六年级数学下册教案

时间:2023-02-02 10:50:13 教案 我要投稿
  • 相关推荐

六年级数学下册教案

  作为一名为他人授业解惑的教育工作者,就难以避免地要准备教案,教案有助于顺利而有效地开展教学活动。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的六年级数学下册教案,仅供参考,希望能够帮助到大家。

六年级数学下册教案

六年级数学下册教案1

  教学目标

  1.使学生掌握分数、小数四则混合运算的运算顺序及计算方法,并能正确地进行计算。

  2.训练学生认真审题,能够选择合理简便的解题方法。

  3.培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。

  教学重点和难点

  教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。

  教学难点:灵活、合理地运用不同的方法进行计算。

  教学过程设计

  (一)复习

  1.第74页第1题。

  (1)把下面的小数化成分数:

  0.125 0.3 0.5 0.6 0.25 0.75

  (2)把下面的分数化成小数:

  以上各题用投影片出示,指名口答。

  2.我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。

  下面各题用什么方法进行计算比较简单?

  提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?

  提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)

  (二)学习新课

  以上这些计算方法是我们进行分数、小数四则混合运算的基本方法。

  (板书课题:分数、小数四则混合运算)

  (1)小组讨论:这道题怎样计算比较简便?(把小数化成分数计算比较简便。)

  (2)全体同学在练习本上试做,通过试做,体会一下为什么用这种方法进行计算简便?

  (3)订正,并且说说这种做法有什么好处?(因为计算分数乘、除法时,有时可以先约分再计算比较简便,所以,分数、小数乘除混合运算一般先把小数化成分数后再计算。)

  (1)审题:例5与例4有什么不同之处?

  (例4是分数、小数乘、除混合运算,例5是分数,小数四则混合运算。)

  (2)想一想,做这道题的时候,我们应该注意些什么?(a.运算顺序;b.选择合理恰当的方法。)

  (3)小组讨论:这道题是把小数化成分数算简便,还是把分数化成小数算简便?(把小数化成分数计算比较简便。)

  (4)全体同学在练习本上试做。

  (5)订正。

  (6)小结:我们把题目中的小数都化成了分数,这样在乘除过程中,有时可以先约分,使得做起来比较简便,同时得到的是一个准确的'结果。

  (7)如果计算的结果允许取近似值,也可以先把分数化成小数,取它们的近似值进行计算。在本册教材中,一般要求只取两位小数,这种算法在现在电子计算机越来越被广泛使用的社会里是很有价值的,因为,大多数电子计算机都是用小数来计算的。请你用这种方法试做这道题:

  ≈5.2÷3.2-1.67×0.7(注意:这一步用“≈”)

  =1.625-1.169

  =0.456

  订正此题,并且教师要强调:如果计算的结果允许取近似值,才可以把分数化成小数来计算。

  3.小结。

  两位同组的同学互相说一说:

  (1)分数、小数乘、除混合运算,怎样计算比较简便?

  (2)分数、小数四则混合运算,又怎样计算简便?

  看书质疑。

  (三)巩固反馈

  采用分小组巩固练习的形式。

  1.用题板做练习,大面积反馈。

  举题板订正,再把两种不同的计算方法进行比较:

  不难看出,第二种方法更简便一些。所以解题方法不是一成不变的,还要根据题目的具体情况,如数的特征、运算符号等决定怎样做简便就怎样做,故在掌握了一般方法的基础上,还要灵活运用。

  2.互相帮助:1,3,5组同学做题(1);2,4,6组同学做题(2)。之后,同桌同学交换检查,指出错误,加以改正,使学生掌握检查的方法,并养成检查的习惯。

  教师出示正确答案,哪组的同学都做对了就给予表扬。

  3.全体同学齐做。

  把题中的分数化成小数后再计算。(保留两位小数。)

  ≈13×0.56-16.24÷3.5

  =7.28-4.64

  =2.64

  (四)课堂总结

六年级数学下册教案2

  【教学目标】

  1.使学生理解比例的意义,能应用比例的意义判断两个比能否成比例。

  2.在比的知识基础上引出比例的意义,结合实例,培养学生将新、旧知识融会贯通的能力。

  3.提高学生的认知能力。

  【教学重点】比例的意义。

  【教学难点】找出相等的比组成比例。

  【教学方法】引导法。

  【学习方法】自主探究。

  【教具准备】ppt课件

  【教学过程】

  一、旧知铺垫

  1.什么是比?

  (1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

  (2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

  2.求下面各比的比值。

  12 :16 1/3 :2/5 4.5 :2.7 10 :6

  二、探索新知

  1.用ppt课件出示课本情境图。

  (1)观察课本情境图。(不出现相片长、宽数据)

  ①说一说各幅图的情景。②图中图片有什么相同之处和不同之处?

  (2)你知道这些图片的长和宽是多少吗?

  (3)这些图片的长和宽的比值各是多少?

  A.6 ∶4= B.3∶2= C.3∶8 =

  D.12∶8= E.12∶2=

  (4)怎样的两张图片像?怎样的两张图片不像?

  ①D和A两张图片,长与长、宽与宽的比值相等,12∶6=8∶4,所以就像。 ②A长与宽的比是6∶4,B长与宽的比是3∶2,6∶4=3∶2,所以就也像。

  2.认一认。

  图D和图A两张图片,长与长、宽与宽的比值相等,图A和图B两张图片长和宽的比值相等。

  板书:12∶6=8∶4 6∶4=3∶2

  (5)什么是比例?

  板书:表示两个比相等的式子叫做比例。

  “从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什

  么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

  比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。

  (6)比较“比”和“比例”两个概念。

  上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (7)找比例。

  在这四副图片的尺寸中,你还能找出哪些比可以组成比例?学生猜想另外两副图片长、宽的比值。求出副图片长、宽的比值,并组成比例。

  如:3∶2 =12∶8 6∶4= 12∶8

  3.右表是调制蜂蜜水时蜂蜜和水的配比情况,根据比例的意义,你能写出比例吗?

  图片已关闭显示,点此查看

  (1)什么样的比可以组成比例?

  (2)把组成的'比例写出来。

  (3)说一说你是怎么写的,一共可以写多少个不同的比例。

  三、课堂练习

  1.⑴分别写出图中两个长方形长与长的比和宽与宽

  的比,判断这两个比能否组成比例。

  ⑵分别写出图中每个长方形与宽的比,判断这两个

  比能否组成比例。

  图片已关闭显示,点此查看

  2.哪几组的两个比可以组成比例?把组成的比例写出来。15∶18和30∶36 4∶8和5∶20 1/4∶1/16和0.5∶2 1/3∶1/9和1/6∶1/18

  四、课堂小结。

  (1)什么叫做比例?(2)一个比例式可以改写成几个不同的比例式?

  【板书设计】 比例的认识

  12∶6 = 8∶4

  内项

  外项

  表示两个比相等的式子叫做比例。

六年级数学下册教案3

  教学过程

  ⊙创设情境,复习导入

  师:听老师提几个问题,想一想是我们学过的哪些知识。XX同学的左面是谁?我们教室的后面是什么?学校在邮局的什么方向?

  生:方向与位置。

  师:同学们说得很好,现在请同学们回忆一下,描述方向与位置的词语都有哪些?如何确定位置?这节课我们就来复习根据不同的参照物确定物体的位置。(板书课题:确定位置)

  ⊙回顾整理,构建网络

  1.整理复习学过的方位词。

  (1)学生小组交流学过的方位词。

  (2)学生汇报交流。

  学过的方位词有上、下、前、后、左、右、东、南、西、北、东南、西南、东北、西北。东北方向也叫北偏东,西北方向也叫北偏西,东南方向也叫南偏东,西南方向也叫南偏西。

  (3)请大家观察所在学校和学校周围的物体,用方位词来指明物体的方向和位置。

  (4)刚才大家用上、下、前、后、左、右和东、南、西、北来表示物体所在的大概位置以及方向,如果我们要准确地表示物体所在的位置,还可以用数对来表示,大家还记得用数对的表示方法吗?

  2.梳理用数对表示物体位置的方法。

  用数对来表示物体准确位置的步骤和方法:

  (1)确定位置:选定参照点(原点),建立直角坐标。(竖排叫作列,横排叫作行。确定第几列一般从左往右数,确定第几行一般从前往后数)

  (2)数对的`写法:第一个数表示第几列,第二个数表示第几行,两个数用逗号隔开,外面加上小括号。

  3.梳理用方向加距离表示物体位置的方法。

  用方向和距离来表示物体准确位置的步骤:

  (1)选定参照点(原点),建立直角坐标。

  (2)确定方向和角度。

  (3)确定比例尺,算出实际距离。

  4.课件出示教材99页情境图。

  星期日,奇思去动物园游玩,在大门口看到了动物园的示意图。他想先去百鸟园,你能帮他确定百鸟园相对大门的位置吗?

  (1)学生探究确定百鸟园位置的方法。

  (2)小组汇报。

六年级数学下册教案4

  正比例

  1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

  2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

  3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

  认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

  理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

  教具:小黑板小黑板。

  学具:作业本,数学书。

  一、联系生活,复习引入

  (1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

  住户张家赵家

  水费(元)1520

  用水量(吨)68

  (2)揭示课题。

  教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?

  教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。

  二、自主探索,学习新知

  1.教学例1

  用小黑板在刚才准备题的表格中增加几列数据,变成下表。

  住户张家赵家李家周家刘家吴家

  水费(元)1520352517.5

  用水量(吨)6814109

  教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。

  教师根据学生的回答将表格完善,并作必要的板书。

  教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。

  板书:相关联

  教师:你们还发现哪些规律?

  学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:

  水费用水量=156=208=3514=……=2.5

  教师:水费除以用水量得到的'单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。

  板书:水费用水量=每吨水单价(一定)

  2.教学“试一试”

  教师:我们再来研究一个问题。

  小黑板出示第52页下面的“试一试”。

  学生先独立完成。

  教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?

  教师根据学生的回答归纳如下:

  表中的路程和时间是相关联的量,路程随着时间的变化而变化。

  时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。

  路程与时间的比值是一定的,速度是每时80M,它们之间的关系可以写成路程时间=速度(一定)

  3.教学“议一议”

  教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?

  引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。

  教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。

  4.教学课堂活动

  教师:请大家说一说生活中还有哪些是成正比例的量。(1)完成练习十二的第1题。

  教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?

  学生独立思考,先小组内交流再集体交流。

  (2)完成练习十二的第2题。

  这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

六年级数学下册教案5

  教学目标:

  1.使学生进一步掌握扇形统计图的特征和作用,能正确描述扇形统计图所反映的有关数据。

  2.使学生能正确运用扇形统计图反映有关数据,提高处理数据的技能,发展学生的应用意识和实践能力。

  3.初步形成评价与反思的意识。

  重点:扇形统计图。

  难点:发现统计图中存在的数据不清的问题。

  教学过程:

  一、设疑自探:

  呈现扇形统计图

  某校学生最喜欢的文艺节目情况统计图

  1.问:从图中你能了解到哪些信息?

  (1)喜欢同一首歌的人数占调查人数的45%

  喜欢相声的人数占调查人数的18%

  喜欢小品的人数占调查人数的25%

  喜欢其他文艺节目的人数占调查人数的12%

  (2)喜欢同一首歌的人数最多

  绝大部分同学都喜欢同一首歌,小品和相声

  喜欢其他文艺节目的人数最少

  2.说一说这是什么统计图,它有什么特征?

  (1)扇形统计图

  (2)特征:可以清楚地反映出各部分量占总量的百分之几

  二、解疑合探:

  教学例

  1出示课文例题统计图

  下面是一幅彩电市场各部分品牌占有率的统计图

  (1)从图中你了解到哪些信息?

  A、牌彩电占市场销售量的20%

  B、牌彩电占市场销售量的15%

  C、牌彩电占市场销售量的10%

  D、牌彩电占市场销售量的8%

  其他品牌彩电占市场销售量的47%

  (2)有人认为A牌彩电最畅销,你同意他的'观点吗?

  ①学生独立思考,分析题中的数量

  ②小组交流,学生在小组中说一说自己的看法

  汇报交流结果

  经过讨论,交流,使全体同学懂得:在“其他”里面还可能包含有比A牌更畅销的彩电。所以,从这个统计图不能判断出哪个品牌的彩电最畅销。

  (3)建议

  上面这幅统计图提供的数据不清,无法全面地反映有关彩电市场各品牌占有率的情况,你有什么修改建议?

  ①通过交流,使学生懂得:“其他”所占有的份额应该是最小的部分,这样才能全面地反映各个数量占有率的情况,突出扇形统计图的特征和作用。

  ②建议:在进行数据整理时,将“其他”当中的一些品牌彩电所占份额单单独计算,在统计图中详细标出它的占有率

  三、质疑再探:

  1.通过本课的学习,你又掌握了什么新的本领?有哪些收获?

  2.你还有什么问题,提出来与大家一起讨论解决?

  学生提出问题,教师引导学生讨论解决。

  四、运用拓展:

  1.完成课文练习十一第1题

  (1)说一说,你从图中得到哪些信息。

  (2)从图中你能判断出喜欢哪种文艺节目的人数最多吗?为什么?

  (3)你有什么修改建议?

  2.布置作业

六年级数学下册教案6

  课题:空间与图形

  复习内容:第12册100页“与反思”和“练习与实践”1—8题。

  复习目标:

  1。进一步理解平面图形的周长和面积的意义与区别。

  2。使学生了解平面图形的周长和面积计算公式的推导过程,并会运用这些公式进行正确计算。

  3。使学生对平面图形的周长和面积形成知识体系。

  教学准备:课件

  课时安排:第三课时

  课前设计:

  (一)直导课题

  1。回忆学过的平面图形。

  同学们,我们已经学过了哪些平面图形?学生回答后出示学过的平面图形。

  我们已经了解了它们的周长和面积,今天,我们再来一起回顾一下。

  (二)复习

  1。周长和面积的概念。

  (1)那么什么是平面图形的周长和面积呢?谁能任选一个图形,来说说呢?指名学生到前面去演示。

  (2)那么谁能概括地说说什么是平面图形的周长?学生回答后板书:围成一个图形的所有边长的总和叫做这个图形的周长。

  (3)表示图形的周长我们用长度单位,谁来说说我们学过了哪些长度单位?它们之间的进率分别是多少?(学生回忆后完成“练习与实践”的第1题。)

  (4)那什么是平面图形的面积?学生回答后板书:物体的表面或围成的平面图形的大小,叫做它们的面积。

  (5)表示平面图形的面积我们用面积单位,回忆一下我们学过哪些面积单位呢?它们之间的进率分别是多少?(学生回答后完成“练习与实践”的第2题。)

  (6)完成“练习与实践”的第3题。

  2。周长和面积的比较。

  我们已经知道了周长和面积的意义,老师这里有两幅图,请你分别较

  它们的周长和面积。(出示“练习与实践”的第5题。)

  (1)如果图中每小格是边长1厘米的正方形。请同学们以小组为单位,仔细观察这两组图形,认真讨论这两个问题。

  (2)汇报:通过观察、讨论你们发现了什么?你是怎么知道的?(让学生指着说)

  ①第一幅图:面积相等,周长不等。

  ②第二幅图:周长相等,面积不等。

  (3):由此可见周长和面积之间没有必然的联系。

  3。周长计算公式。

  那同学们还记得怎样计算这些图形的周长吗?

  (1)同桌一起回忆平面图形的计算方法。

  (2)指名说出长方形、正方形的周长计算公式。

  (3)多让几名学生说说圆的周长公式的推导过程。

  4。面积计算公式。

  我们已经一起回忆了平面图形的周长计算方法,那这些平面图形的面积公式是怎样推导出来的呢?

  (1)请同学们以小组为单位围绕以下两个问题展开讨论,并且用6个平面图形表示它们之间的关系。

  (2)讨论:有关面计算公式是在哪个图形的基础上推导出来的?

  这6个图形可以用怎样的络来表示它们之间的关系?

  (3)学生汇报:你们将这6个图形组成了怎样的'络图?哪一组派一个代表上面来汇报?为什么用这样的图来表示?(根据汇报同时黑板上出示下图)

  (4):由此可见,这些平面图形的计算公式是在谁的基础上推导出来的?

  像这样把新问题转化成已学过的知识,从而解决新问题,是数学学习中一种很常见的方法。

  (三)巩固拓展

  1。完成“练习与实践”的第4题。

  2。老师家客厅里有一块窗帘长3米、宽1。2米。

  问题1:这块窗帘有多大?

  问题2:如果要在窗帘的周围缝上花边,你认为应买回多少花边?

  :刚才,大家通过合作,利用集体的智慧,解决了两个实际问题,下面请同学们根据所给条件,想象出所学过的图形,把它画下来。

  3.想象练习。

  请你利用所给的条件,想象已学过的平面图形,把它画出来。

  2

  分

  米

  2分米2分米

  (四)全课:今天我们复习了什么?通过复习你有什么收获?

  (五)作业:练习与实践的第6—8题。

  (六)课外实践:

  研究问题:城市排水工程建设中,地下管道的横截面为什么一般都是建成圆形?

  研究方法:①实地考察;②查阅资料;③请教身边的人。

  研究结果:以"圆形地下管道好处多"为题,写一小小科学报告文章。

六年级数学下册教案7

  教学目标:

  1.使学生在具体情境中初步理解图形的放大和缩小,学会利 用方格纸把一个简单图形按指定的比放大或缩小。

  2.使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用,初步体会图形的相似,进一步发展空间观念。

  教学重点:

  理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比放大或缩小。

  教学难点:

  使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似,进一步发展空间观念。

  教学过程:

  一、创设情境,引入新课。

  1.出示图景

  看上面的图片,你们能说一说,图中反映的是什么现象?哪些是将物体放大?哪些是将物体缩小?

  根据学生回答的情况,谈话导入生活中存在许多放大与缩小的现象,现在我们就来研究图形的放大与缩小。

  例4:按2:1画出下面三个图形放大后的图形。

  讨论如何解决问题?把图形按2:1的比放大是什么意思?

  就是把图形的每条边放大到原来的2倍。

  直角思考:三角形的斜边不能直接看出是多少格,怎么办?

  是不是只要把两直角边放大到原来的2倍,就可以了?

  比较两幅图的.长有什么关系?宽呢?

  让学生画出放大后的图形,画直角三角形时,可以引导学生画完后,可以让学生通过数一数或量一量的方法,发现放大后的斜边长度是放大前的2倍。之后让学生观察对比原图形和放大后的图形,看发生了什么变化。结合具体图形,通过讨论、交流,了解到一个图形按2∶1的比放大后,图形各边的长度放大到原来的2倍,但图形的形状没变。(图形的周长扩大到原来的2倍,面积扩大到原来的4倍。)

  问题:如果把放大后的这组图形的各边再按1∶3缩小,图形又会发生什么变化?

  得出图形缩小了,但形状不变,缩小后的图形各条边分别缩小到原来长度的。

  在此基础上,引导学生归纳出图形的各边按相同的比放大或缩小后,只是大小发生了变化,形状没变。

  独立完成做一做,交流是怎样思考与操作的,并及时纠正错误。

  2.总结

  问题:把放大和缩小后的图形与原来的图形相比,你有什么发现?

  放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)

  二、巩固练习

  让学生按要求在方格纸上画出缩小后的图形,再让学生说一说是怎样画的,缩小后有关边的长度是原来的几分之几,各应画几格?

  三、全课小结。

  什么是图形的放大和缩小。要遵循什么原则?放大和缩小后的图形与原来的图形有什么关系?通过本课的学习,你有哪些收获?

六年级数学下册教案8

  线与角。〔教材第89~91页及第91页第1、2(1)题〕

  1.了解两点确定一条直线和两条相交直线确定一个点,并能区分直线、线段和射线。

  2.能结合具体情境认识角,会画出指定度数的角。

  3.培养学生的动手能力和互相交流合作的意识。

  重点:区分直线、线段和射线,认识角并会画角。

  难点:理解线与角间的内在联系与区别。

  量角器、尺子、课件。

  师:我们在小学阶段学过哪几种线?认识哪些角?

  生1:我们学过直线、射线、线段。

  生2:我们认识直角、锐角、平角、钝角、周角。

  师:这节课我们一起复习“线与角”。(板书课题:线与角)

  1.复习线段、射线和直线。

  课件出示:

  师:你能说出上面的图形各是什么吗?

  生:直线、射线、线段。

  师:你能找出线段、射线、直线的区别吗?

  学生分组讨论,教师巡视、辅导。

  先请学生汇报结果,再给出下表,让学生完成。

  端点个数能否度量

  线段

  射线

  直线

  师:线段、射线和直线有什么联系?(线段和射线是直线的一部分)

  师:长方形、正方形、三角形、平行四边形,它们的边是直线还是线段?(线段)

  师:角的边是直线吗?

  生:不是,角的边是射线。

  2.角的整理与分析。

  (1)让学生自己任意画一个角。

  师:根据你画的角说一说,关于角,我们都学习了哪些知识?(板书:角)

  教师画出一个角。

  (2)学生回答,教师板书。

  师:什么叫角?角的各部分名称是什么?

  师:计量角的单位是什么?角的大小与什么有关?与什么无关?怎样画角?

  师:按角的度数,角可以分为哪几种?

  师根据学生的'回答板书。

  生1:由一点出发引出两条射线所组成的图形,叫作角。角由一个顶点和两条边组成。角的计量单位是度,符号是“°”。

  生2:角的大小与两边张开的大小有关,与边的长短无关。

  生3:根据角的度数,可以把角分为锐角、直角、钝角、平角、周角。

  师:锐角是怎样的角?(教师画出图形并写出相应的特征)

  师:大家能画出其余几种角的图形并说出它们的特征吗?

  生:锐角是小于90°的角;直角等于90°;钝角大于90°且小于180°;平角等于180°;周角等于360°。

  3.垂线和平行线。

  师:在同一平面内,两条直线有哪几种位置关系?

  生:相交(互相垂直与不垂直)和平行。

  师:小组内互相说说什么叫互相垂直,什么叫平行线。

  教师分别画出一组互相垂直和互相平行的直线。

  生1:两条直线相交成直角时,这两条直线叫作互相垂直,一条直线叫作另一条直线的垂线。

  生2:在同一平面内,不相交的两条直线叫平行线。

  师:平行线间的距离有什么特点?

  生:处处相等。

  师:如何画一条直线的垂线和平行线?

  学生分组讨论、交流,然后师生共同总结。

  师:通过今天的复习,你掌握了哪些知识?

  生1:能正确区分直线、线段和射线。

  生2:能画出指定度数的角。

  线与角

  1.线

  顶点个数能否度量

  线段2能

  射线1不能

  直线无不能

  A类

  1.填空。

  (1)线段有(  )个端点,射线有(  )个端点,直线(  )端点。

  (2)两条直线相交组成4个角,如果其中一个角是90°,那么其他三个角是(  )角,这两条直线的位置关系是(  )。

  (3)6时整,时针与分针所成角的度数是(  )。

  (4)(       )决定了角的大小。

  (5)135度角比平角小(  )度,比直角大(  )度。

  2.判断。(对的在括号里画

  估算。(教材第77~78页)

  1.能结合具体情境进行估算并解释估算的过程,会选择合适的估算方法。

  2.培养学生的估算习惯。

  3.在解决具体问题的过程中感受估算的作用。

  重点:能结合具体情境进行估算并叙述估算的过程。

  难点:选择合适的估算方法。

  课件。

  课件出示教材第77页第2个主题图。

  师:根据你估算的结果判断应该去哪个影院看电影。

  生:应去星华影院。

  师:六年级大约有多少人?

  生:大约有270人。

  师:这节课我们就一起来复习“估算”。(板书课题:估算)

  师:在生活学习中,哪些时候要用到估算呢?

  生1:买东西的时候要估算带的钱够买几件商品。

  生2:计算前可以进行估算。

  生3:计算后可以用估算的方法验证结果是否正确。

  师:大家说得都很好,那么刚才那道题大家是用什么方法进行估算的?请你把自己的估算方法和小组内同学说一说。

  生1:我的估算方法是把几个班的人数都看成40,40×6是240,所以应去星华影院。

  生2:我的估算方法是把几个班的人数都看成50,50×6是300,所以应去星华影院。

  生3:我的估算方法是把几个班的人数都看成45,45×6是270,所以应去星华影院。

  师:大家都很棒,说出了不同的估算方法,希望大家在解决其他问题时也会选择合适的估算方法。

  师:通过今天的复习,你掌握了哪些知识?

  生:进一步理解了估算的过程,会选择合适的估算方法进行估算。

  A类

  1.估一估下面各题的结果,并把错误的改正过来。

  4200-500=3600  891+208=1100  404÷4=11  39×49=20__

  2.解决问题。

  (1)电影院有31排座位,每排36个,育英小学980名同学去看电影,座位够吗?

  (2)一本故事书有268页,小明每天看35页,一周能看完吗?

  (3)师徒两人共同加工458个零件,师傅每天加工35个,徒弟每天加工30个,8天能完成任务吗?

  (考查知识点:估算的意义;能力要求:能结合具体情境进行估算,会选择合适的估算方法)

  B类

  某校组织学生春游,若租用45座客车,则有15人没有座位,若租同样数量的60座客车,则余一辆空车,其余刚好坐满。已知45座客车租金为220元,60座客车租金为300元。

  (1)这个学校一共有学生多少人?

  (2)怎样租车最划算?

  (考查知识点:估算的应用;能力要求:利用估算解决具体的实际问题)

  课堂作业新设计

  A类:

  1.略

  2.(1)够(2)不能(3)能

  B类:

  (1)240人

  (2)租4辆45座客车和1辆60座客车最划算。

  教材第77页“巩固与应用”

  1.够不够

  2.略

  3.49≈50 50×30=1500(字) 15001528不能

  4.略

  5.小女孩儿估算的结果比精确结果大,小男孩儿估算的结果比精确结果小。

六年级数学下册教案9

  教材分析

  这一册教材包括下面一些内容:负数、百分数(二)、圆柱与圆锥、比例、数学广角、整理和复习等。

  在数与代数方面,这一册教材安排了负数、百分数(二)和比例三个单元。结合生活实例使学生初步认识负数,了解负数在实际生活中的应用。百分数在实际生活中应用广泛,学会解决有关百分数的简单实际问题是加强问题解决教学的重要方面之一。比例的教学,使学生理解比例、正比例和反比例的概念,会解比例和用比例知识解决问题。

  在空间与图形方面,这一册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生通过对圆柱、圆锥特征和有关知识的探索与学习,掌握有关圆柱表面积,圆柱、圆锥体积计算的基本方法,促进空间观念的进一步发展。

  在用数学解决问题方面,教材一方面结合百分数(二)、圆柱与圆锥、比例等知识的学习,教学用所学的知识解决生活中的简单问题;培养学生发现问题、解决问题、分析问题和解决问题的能力。

  在数学思想方法方面,教材除了结合负数、百分数(二)、圆柱与圆锥、比例、整理和复习等知识,让学生体会、理解和掌握归纳法、类比法、符号思想、分类思想、演绎推理思想、转化思想、数形结合思想、函数思想等思想方法外,还安排了“数学广角”的教学内容,引导学生通过观察、实验、推理等活动,理解和掌握模型思想、归纳法、演绎推理思想,体会运用数学思想、数学思想方法解决问题的`有效性、优越性,发展学生的四能。

  整理和复习单元是在完成小学数学的全部教学内容之后,引导学生对所学内容进行一次系统的、全面的回顾与整理,这是小学数学教学的一个重要环节。通过整理和复习,使原来分散学习的知识得以梳理,由数学的知识点串成知识线,由知识线构成知识网,从而帮助学生完善头脑中的数学认知结构,为初中的数学学习打下良好的基础;同时进一步提高学生综合运用所学知识分析问题和解决问题的能力。

  学情分析

  大部分学生能掌握本册应掌握的基本知识,学习较主动,但有个别学生依赖性较强,思维能力和分析能力都较差,听课时较易分神,学习成绩较不理想。应用类,如应用题,还有个别学生对题目难以理解,解题困难。学生学习习惯大多较好,课堂听课认真,作业基本上都能按时完成。只有少数潜能生学习上仍有惰性,完成作业处于应付状态。本学期尽量多设计分层次作业,让潜能生得到提高,优生得到发展。

  学习目标

  1、熟练地掌握百分数应用题的数量关系,并能解决问题。

  2、通过归纳整理,是学生熟练地掌握解决百分数问题的方法。

  3、培养学生良好的学习习惯。

  教学重点和难点

  认真审题,用百分数解决实际问题。

  用百分数解决实际问题。

  教学过程

  一、复习整理

  前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。

  学生交流,汇报,教师随机板书,绘制表格。

  二、综合运用

  课件出示例5。

  1、学生读题,明确已知条件及问题,尝试说说自己的解题思路。

  2、利用提问,引导学生思考回答,归纳出解题思路。

  提问启发:“满100元减50元”是什么意思?

  引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。

  归纳整理解题思路:

  (1)在A商场买,直接用总价乘以50%就能算出实际花费。

  (2)在B商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。

  3、学生独立列出算式,并计算出结果。再交流汇报,教师板书:

  A商场:230×50%=115(元)

  B商场:230-2×50

  =230-100

  =130(元)

  115<130,

  答:在A商场买应付115元,在B商场,买应付130元;选择A商场更省钱。

  4、总结思考:在什么时候这两个商场价格差不多呢?

  三、巩固练习

  1、完成教材第12页“做一做”。学生独立完成,教师讲解。

  2、完成练习二第12题,再集体交流订正。

  3、完成练习二第13题。“折上折”是什么意思?怎么计算呢?

  4、完成练习二第14题。

  5、完成练习二第15题。提示:增长为“-0.068%”表示什么意思?

  四、课堂小结

  通过这节课,你有什么收获,你将如何运用到生活中呢?

  板书设计

  百分数:整理与复习

六年级数学下册教案10

  教学目标:

  1、在具体情境中,通过画一画的活动,初步认识正比例图象。

  2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

  3、利用正比例关系,解决生活中的一些简单问题。

  教学重点:

  会在方格纸上描出成正比例的量所对应的点,并认识到成正比例关系的两个量的图象特点。

  教学难点:

  利用正比例关系,解决生活中的一些简单问题。

  教学准备:

  多媒体课件

  教学过程:

  一、复习

  师:通过上节课的学习,同学们能根据正比例的特征来判断两个变量是否成正比例。首先,请同学们回忆一下,正比例要满足哪两个条件?

  生:要满足两个条件:1、两种量是相关联的量,一种量随着另一种量的增加而增加、减少而减少;2、两种量相对应的比值不变。

  师:请同学们在思考一下:y=5x,y和x成正比例吗?为什么?

  生:成正比例,因为y和x是两种相关联的量,随着x的变化,y也在不断变化,y和x的比值始终等于5.所以y和x成正比例。

  师:看来对于成正比例的量之间的关系,同学们已经掌握,下面我们再思考一个问题:y和x成正比例,y是x的5倍,它们之间的关系能通过图画的到吗?这就是我们这节课要学习的内容。(教师板书课题:画一画)

  (设计意图:复习上节课正比例的有关知识,导入本课。)

  二、动手画图,理解含义。

  填表,说一说表中两个量的关系。

  一个数 0 1 2 3 4 5 6 7 8 9 10

  这个数的5倍

  (1)学生填表。

  (2)学生汇报。

  (3)谁能说一说这两个量的关系。

  这两个量在不断变化,并且一个数增大,它地5倍也不断增大,但他们的比值不变。所以这两个变量成正比例关系。

  (设计意图:通过本环节,带领学生看懂图,明确图上横轴、纵轴分别表示什么,明确各点所表示的含义。为下一步在表格上描点,扫清障碍。)

  三、试一试

  1、在下图中描点,表示第20页两个表格中的数量关系。

  2、思考:连接各点,你发现了什么?

  生:所有的点在都在同一条直线上。

  (设计意图:学生会很形象的看到所有点都在同一条直线上,进一步体会当两个变量成正比例关系时,所绘成的图是一条直线。)

  四、练一练

  1、圆的半径和面积成正比例关系吗?为什么?

  师:因为圆的面积和半径的比值不是一个常数。

  师:请同学们观察课本上的`图,看一看不成正比例的两个量所形成的的图形是不是一条直线?

  (设计意图:从反方进一步证明成不成正比例的两个量,形成的图像不是一条直线。通过对比方式,再次验证结论。)

  2、乘船的人数与所付船费为:(数据见书上)

  (1)将书上的图补充完整。

  (2)说说哪个量没有变?

  (3)乘船人数与船费有什么关系?

  (4)连接各点,你发现了什么?

  3、回答下列问题

  (1)圆的周长与直径成正比例吗?为什么?

  (2)根据右图,先估计圆的周长,再实际计算。

  (3)直径为5厘米的圆的周长估计值为( ),实际计算值为( )。

  (4)直径为15厘米的圆的周长估计值为( ),实际计算值为( )。

  4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)

  (设计意图:通过以上练习,巩固所学。)

六年级数学下册教案11

  教学内容:

  例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。

  例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。

  例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。

  教学目标:

  1.通过学生观察、探索,使学生掌握数线段的方法。

  2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的.数学问题。

  3.培养学生归纳推理探索规律的能力。

  重点难点:

  引导学生发现规律,找到数线段的方法

  教具学具:

  多媒体课件

  教学指导:

  1.出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。 探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法

  2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答

  3.探究例7时,必须先让学生仔细读题,理解题意。

  教学过程:

  一、复习回顾,游戏设疑,激趣导入。

  1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)

  2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)

  新知学习

  二、逐层探究,发现规律。

  1.从简到繁,动态演示,经历连线过程。

六年级数学下册教案12

  教学目标:

  1、使学生经历猜测-验证的过程中,自主发现按比例放大后面积的变化规律

  2、应用面积的变化规律解决一些实际问题。

  3、使学生进一步体会比例的应用价值,提高学习数学的兴趣。

  重点难点:

  探究平面图形按比例放大或者缩小后面积的变化规律。

  教学过程:

  一、 课堂提问

  1.正方形面积的计算公式是什么?

  2.长方形面积的计算公式是什么?

  3.三角形面积的计算公式是什么?

  4.圆面积的计算公式是什么?

  二、 情景导入,合作探究

  1. 出示教科书第48页上面的两个长方形

  说明:大长方形是小长方形按比例放大后得到的。

  (1) 请同学们分别量出两个长方形的长和宽,写出对应的边长之比

  大长方形与小长方形的比是( ):( ),宽的比是( ):( )

  (2) 一个长方形的长和宽按比例放大后,它的面积发生变化吗?会发生怎样的变化呢?这节课我们一起来探究面积的变化 ,板书课题。

  (3) 请同学们先估计一下,大长方形与小长方形的面积比是( ):( ),再通过计算,验证自己估计的对不对?

  (4) 全班交流,使学生初步感知长方形按比例放大后面积的变化规律

  2. 出示教科书48页下面的一组图形

  说明:下面的图形是上面相对应的图形放大后得到的。

  (1) 请同学们测量相关的数据进行计算,再填写下表,再填写教科书第49页上面的表格

  (2) 组织讨论:通过上面的计算和比较,你发现了什么?

  (3) 小组交流

  (4) 总结:把一个平面图形按N:1的比例放大后,放大后与放大前的.面积比是2N:1

  3.启发学生进一步思考:如果把一个平面图形按指定的比例缩小,缩小前后图形面积的变化规律又是什么?

  小组讨论,全班交流

  三、分组练习

  让学生选择第49页图中一幢建筑或一处设施,测量并计算它的实际占地面积

  四、当堂检测

  1. 在比例尺是1:800的平面图上,有一块长方形的草地,长是3.5cm,宽是2cm,它的实际占地面积是多少?

  2. 一块长方形运动场,长150米,宽80米。在一幅比例尺是

  1:250的平面图上,这块长方形运动场的面积是多大?

  3. 在一幅比例尺是1:20xx的世界图上,量得一个圆形花坛的直径是2厘米,它的实际面积是多大?

  五、 总结回顾

  通过今天的学习,你又有了哪些新的收获和体会?

六年级数学下册教案13


  知识整理

  1回顾本单元的学习内容,形成支识网络。

  2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  什么叫比?比例?比和比例有什么区别?

  什么叫解比例?怎样解比例,根据什么?

  什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  什么叫比例尺?关系式是什么?

  基础练习

  1填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。

  甲乙两数的比是5:3。乙数是60,甲数是( )。

  2、解比例

  5/x=10/3 40/24=5/x

  3 、完成26页2、3题

  综合练习

  1、 A×1/6=B×1/5 A:B=( ):( )

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例( ):( )、( ):( )

  实践与应用

  1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

  板书设计: 整理和复习

  比例的.意义

  比例 比例的性质

  解比例

  正反比例 正方比例的意义

  正反比例的判断方法

  比例应用题 正比例应用题

  反比例应用体题

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、 培养学生的思维能力。

六年级数学下册教案14

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:

  负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的'直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

  无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

六年级数学下册教案15

  教学内容:

  学会购物(课本第12页例5)

  教学目标:

  1、结合具体事例,经历综合运用所学知识解决合理购物问题的过程。

  2、了解合理购物的意义,能自己做出购物方案,并对方案的合理性做出充分的解释。

  教学重点:

  综合利用所学知识解决实际问题,巩固有关百分数在生活中的应用问题

  教学难点:

  能根据结果分析方案的合理性,并做出正确选择。

  教学过程:

  一、复习

  1、爸爸买了一个随身听,原价160元,现在只花了九折的钱,现价多少钱?

  2、爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

  3、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?

  二、创设生活情境,引入新课

  (一)让学生说说生活中商家为了吸引顾客或扩大销量,常常搞一些什么样的`促销活动?那如何学会合理购物呢,从而引入本节新课。

  (二)出示第12页的例5

  1、让学生仔细读题,说说想到了什么?

  2、着重理解满100元减50元的意思

  3、分别计算出在A商场和B商场所花的实际费用,进行比较

  A商场

  23050%=115(元)

  B商场:

  230-502=130(元)

  4、从而得出在A商场购物更省钱,所以在购物时我们要根据促销方法的不同,选择不同的商店,充分利用商家的优惠政策,就能够少花钱多购物,这就是合理购物。

  三、课堂练习

  1、第12页做一做

  2、某商场搞促销活动,如果两个品牌都有一款标价250元的电饭煲,那个品牌的更便宜?

  A品牌满100元减50元;B品牌先打七折,在此基础上再打五折。

  3、某著名品牌旅游鞋搞促销活动,在A商城按满200元减100元的方式销售,在B商城先打七折,再打八折的折上折销售。妈妈准备给小丽买一双标价460的这种品牌的旅游鞋。

  (1)在A、B两个商城买,各应付多少钱?

  (2)选择哪个商城更省钱?

  四、课堂小结

  如何才能进行合理购物

  五、作业

  第15页第13、14题