中,∠A=35°,∠ABC=∠C=72°、

  (师)下面我们通过练习来巩固这节课所学的知识、

  3、随堂练习

  (一)课本P141练习1、2、3。

  练习

  1、如下图,在下列等腰三角形中,分别求出它们的底角的度数、

  答案:(1)72°(2)30°

  2、如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?

  答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、

  3、如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数、

  答:∠B=77°,∠C=38、5°、

  (二)阅读课本P138~P140,然后小结、

  4、课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、

  5、课后作业

  (一)课本P147─1、3、4、8题、

  (二)1、预习课本P141~P143、

  2、预习提纲:等腰三角形的判定、

  6、活动与探究

  如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E、

  求证:AE=CE、

  过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质、

  结果:

  证明:延长CD交AB的延长线于P,如右图,在ADP和ADC中

  ADP≌ADC、

  ∠P=∠ACD、

  又DE∥AP,

  ∠4=∠P、

  ∠4=∠ACD、

  DE=EC、

  同理可证:AE=DE、

  AE=CE、

  板书设计

八年级数学教案4

  第11章平面直角坐标系

  11。1平面上点的坐标

  第1课时平面上点的坐标(一)

  教学目标

  【知识与技能】

  1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

  2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。

  3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。

  【过程与方法】

  1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

  2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

  【情感、态度与价值观】

  通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

  重点难点

  【重点】

  认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

  【难点】

  理解坐标系中的坐标与坐标轴上的数字之间的关系。

  教学过程

  一、创设情境、导入新知

  师:如果让你描述自己在班级中的位置,你会怎么说?

  生甲:我在第3排第5个座位。

  生乙:我在第4行第7列。

  师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

  二、合作探究,获取新知

  师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体

  的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?

  生:3排5号。

  师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?

  生:用一个有序的实数对来表示。

  师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?

  生:可以。

  教师在黑板上作图:

  我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为

  正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。

  师:有了平面直角坐标系,平面内的.点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。

  学生操作,教师巡视。教师指正学生易犯的错误。

  教师边操作边讲解:

  如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。

  教师多媒体出示:

  师:如图,请同学们写出A、B、C、D这四点的坐标。

  生甲:A点的坐标是(—5,4)。

  生乙:B点的坐标是(—3,—2)。

  生丙:C点的坐标是(4,0)。

  生丁:D点的坐标是(0,—6)。

  师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢?

  教师边操作边讲解:

  在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。

  学生动手作图,教师巡视指导。

  三、深入探究,层层推进

  师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?

  生:都一样。

  师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?

  生:能。第二象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的坐标的符号为(+,—)。

  师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能判断这点是在哪个象限吗?

  生:能,在第二象限。

  四、练习新知

  师:现在我给出几个点,你们判断一下它们分别在哪个象限。

  教师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

  生甲:A点在第三象限。

  生乙:B点在第四象限。

  生丙:C点不属于任何一个象限,它在y轴上。

  生丁:D点不属于任何一个象限,它在x轴上。

  师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。

  学生作图,教师巡视,并予以指导。

  五、课堂小结

  师:本节课你学到了哪些新的知识?

  生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。

  教师补充完善。

  教学反思

  物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。

  第2课时平面上点的坐标(二)

  教学目标

  【知识与技能】

  进一步学习和应用平面直角坐标系,认识坐标系中的图形。

  【过程与方法】

  通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。

  【情感、态度与价值观】

  培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。

  重点难点

  【重点】

  理解平面上的点连接成的图形,计算围成的图形的面积。

  【难点】

  不规则图形面积的求法。

  教学过程

  一、创设情境,导入新知

  师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,—3)这三个点。

  学生作图。

  教师边操作边讲解:

  二、合作探究,获取新知

  师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?

  生甲:三角形。

  生乙:直角三角形。

  师:你能计算出它的面积吗?

  生:能。

  教师挑一名学生:你是怎样算的呢?

  生:AB的长是5—2=3,BC的长是1—(—3)=4,所以三角形ABC的面积是×3×4=6。

  师:很好!

  教师边操作边讲解:

  大家再描出四个点:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并将它们依次连接起来看看形成的是什么

  图形?

  学生完成操作后回答:平行四边形。

  师:你能计算它的面积吗?

  生:能。

  教师挑一名学生:你是怎么计算的呢?

  生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:

  教师多媒体出示下图:

八年级数学教案5

  教学目标:

  1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

  2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

  3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

  4、能利和计算器求一组数据的算术平均数。

  教学重点:体会平均数、中位数、众数在具体情境中的意义和应用。

  教学难点:对于平均数、中位数、众数在不同情境中的应用。

  教学方法:归纳教学法。

  教学过程:

  一、知识回顾与思考

  1、平均数、中位数、众数的概念及举例。

  一般地对于n个数X1,……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。

  如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

  中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

  众数就是一组数据中出现次数最多的那个数据。

  如3,2,3,5,3,4中3是众数。

  2、平均数、中位数和众数的特征:

  (1)平均数、中位数、众数都是表示一组数据“平均水平”的`平均数。

  (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

  (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

  (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  3、算术平均数和加权平均数有什么区别和联系:

  算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

  4、利用计算器求一组数据的平均数。

  利用科学计算器求平均数的方法计算平均数。

  二、例题讲解:

  例1,某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:

  每人销售件数 1800 510 250 210 150 120

  人数 113532

  (1)求这15位营销人员该月销售量的平均数、中位数和众数;

  (2)假设销售部负责人把每位营销员的月销售额定为平均数,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由。

  例2,某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

  三、课堂练习:复习题A组

  四、小结:

  1、掌握平均数、中位数与众数的概念及计算。

  2、理解算术平均数与加权平均数的联系与区别。

  五、作业:复习题B组、C组(选做)

八年级数学教案6

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的.关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

八年级数学教案7

  【教学目标】

  一、教学知识点

  1.命题的组成.

  2.命题真假的判断。

  二、能力训练要求:

  1.使学生能够分清命题的条件和结论,能判断命题的真假

  2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法

  三、情感与价值观要求:

  1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一

  2.帮助学生了解数学发展史,拓展视野,激发学习兴趣

  3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值

  【教学重点】准确的找出命题的条件和结论

  【教学难点】理解判断一个真命题需要证明

  【教学方】探讨、合作交流

  【教具准备】投影片

  【教学过程】

  一、情景创设、引入新课

  师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么?

  新课:

  (1)观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。

  1.如果两个三角形的三条边对应相等,那么这两个三角形全等。

  2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

  3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

  4.如果一个四边形的对角线相等,那么这个四边形是矩形。

  5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。

  师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。

  二、例题讲解:

  例1:师:下列命题的条件是什么?结论是什么?

  1.如果两个角相等,那么他们是对顶角;

  2.如果a>b,b>c,那么a=c;

  3.两角和其中一角的对边对应相等的两个三角形全等;

  4.菱形的四条边都相等;

  5.全等三角形的面积相等。

  例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。

  2:有的命题的描述没有用“如果……那么……”的形式,在分析时可以扩展成这种形式,以分清条件和结论。

  例2:上述命题哪些是正确的`,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。

  师:正确的命题叫真命题,不正确的命题叫假命题。要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。

  教学建议:对于反例的要求可以采取启发式层层递进方式给出,即:说明命题错误可以举例→综合命题(1)、(2)的两例,两例条件具备→例子结论不吻合→给出如何举反例要求。

  三、思维拓展:

  拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。

  教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程

  (1)首先给学生介绍欧几里得的《原本》

  (2)引出概念:公理、定理,证明

  (3)启发学生,现在如何证实一个命题的正确性

  (4)给出本套教材所选用如下6个命题作为公理

  (5)等式性质、不等式有关性质,等量代换也看作定理。

  拓展2.师:任何公理、定理是命题吗?是真命题吗?为什么?

  建议:在学生回答后归纳总结:公理是经过长期实践验证的,不需要再进行推理论证都承认的真命题。定理是经过推理论证的真命题。

  练习书p197习题6.31

  四、问题式总结

  师:经过本节课我们在一起共同探讨交流,你了解了有关命题的哪些知识?

  建议:可对学生进行提示性引导,如:命题的构成特点、命题是否都正确、如何判断一个命题是假命题、如何证实一个命题是真命题。

  作业:书p197习题6.32、3

  板书设计:

  定义与命题

  课时2

  条件

  1.命题的结构特征

  结论

  1.假命题——可以举反例

  2.命题真假的判别

  2.真命题——需要证明 学生活动一——

  探索命题的结构特征

  学生观察、分组讨论,得出结论:

  (1)这五个命题都是用“如果……那么……”形式叙述的

  (2)这五个命题都是由已知得到结论

  (3)这五个命题都有条件和结论

  学生活动二——

  探索命题的条件和结论

  生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相等是结论。

  学生活动三

  探索命题的真假——如何判断假命题

  生:可以举一个例子,说明命题1是不正确的,如图:

  已知:∠AOB,∠1=∠2,∠1,∠2不是对顶角

  生:命题2,若a=10,b=8,c=5,此时a>b,b>c,但a≠c

  生:由此说明:命题1、2是不正确的

  生:命题3、4、5是正确的

  学生活动四

  探索命题的真假——如何证实一个命题是真命题

  学生交流:

  生:用我们以前学过的观察、实验、验证特例等方法

  生:这些方法往往并不可靠

  生:能够根据已知道的真命题证实呢?

  生:那已经知道的真命题又是如何证实的?

  生:那可怎么办呢?

  生:可通过证明的方法

  学生分小组讨论得出结论

  生:命题的结构特征:条件和结论

  生:命题有真假之分

  生:可以通过举反例的方法判断假命题

  生:可通过证明的方法证实真命题

八年级数学教案8

  【教学目标】

  知识与技能

  能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

  过程与方法

  使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

  情感、态度与价值观

  培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

  【教学重难点】

  重点:掌握用提公因式法把多项式分解因式.

  难点:正确地确定多项式的最大公因式.

  关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  【教学过程】

  一、回顾交流,导入新知

  【复习交流】

  下列从左到右的变形是否是因式分解,为什么?

  (1)2x2+4=2(x2+2);

  (2)2t2-3t+1=(2t3-3t2+t);

  (3)x2+4xy-y2=x(x+4y)-y2;

  (4)m(x+y)=mx+my;

  (5)x2-2xy+y2=(x-y)2.

  问题:

  1.多项式mn+mb中各项含有相同因式吗?

  2.多项式4x2-x和xy2-yz-y呢?

  请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

  【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

  二、小组合作,探究方法

  教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

  【师生共识】提公因式的`方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  三、范例学习,应用所学

  例1:把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  例2:分解因式:3a2(x-y)3-4b2(y-x)2

  【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

  =-(y-x)2[3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)2·3a2(x-y)-4b2(x-y)2

  =(x-y)2[3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  例3:用简便的方法计算:

  0.84×12+12×0.6-0.44×12.

  【教师活动】引导学生观察并分析怎样计算更为简便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

  四、随堂练习,巩固深化

  课本115页练习第1、2、3题.

  【探研时空】

  利用提公因式法计算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、课堂总结,发展潜能

  1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

  2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

  六、布置作业,专题突破

  课本119页习题14.3第1、4(1)、6题.

八年级数学教案9

  《正方形》教学设计

  教学内容分析:

  ⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

  ⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

  ⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

  学生分析

  ⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

  ⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

  教学目标:

  ⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

  ⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

  ⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

  重点:掌握正方形的性质与判定,并进行简单的推理。

  难点:探索正方形的判定,发展学生的推理能

  教学方法:类比与探究

  教具准备:可以活动的四边形模型。

  一、教学分析

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的.性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

  教学过程

  一:复习巩固,建立联系

  【教师活动

  问题设置:①平行四边形、矩形,菱形各有哪些性质?

  ②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

  【学生活动

  学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

  【教师活动

  评析学生的结果,给予表扬。

  总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

  演示平行四边形变为矩形菱形的过程。

  二:动手操作,探索发现

  活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

  【学生活动

  学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

  设置问题:①什么是正方形?

  观察发现,从活动中体会。

  【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

  【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

  设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

  【学生活动】

  小组讨论,分组回答。

  【教师活动】

  总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

  设置问题③正方形有那些性质?

  【学生活动】

  小组讨论,举手抢答。

  【教师活动

  表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

  活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

  学生活动

  折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

  教师活动

  演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

  学生活动

  小组充分交流,表达不同的意见。

  教师活动

  评析活动,总结发现:

  一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

  有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

  有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

  四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

  以上是正方形的判定方法。

  正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

  学生交流,感受正方形

  三,应用体验,推理证明。

  出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

  方法一解:∵四边形ABCD是正方形

  ∴∠ABC=90°(正方形的四个角是直角)

  BC=AB=4cm(正方形的四条边相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的对角线互相平分)

  ∴AO=×4=2cm

  方法二:证明△AOB是等腰直角三角形,即可得证。

  学生活动

  独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

  教师活动

  总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

  出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

  学生活动

  小组交流,分析题意,整理思路,指名口答。

  教师活动

  说明思路,从已知出发或者从已有的判定加以选择。

  四,归纳新知,梳理知识。

  这一节课你有什么收获?

  学生举手谈论自己的收获。

  请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

  发表评论

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

八年级数学教案10

  一、教学内容:

  本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。

  本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。

  重点:掌握完全平方公式,会运用公式进行简单的计算。

  难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。

  三、教学目标

  (1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。

  (2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。

  (3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。

  (4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。

  四、学情分析与教法学法

  学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的`总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。

  学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流

  总结反思中获得数学知识与技能。

  教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。

  五、教学过程

  (略)

  六、教学评价

  在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。

  在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。

八年级数学教案11

  学习目标

  1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。

  2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。

  3、初步学会运用平方差公式进行计算。

  学习重难点重点:

  平方差公式的推导及应用。

  难点是对公式中a,b的广泛含义的'理解及正确运用。

  自学过程设计教学过程设计

  看一看

  认真阅读教材,记住以下知识:

  文字叙述平方差公式:_________________

  用字母表示:________________

  做一做:

  1、完成下列练习:

  ①(m+n)(p+q)

  ②(a+b)(x-y)

  ③(2x+3y)(a-b)

  ④(a+2)(a-2)

  ⑤(3-x)(3+x)

  ⑥(2m+n)(2m-n)

  想一想

  你还有哪些地方不是很懂?请写出来。

  _______________________________

  _______________________________

  ________________________________、

  1、下列计算对不对?若不对,请在横线上写出正确结果、

  (1)(x-3)(x+3)=x2-3( ),__________;

  (2)(2x-3)(2x+3)=2x2-9( ),_________;

  (3)(-x-3)(x-3)=x2-9( ),_________;

  (4)(2xy-1)(2xy+1)=2xy2-1( ),________、

  2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;

  (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、

  3、计算:50×49=_________、

  应用探究

  1、几何解释平方差公式

  展示:边长a的大正方形中有一个边长为b的小正方形。

  (1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。

  (2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的面积吗?

  2、用平方差公式计算

  (1)103×93 (2)59、8×60、2

  拓展提高

  1、阅读题:

  我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算、解答过程如下:

  原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

  =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

  =(24-1)(24+1)(28+1)(216+1)(232+1)

  =……=264-1

  你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看!

  2、仔细观察,探索规律:

  (x-1)(x+1)=x2-1

  (x-1)(x2+x+1)=x3-1

  (x-1)(x3+x2+x+1)=x4-1

  (x-1)(x4+x3+x2+x+1)=x5-1

  ……

  (1)试求25+24+23+22+2+1的值;

  (2)写出22006+22005+22004+…+2+1的个位数、

  堂堂清

  一、选择题

  1、下列各式中,能用平方差公式计算的是( )

  (1)(a-2b)(-a+2b);

  (2)(a-2b)(-a-2b);

  (3)(a-2b)(a+2b);

  (4)(a-2b)(2a+b)、

八年级数学教案12

  一、内容和内容解析

  1.内容

  三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

  2.内容解析

  本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

  理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

  本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的.三角形高线的位置关系.

  二、目标和目标解析

  1.教学目标

  (1)理解三角形的高、中线与角平分线等概念;

  (2)会用工具画三角形的高、中线与角平分线;

  2.教学目标解析

  (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

  (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

  (3)掌握三角形的高、中线与角平分线的画法.

  (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

  三、教学问题诊断分析

  三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

  三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

  三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

八年级数学教案13

  教学目标

  1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

  2.会综合运用平行四边形的判定方法和性质来解决问题

  教学重点:平行四边形的判定方法及应用

  教学难点:平行四边形的判定定理与性质定理的灵活应用

  一.引

  小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

  二.探

  阅读教材P44至P45

  利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

  (1)你能适当选择手中的.硬纸板条搭建一个平行四边形吗?

  (2)你怎样验证你搭建的四边形一定是平行四边形?

  (3)你能说出你的做法及其道理吗?

  (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

  (5)你还能找出其他方法吗?

  从探究中得到:

  平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

  平行四边形判定方法2对角线互相平分的四边形是平行四边形。

  证一证

  平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

  证明:(画出图形)

  平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

八年级数学教案14

  一、教材分析教材的地位和作用:

  本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。

  二、学情分析

  八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。

  三、教学目标及重点、难点的确定

  根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:

  (一)教学目标:

  1、知识技能

  (1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴.

  (2)理解并掌握轴对称的概念,对称轴;了解对称点.

  (3)了解轴对称图形和轴对称的联系与区别.

  2、过程与方法目标

  经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力.

  3、情感、态度与价值观

  通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。

  (二)教学重点:轴对称图形和轴对称的有关概念.

  (三)教学难点:轴对称图形与轴对称的联系、区别

  .四、教法和学法设计

  本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:

  【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。

  【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

  【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率

  五、说程序设计:

  新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。

  (一)、观图激趣、设疑导入。

  出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。

  [设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣,

  (二)、实践探索、感悟特征.

  《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。

  为了进一步认识轴对称图形的特点又出示了一组练习

  (练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴

  [设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。

  (练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的.学习兴趣,而且也拓展了学生的知识面。

  (三)、动手操作、再度探索新知。

  将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。

  再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念.并结合图形加以认识。

  (四)、巩固练习、升华新知。

  出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称,

  在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。

  (课件演示)轴对称图形及两个图形成轴对称区别与联系

  (五)、综合练习、发展思维。

  1、抢答;观察周围哪些事物的形状是轴对称图形。

  2、判断:

  生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。

  (1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴?

  0123456789ABCDEFGH

  3、像这样写法的汉字哪些是轴对称图形?

  口工用中由日直水清甲

  (这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边)

  (六)归纳小结、布置作业

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展!

  六、设计说明

  这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。

八年级数学教案15

  一、教学目标

  1.使学生理解并掌握分式的概念,了解有理式的概念;

  2.使学生能够求出分式有意义的条件;

  3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

  4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

  二、重点、难点、疑点及解决办法

  1.教学重点和难点 明确分式的分母不为零.

  2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.

  三、教学过程

  【新课引入】

  前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的.?(学生有过分数的经验,可猜想到分式)

  【新课】

  1.分式的定义

  (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

  用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由学生举几个分式的例子.

  (3)学生小结分式的概念中应注意的问题.

  ①分母中含有字母.

  ②如同分数一样,分式的分母不能为零.

  (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

  2.有理式的分类

  请学生类比有理数的分类为有理式分类:

  例1 当取何值时,下列分式有意义?

  (1);

  解:由分母得.

  ∴当时,原分式有意义.

  (2);

  解:由分母得.

  ∴当时,原分式有意义.

  (3);

  解:∵恒成立,

  ∴取一切实数时,原分式都有意义.

  (4).

  解:由分母得.

  ∴当且时,原分式有意义.

  思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

  例2 当取何值时,下列分式的值为零?

  (1);

  解:由分子得.

  而当时,分母.

  ∴当时,原分式值为零.

  小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而当时,分母,分式无意义.

  当时,分母.

  ∴当时,原分式值为零.

  (3);

  解:由分子得.

  而当时,分母.

  当时,分母.

  ∴当或时,原分式值都为零.

  (4).

  解:由分子得.

  而当时,,分式无意义.

  ∴没有使原分式的值为零的的值,即原分式值不可能为零.

  (四)总结、扩展

  1.分式与分数的区别.

  2.分式何时有意义?

  3.分式何时值为零?

  (五)随堂练习

  1.填空题:

  (1)当时,分式的值为零

  (2)当时,分式的值为零

  (3)当时,分式的值为零

  2.教材P55中1、2、3.

  八、布置作业

  教材P56中A组3、4;B组(1)、(2)、(3).

  九、板书设计

  课题 例1

  1.定义例2

  2.有理式分类

【八年级数学教案】相关文章:

八年级数学教案06-14

八年级数学教案范文11-11

八年级上册数学教案01-13

八年级数学教案优秀01-31

八年级数学教案(精选25篇)02-16

八年级数学教案(15篇)11-13

八年级数学教案15篇11-11

八年级数学教案(汇编15篇)01-08

八年级数学教案集锦15篇11-29