高一数学下册教案最新

时间:2023-02-02 20:46:25 教案 我要投稿
  • 相关推荐

高一数学下册教案最新

  作为一名人民教师,通常需要准备好一份教案,教案有利于教学水平的提高,有助于教研活动的开展。那么写教案需要注意哪些问题呢?以下是小编收集整理的高一数学下册教案最新,仅供参考,大家一起来看看吧。

高一数学下册教案最新

高一数学下册教案最新1

  教学目标:

  1、结合实际问题情景,理解分层抽样的必要性和重要性;

  2、学会用分层抽样的方法从总体中抽取样本;

  3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。

  教学重点:

  通过实例理解分层抽样的方法。

  教学难点:

  分层抽样的步骤。

  教学过程:

  一、问题情境

  1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。

  2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

  二、学生活动

  能否用简单随机抽样或系统抽样进行抽样,为什么?

  指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的'机会相等,还要注意总体中个体的层次性。

  由于样本的容量与总体的个体数的比为100∶2500=1∶25,

  所以在各年级抽取的个体数依次是。即40,32,28。

  三、建构数学

  1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。

  说明:

  ①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

  ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

高一数学下册教案最新2

  一、教学目标

  1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

  2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

  二、教学重点:

  画出简单几何体、简单组合体的三视图;

  难点:识别三视图所表示的空间几何体。

  三、学法指导:

  观察、动手实践、讨论、类比。

  四、教学过程

  (一)创设情景,揭开课题

  展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

  (二)讲授新课

  1、中心投影与平行投影:

  中心投影:光由一点向外散射形成的.投影;

  平行投影:在一束平行光线照射下形成的投影。

  正投影:在平行投影中,投影线正对着投影面。

  2、三视图:

  正视图:光线从几何体的前面向后面正投影,得到的投影图;

  侧视图:光线从几何体的左面向右面正投影,得到的投影图;

  俯视图:光线从几何体的上面向下面正投影,得到的投影图。

  三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

  三视图的画法规则:长对正,高平齐,宽相等。

  长对正:正视图与俯视图的长相等,且相互对正;

  高平齐:正视图与侧视图的高度相等,且相互对齐;

  宽相等:俯视图与侧视图的宽度相等。

  3、画长方体的三视图:

  正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

  长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

  4、画圆柱、圆锥的三视图:

  5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

  (三)巩固练习

  课本P15练习1、2;P20习题1.2[A组]2。

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)布置作业

  课本P20习题1.2[A组]1。

高一数学下册教案最新3

  一、教学目标:

  1、知识与技能

  (1)了解空间中两条直线的位置关系;

  (2)理解异面直线的概念、画法,培养学生的空间想象能力;

  (3)理解并掌握公理4;

  (4)理解并掌握等角定理;

  (5)异面直线所成角的定义、范围及应用。

  2、过程与方法

  (1)师生的共同讨论与讲授法相结合;

  (2)让学生在学习过程不断归纳整理所学知识。

  3、情感与价值

  让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。

  二、教学重点、难点

  重点:1、异面直线的概念;

  2、公理4及等角定理。

  难点:异面直线所成角的计算。

  三、学法与教学用具

  1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。

  2、教学用具:投影仪、投影片、长方体模型、三角板

  四、教学思想

  (一)创设情景、导入课题

  1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

  2、师:那么,空间两条直线有多少种位置关系?(板书课题)

  (二)讲授新课

  1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:

  相交直线:同一平面内,有且只有一个公共点;

  平行直线:同一平面内,没有公共点;

  异面直线:不同在任何一个平面内,没有公共点。

  教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:

  2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律?

  组织学生思考:

  长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗?

  生:平行

  再联系其他相应实例归纳出公理4

  公理4:平行于同一条直线的两条直线互相平行。

  符号表示为:设a、b、c是三条直线

  a∥b

  c∥b

  强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

  公理4作用:判断空间两条直线平行的依据。

  例1、空间四边形ABCD,E 、F、H、G分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是平行四边形

  3让学生观察、思考右图:

  ∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的.大小关系如何?

  生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800

  教师画出更具一般性的图形,师生共同归纳出如下定理

  等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

  教师强调:并非所有关于平面图形的结论都可以推广到空间中来。

  4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。

  (1)师:如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角)。

  (2)强调:

  ① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;

  ②两条异面直线所成的角θ∈(0,);

  ③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

  ④两条直线互相垂直,有共面垂直与异面垂直两种情形;

  ⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

  (3)例2(教材P47页例3)

  (三)课堂练习

  练习1、2

  (四)课堂小结在师生互动中让学生了解:

  (1)本节课学习了哪些知识内容?

  (2)计算异面直线所成的角应注意什么?

  (五)课后作业

  1、判断题:

  (1)a∥b c⊥a =>c⊥b

  (2)a⊥c b⊥c =>a⊥b ()

  2、填空题:在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有________条。

  课后记:

高一数学下册教案最新4

  教学目标:

  (1)理解直线与圆的位置关系的几何性质;

  (2)利用平面直角坐标系解决直线与圆的位置关系;

  (3)会用“数形结合”的数学思想解决问题.

  教学重点、难点:

  直线与圆的方程的应用.

  教学过程:

  一、复习引入:

  问题1:如何判断直线与圆的位置关系?

  问题2:如何判断圆与圆的位置关系?

  直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,这几节课我们将通过一些例子学习直线与圆的方程在实际生活以及平面几何等方面的应用

  二、新课教学:

  例1.(课本例4)图4。2-5是某圆拱形桥的示意图。这个圆的圆拱跨度AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,求支柱的高度(精确到0.01m)。

  小结方法:用坐标法解决实际应用题的步骤:

  第一步:将实际应用题转化为数学问题,建立适当的'平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:将代数运算结果“翻译”成实际结论,.

  例2.(课本例5)已知内接于圆的四边形的对角线互相垂直,求证圆心到一边的距离等于这条边所对边长的一半。

  小结方法:用坐标法解决几何问题的步骤:

  第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:将代数运算结果“翻译”成几何结论.

  课堂练习:课本练习第2,3,4题;

  课后作业:课本习题4.2A组第8,11题。B组第1题

【高一数学下册教案最新】相关文章:

五年级数学下册教案最新02-14

最新苏教版五年级数学下册教案优秀02-23

高一数学教案06-20

小学人教版数学下册教案11-25

最新苏教版数学教案01-27

最新苏教版四年级数学下册教案(精选13篇)06-24

小班数学教案最新03-18

高一数学教案《函数概念》12-17

高一数学教案15篇12-08