《组合图形的面积》教案

时间:2023-02-11 17:45:57 教案 我要投稿

《组合图形的面积》教案15篇

  作为一名教学工作者,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢?下面是小编收集整理的《组合图形的面积》教案,希望能够帮助到大家。

《组合图形的面积》教案15篇

《组合图形的面积》教案1

  教材分析:

  《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。

  教学目标:

  知识目标

  1、在自主探索的活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中有关组合图形的实际问题。

  过程和方法

  让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

  情感、态度与价值观

  1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

  2、渗透转化的数学思想和方法。

  教学重点:

  学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

  教学难点:

  理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。

  教学准备:

  多媒体课件和组合图形图片。

  教学过程:

  一、激趣导入、复习铺垫、认识组合图形

  1、介绍笑笑和她家的新房子

  师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)

  2、引导学生观察,复习有关平面图形面积的计算公式

  师:从这座房子中可以找到哪些平面图形?会求它们的面积吗?

  3、欣赏图片(课件出示一组图片)

  师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)

  4、教师总结,揭示课题并板书

  师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)

  二、创设情境、探究新知

  笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)

  1、估计地板的面积

  请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)

  2、采用不同的方法求客厅的面积。

  同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的`想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。

  (1)生动手画图

  (2)汇报交流:同学们做好了吗?现在谁来说说你的想法?

  3、师生归纳方法并比较

  (1)观察找特点

  根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)

  (2)引导比较,对方法进行分类,找出最简单的方法

  师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)

  (3)现在,你能计算这个客厅地板的面积了吧!请根据下面的提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)

  (4)学生独立计算,四人板演。

  (5)汇报交流,集体订正。

  (6)引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)

  4、归纳算法

  刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。

  师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三、实际应用、解决问题

  1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)

  (1)学生拿出先准备好的图形,动手画

  (2)展示交流

  2、计算墙壁的面积

  观察图形选择方法独立计算汇报交流

  同学们帮笑笑解决了难题,相信她会很感激大家的,咱们一起听听她怎么说。[课件出示,笑笑说:同学们,你们真厉害!我在这里谢谢大家了。请大家再帮我一个忙吧,我们家想把这面墙(如下图)粉刷一遍,你们愿意帮我算算吗?](1)需要粉刷的面积一共是多少平方米?(2)如果每平方米需要0.15千克涂料,一共要用多少千克涂料?

  观察图形选择方法独立计算汇报交流

  3、求门油漆的面积。

  师:同学们以自己的聪明才智帮笑笑又解决了一个难题,咱们再听听她怎么说。课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)

  (1)需要油漆的面积一共是多少?

  (2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?

  四、归纳小结、提升知识

  这节课你学会了什么?

  (师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)

  五、拓展延伸

  师:请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。

  1.6m 4 m 10

  板书设计:

  组合图形面积

  S=ab 分割

  S=aa S=ah 转化

  基本图形

  S=ah2 S=(a+b)2 添补

《组合图形的面积》教案2

  教学内容:

  北师大版教科书第九册第75~76页的内容

  教学目标:

  1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

  重点、难点

  重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。

  难点:如何选择有效的计算方法解决问题。

  教具准备:

  多媒体课件和组合图形图片。

  教学过程:

  一.引出概念,揭示主题。

  1.你能看出以下图形是由那些基本图形组成的吗?

  2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。

  二.新授。

  这是我家的客厅平面图!(课件出示客厅的平面图。)

  1、估计地板的面积

  师:请同学们先估一估这个地板的面积有多大呢?

  2、探索不同方法。

  师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。

  生动手画图。

  教师有选择的展示方法。

  3.师总结分割法和添补法。

  其实不管是用分割法还是添补法,我们都是为了一个共同的目的.,那就是把这个组合图形转化成以学过的平面图形。

  4.计算:

  现在你会计算这个组合图形的面积吗?

  要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。

  生独立计算。

  5.汇报计算方法及结果。

  6.辨析及总结。

  (1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?

  分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。

  (2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三.巩固练习。

  1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。

  四.小结:谈谈你的收获!

  五.板书:

  组合图形面积

  图11.转化

  图22.找条件

  图33.计算图

《组合图形的面积》教案3

  教学内容:

  课本第92页到第93页的教学内容

  教学目标:

  1、认识组合图形、会把组合图形分解成已学过的平面图形。

  2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

  4、通过拼组图形,使学生感受教学与现实生活的密切关系,体会数学带给大家的生活美。

  重、难点与关键

  1.探索并掌握组合图形的面积计算方法。

  2.理解并掌握组合图形的组合及分解方法。

  教具准备

  教学用三角尺或教学挂图、PPT课件。

  教学过程

  一、复习导入

  1.复习。

  你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?

  长方形的面积=长×宽;正方形的面积=边长×边长

  平行四边形的面积=底×高;三角形的面积=底×高÷2

  梯形的面积=(上底+下底)×高÷2

  2.导入。

  3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?

  二、新授课

  1.认识组合图形。

  出示课本第92页的四幅图。

  认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

  (1)四人小组讨论。

  (2)小组各自展示各种分法。

  (3)让学生举例说说生活中的组合图形。

  同学们,开动脑筋想象:生活中哪些地方还有组合图形

  2.探索组合图形面积的计算方法。

  教师引导:大家真了不起,知道生活中存在着这么多的美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的面积计算方法。

  板书课题:组合图形的面积

  (1)出示例题4(电子教材)

  (2)学生独立解答。

  学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。

  (3)学生汇报。

  解法一:5×5+5×2÷2

  解法二:(5+7)×2.5÷2×2

  =25+5 =12×2.5÷2×2

  =30(m2) = 30(m2)

  学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)

  三、巩固练习

  完成课本第93页的“做一做”。

  问:这块地是由哪些简单的'图形组成的?

  1.学生独立计算。

  2.学生汇报,展示思路。

  四、课堂小结

  通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?

  在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。

  五、布置作业

  这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?

《组合图形的面积》教案4

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话揭题

  1.谈话。

  (1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?

  预设

  生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。

  生2:三角形的面积计算公式是“底×高÷2”。

  ……

  (2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?

  预设

  生1:我们学过长方体、正方体、圆柱、圆锥。

  生2:长方体的表面积……

  2.揭题。

  我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。

  ⊙回顾与整理

  1.提问:如何求组合图形、不规则图形的周长或面积?

  (一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)

  2.提问:如何计算立体组合图形的表面积或体积?

  (1)学生分组讨论。

  (2)指名汇报。(学生自由回答,合理即可)

  (3)教师小结。

  在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。

  在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。

  无论是分割还是添补,都是把复杂的图形转化成简单的图形。

  ⊙典型例题解析

  1.课件出示典型例题1。

  (1)求阴影部分的面积。(单位:cm)

  分析 本题考查学生求组合图形面积的能力。

  因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。

  解答 20×16-12×20÷2-8×16÷2=136(cm2)

  (2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)

  分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。

  观察图形可以看出:阴影部分的面积加上三角形EFC的面积等于大三角形DEG的面积,而梯形ABEF的面积加上三角形EFC的面积等于大三角形ABC的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形ABEF的`面积相等,只要求出梯形ABEF的面积就可以求出阴影部分的面积。

  解答 (8-3+8)×6÷2=39(cm2)

  2.课件出示典型例题2。

  将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体,求这个物体的表面积。

  分析 本题考查的是求立体组合图形表面积的能力。

  如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。

  物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积

  解答 2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1

  =157+31.4+18.84+6.28

  =213.52(m2)

《组合图形的面积》教案5

  教材分析

  1.课标中对本节内容的要求是:在探索活动中认识组合图形,归纳并运用不同的方法计算组合图形的面积,从而解决相应的实际问题。教材把这一内容安排在平行四边形、三角形和梯形面积计算之后学习,让学生知道在进行组合图形面积计算中,要把一个组合图形分解成已学过的平面图形并进行计算,这样可以巩固对各种平面图形特征的认识和面积公式的运用,又有利于发展学生的空间观念。因此本课在本单元中起着承上启下的作用,从简单的图形向不规则图形和组合图形的'知识转化。

  2.本节课的核心内容的功能和价值主要体现在两个方面:一是感受计算组合图形面积的必要性,也是日常生活中经常需要解决的问题。二是针对组合图形的特点强调学生学习的自主探索性,每个学生可以根据自己的经验思考与解决习惯去思考如何解决相应的实际问题,从而培养学生个性化解决问题的能力。

  学情分析

  1.本班共41名学生,从过去的学习情况来看,整体基础比较扎实,学习能力较强。最为关键的是:本班学生有85%的学生都酷爱数学这门课程(具体调查统计过)。只有部分学生对数学喜欢程度一般。总体上学生思维活跃,好动、好学已经具备了一定的自学能力。且通过之前的作业反馈、师生交流及我班特色“每天三问”的反馈对本班教学也有一定的指导意义。

  2.本课的授课对象是五年级的学生,学生通过之前的学习,对于平面图形直观感知和认识上已有了一定的基础,也掌握了一些基本图形面积的计算方法。作为五年级的学生,应进一步提高知识的综合运用能力,在学习中去探索掌握解决问题的思考策略。

  3.学生认知障碍点:拓展学生采用不同的方法来解决问题的能力方面是本节课最主要的障碍点。

  教学目标

  1、知识目标

  (1)认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。

  (2)能运用所学的知识,解决生活中有关组合图形面积的实际问题。

  2、技能目标

  (1)在观察、列举中认识简单的组合图形,在尝试、交流中探索组合图形面积的计算方法。

  (2)学会用分割法、填补法计算组合图形的面积。

  3、情感目标

  (1)结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

  (2)渗透转化的数学思想和方法。

  教学重点和难点

  重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。

  难点:如何选择有效的计算方法解决问题。

《组合图形的面积》教案6

  课前准备

  教师准备 多媒体课件

  教学过程

  ⊙谈话揭题

  1.谈话。

  (1)提问:我们学过哪些平面图形?你知道它们的周长和面积公式吗?

  预设

  生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和扇形。

  生2:长方形的周长=(长+宽)×2。

  生3:三角形的面积=底×高÷2。

  ……

  (2)提问:我们学过哪些立体图形?你知道它们的表面积和体积公式吗?

  生1:我们学过长方体、正方体、圆柱、圆锥。

  生2:正方体的表面积=边长×边长×6。

  生3:圆柱的体积=底面积×高。

  ……

  2.揭题。

  我们学过的这些图形,一般称为基本图形或规则图形,这节课我们将复习组合图形、不规则图形的面积及体积的计算方法。

  ⊙回顾与整理

  1.组合图形的周长、面积或体积的计算方法。

  (1)提问:如何求组合图形、不规则图形的周长或面积?

  ①小组讨论这些图形的周长或面积的计算方法。

  ②小结:一般通过割补、平移、旋转等方法,将它们转化为求几个基本图形的周长(或面积)和或差。

  (2)提问:如何求立体组合图形的表面积或体积?

  ①学生分组讨论。

  ②指名汇报。(学生自由回答,合理即可)

  ③小结:在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。

  在计算立体组合图形的体积时,一种是要把若干个立体图形的体积相加起来求组合图形的体积,另一种是要从一个物体的体积里减去若干个物体的体积,要视具体情况而定。

  无论是分割还是添补,都是把复杂的图形转化成简单的图形。

  ⊙典型例题解析

  1.课件出示例1。

  (1)求阴影部分的面积。(单位:cm)

  分析 本题考查的是求组合图形面积的能力。

  因为阴影部分是不规则图形,所以可采用“去空求差法”。即阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积。

  解答 20×16-12×20÷2-8×16÷2=136(cm2)

  (2)下面是由一部分重叠的两个完全相同的直角三角形组合而成的图形,求阴影部分的面积。(单位:cm)

  分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都未知,所以无法直接求出它的面积。

  观察图形可以发现,阴影部分的面积加上三角形EFC的面积等于大三角形DEG的面积,而梯形ABEF的.面积加上三角形EFC的面积等于大三角形ABC的面积,因为两个大三角形的面积相等,所以阴影部分的面积与梯形ABEF的面积相等,只要求出梯形ABEF的面积,就可知道阴影部分的面积。

  解答 (8-3+8)×5÷2=32.5(cm2)

  2.课件出示例2。

  将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体(如右图),求这个物体的表面积。

  分析 本题考查的是求组合立体图形表面积的能力。

  如上图,这个物体由三个圆柱组成,仔细观察可以发现,上面三个面的面积和恰好等于大圆柱的一个底面的面积。

  物体的表面积=一个大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积。

  解答 2×π×52+2×π×5×1+2×π×3×1+2×π×1×1

  =50π+10π+6π+2π

  =68π

  =213.52(m2)

《组合图形的面积》教案7

  “创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力。”培养学生的创新能力是素质教育的重要目标,也是新课程改革的核心问题之一。我们在教学中,要为学生提供充分的时间和空间,鼓励学生用多种方法、多种思路解决数学问题,促进学生创新能力的提高。

  案例:求组合图形的面积

  导入新课后,老师出示例题:

  求下面组合图形的面积?(单位:厘米)

  师:分四人小组互相讨论,再派代表发言。(学生大约讨论六分钟左右进行反馈)

  师:大家来汇报一下,你是怎样算的'?

  生1:我是把它分成一个长方形和一个梯形来算的。先算出长方形的面积是48平方厘米,梯形的面积是40平方厘米,再把它们加起来,结果是88平方厘米。

  评:这位同学的回答思路清楚、语言精炼,同时也很清楚地把他的分析过程“怎样分”展示出来,使学生一看便一目了然。

  生2:我是把它分成一个梯形和一个三角形来算的。梯形的面积是(6+10)×8÷2=64(平方厘米),三角形的面积是12×(10-6)÷2=24(平方厘米),再把两个面积加起来也是88平方厘米。

  评:这位同学的回答相当不错,思路也很清楚,经他这样把原来的一个图形分成两个我们熟悉的图形的这种计算方法,使学生看了后也能掌握。

  生3:我 先算长方形的面积是80平方厘米,三角形的面积是8平方厘米,再把两个面积加起来也是88平方厘米。

  评:这位同学又有了新的计算方法,思路也很清楚,也是一种最佳的计算方法,分成的方法一看就能掌握。

  生4:可以补上一个梯形,使它成为一个长方形,再用长方形的面积减去梯形的面积就可以了。如图:

  生5:还可以把它分成一个长方形和两个三角形来计算。先算出长方形的面积是48平方厘米,再算出两个三角形的面积分别是16平方厘米和24平方厘米,最后把这三个面积加起来是88平方厘米。

  这一例题的教学就这样在“创新”中开始,又在“创新”中结束了,从整个过程来看,一开始课堂上可以明显地观察到不少学生一脸疑惑,渐渐地注意力出现涣散,到最后一种方法也不会的学生估计不存在,如有也是个别的。课堂教学面对的是一个班级的学生,他们的知识、智力水平存在差异。在初次接触组合图形,没有进行引导的情况下,让学生自行探究,获得成功的只是部分同学。在汇报解法时,要让学生充分展示解题思路、探究历程,引导全班同学进行分析、认同,进一步明确思路。有了多种方法,还应通过比较,懂得各种方法的繁简优劣。

  随着新课程改革的不断推向高潮,对如何实施新理念,弥补传统数学的缺陷,解决传统数学教学问题,发扬传统数学教学的优点需要我们不断地去探索、去实践。“陷于生活、方向不明、放任自流”绝不应该成为新课程理念的本意,“联系实际、明确目标、自主探究、体验成功”菜是我们要追求的目标。

《组合图形的面积》教案8

  一、知识要点

  在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

  二、精讲精练

  【例题1】求图中阴影部分的面积(单位:厘米)。

  【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。

  62×3.14× =28.26(平方厘米)

  答:阴影部分的面积是28.26平方厘米。

  练习1:

  1.求下面各个图形中阴影部分的面积(单位:厘米)。

  2.求下面各个图形中阴影部分的面积(单位:厘米)。

  3.求下面各个图形中阴影部分的面积(单位:厘米)。

  【例题2】求图中阴影部分的面积(单位:厘米)。

  【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。

  从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

  3.14× -4×4÷2÷2=8.56(平方厘米)

  答:阴影部分的面积是8.56平方厘米。

  练习2:

  1.计算下面图形中阴影部分的面积(单位:厘米)。

  2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

  3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

  【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。

  【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)

  答:长方形长方形ABO1O的面积是1.57平方厘米。

  练习3:

  1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。

  2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

  3.如图所示,AB=BC=8厘米,求阴影部分的面积。

  【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。

  【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。

  I和II的面积相等。

  因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以

  6×4=24(平方厘米)

  答:阴影部分的面积是24平方厘米。

  练习4:

  1.如图所示,求四边形ABCD的面积。

  2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。

  3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。

  【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。

  【思路导航】阴影部分的面积等于平行四边形的`面积减去扇形AOC的面积,再减去三角形BOC的面积。

  半径:4÷2=2(厘米)

  扇形的圆心角:180-(180-30×2)=60(度)

  扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)

  三角形BOC的面积:7÷2÷2=1.75(平方厘米)

  7-(2.09+1.75)=3.16(平方厘米)

  答:阴影部分的面积是3.16平方厘米。

  练习5:

  1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。

  2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。

  3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

  4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

  组合图形面积计算(二)

  一、知识要点

  对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。

  二、精讲精练

  【例题1】如图所示,求图中阴影部分的面积。

  【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米

  [3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)

  答:阴影部分的面积是107平方厘米。

  解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

  (20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)

  答:阴影部分的面积是107平方厘米。

  练习1:

  1.如图所示,求阴影部分的面积(单位:厘米)

  2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?

  【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。

  【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。

  3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)

  解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

  3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)

  答:阴影部分的面积是16.82平方厘米。

  练习2:

  1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。

  2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。

  3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。

  【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。

  【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。

  空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)

  阴影部分的面积:10×10-21.5×2=57(平方厘米)

  解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。

  (10÷2)2×3.14×2-10×10=57(平方厘米)

  答:阴影部分的面积是57平方厘米。

  练习3:

  1.求下面各图形中阴影部分的面积(单位:厘米)。

  2.求下面各图形中阴影部分的面积(单位:厘米)。

  3.求下面各图形中阴影部分的面积(单位:厘米)。

  【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。

  【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。

  既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)

  阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)

  答:阴影部分的面积是3.87平方厘米。

  练习4:

  1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

  2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

  3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。

  【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。

  【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。

  3.14×(30×2)×1/4-30=17.1(平方厘米)

  答:阴影部分的面积是17.1平方厘米。

  练习5:

  1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。

  2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。

  3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。

《组合图形的面积》教案9

  一、教材内容:

  九年义务教育六年制小学教科书第九册第三单元第五节《组合图形面积的计算》。即P90---91页的例题和练习题。

  教学要求:

  使学生初步了解组合图形面积的计算方法,会计算一些较简单的组合图形的面积。

  使学生掌握组合图形常用的割补方法。

  教学重点、难点:

  教学重点:利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学过程:

  以寻标追源为教学模式,以目标教学为基本教学形式,以尝试法为主要教学手段。

  前置回顾,展示目标;

  在发散思维中探究新知,精讲点拨,完成目标;

  概括总结,反馈矫正。

  ㈠、引标:创设情境,引导探索

  ⒈旧知辅垫,诱发注意

  电脑显示单车、榨栏、阶梯组合图,标出几种已学过的三角形、平行四边形、长方形、梯形,让学生说出名称和面积计算字母公式。

  (这里通过实物感知,了解各平面图形的特征,说出面积公式,加深对旧知识的复习,沟通新旧知识的联系,为学习新知识做好铺垫。)

  设景感知,激活思考

  电脑显示一幅美丽的画面,一位小天使对一面墙提出问题:你能计算这幢房的侧面墙的面积吗?从而揭示课题《组合图形面积的计算》。

  (这样通过直观并带有趣味的引导,使学生产生好奇心,引起学习动机,迫切试一试的愿望。从而吸引了学生的注意力,激发了学生的求知欲,从这里打开学生通道,促使学生想方设法去找组合图形面积的计算方法。)

  (二)寻标:提出问题,寻找目标

  叫学生齐读课题后,问:读了课题,你们想知道组合图形的什么知识?(组合图形面积如何计算)好,请同学们看书P90---91页,能否自己解决这些知识,看看它对这些知识是怎样讲的。

  (在这里老师先不做讲解,让学生带着求知欲看书,这是根据尝试原则,让学生在自我评价中获取新知识,它是教学的一种有效尝试。)

  (三)探标:追源问底,引导发现

  提出问题:为了求组合图形的面积,书上是如何讲的?、除了书上的分割方法外,你还有别的.分割方法来求这个组合图形的面积吗?从而引发学生的发散思维。

  电脑显示学生可能想到的分割方法:

  ①分成一个三角形和一个长方形;

  ②分成两个梯形;

  ③分成三个三角形。

  其它方法给予口头定正正误。

  2.展示各种想法,得出组合图形面积的求法。

  ⒊发散引导,找出新的解法:

  让学生观察分的方法后,提出问题:刚才所讲的都是把组合图形分成几个已学过的平面图形,那还有除了分以外的别的方法吗?

  电脑显示补的方法,并指出平面组合图形求面积的方法,常用的方法就是分、补两种方法。

  (这里有目的运用迁移规律,启发引导学生,教给学生获取知识的方法,以旧探新,引导学生看书、讨论、进行观察比较、概括,找到解决问题的方法,培养学生的探索精神。也有利于发挥学生的主体作用,同时使学生在探索规律的过程中发展思维能力。)

《组合图形的面积》教案10

  教学内容:教科书第90页的例题,完成例题下面的”做一做“和练习二十一的题目。

  教学目的:使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。

  教具准备:将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。

  教学过程:

  一、复习

  问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:S=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)

  二、新授。

  1、教学例题。

  教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的形状是这样的:(出示小黑板)

  问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)

  我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)

  现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)

  :在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)

  2、做例题下面”做一做“中的题目。

  先让学生读题。

  问:“这块菜地可以看成是由哪些图形组合而成?”

  让每个学生在练习本上列式计算。做完后集体核对。

  三、巩固练习。

  做练习二十一中的题目。

  第3题,投影片出示一面少先队的中队旗。

  问:要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?你是怎样做的'?(让几个学生说一说自己的想法。

  第4题,先让学生读题,再问:

  “这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)

  “根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)

  学生在练习本上列式计算,再集体订正。

  四、作业。

  练习二十一的第1题和第2题。

  课后:

《组合图形的面积》教案11

  教学内容:义务教育课程标准实验教科书人教版数学五年级上册第92~93页例4。

  教学目标:

  1.联系已有知识认识组合图形,会把组合图形分解成已学过的平面图形,能正确计算组合图形的面积。

  2.通过观察、操作、分析,初步认识转化思想方法在组合图形面积计算中的运用;提高观察、分析、综合和运用转化的方法解决实际问题的能力。

  3.增强探索数学的自觉性与创新意识,体验成功解决数学问题的愉悦。

  教学重点:将组合图形转化成若干个已学过的基本图形。

  教学难点:根据组合图形的特点灵活进行转化,并找出隐含在图形中的条件。

  教具、学具准备:教师准备多媒体课件、实物投影仪;学生准备七巧板。

  教学过程:

  一、复习旧知,激疑导入

  1.复习平面图形的面积。

  (1)出示下列图形,让学生说说每个图形的面积怎样计算?

  (2)学生说后,教师依次在图形的下面写上面积算公式:

  S=ab S=a2 S=ah S=ah2

  S=(a+b)h2

  2.观察组合图形,激疑导入。

  教师(投影)出示组合图形:房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形。

  师:这些图形与我们学过的哪些图形相同?怎样计算它们的面积?(引导学生观察思考并说明这些图形分别是由几个我们已经学过的简单图形组成的,我们把它们叫做组合图形。板书课题:组合图形的面积计算)

  (设计意图:通过复习学过的平面图形面积计算公式,巩固对简单图形面积计算方法的理解,为学习组合图形的面积计算做好铺垫。联系生活实际,通过投影展示多种组合图形,引导学生观察,用问题激发学生的求知欲,使揭示课题水到渠成。)

  二、观察分析,探索方法

  1.认识组合图形。

  (1)在组合图形中找一找简单图形。

  师:在实际生活中,我们见到的物体表面有许多是由我们已经学过的长方形、正方形、平行四边形、三角形、梯形等基本图形组成的组合图形。现在请同学们认真观察屏幕上的组合图形,找一找房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形各由哪些简单图形组成?

  (学生边说,教师边用彩色笔在投影片上把前面三种组合图形分割成几个简单图形。)

  (2)找一找生活中见过的组合图形。

  师:在日常生活中,同学们还见过哪些物体的表面是组合图形?它们是由哪些简单图形组成的?

  (3)小组议一议,画一画组合图形。

  (4)小结:组合图形是由几个简单图形组成的平面图形。

  (设计意图:通过引导学生观察、寻找组合图形中的简单图形,寻找日常生活中的组合图形,引导学生议一议,画一画。在此基础上再引导学生归纳、概括组合图形的含义,建立组合图形的概念,使学生对组合图形有了清晰的认识。)2.探索组合图形面积的计算方法。

  师:同学们认识了组合图形,接下来我们探索组合图形面积的计算方法。

  (1)投影例题:张大叔有一块菜地,形状如下图。这种菜地的面积是多少平方米?

  (2)探索计算方法。

  教师发给每个学生印有上图的练习纸,按下列要求完成:

  ①想一想:这个图形是由哪几个简单图形拼成的?

  ②画一画:画上虚线,把组合图形分割成几个简单图形,看看谁的方法多?谁的方法好?

  ③找一找:寻找计算组合图形面积的条件。

  ④算一算:学生独立尝试计算组合图形的面积。

  ⑤说一说:学生汇报交流,先说一说把组合图形分割成哪几个简单图形,再利用课件展示分割过程,最后投影展示学生的不同计算方法。

  方法一:求一个梯形和一个长方形面积的和。

  (4+8)(10-5)2+54

  =30+20

  =50(m )

  方法二:求一个梯形和一个三角形面积的和。

  (5+10)42+8(10-5)2

  =30+20

  =50(m )

  方法三:求一个三角形和一个长方形面积的和。

  (10-5)(8-4)2+104

  =10+40

  =50(m )

  方法四:求两个三角形面积的和。

  1082+542

  =40+10

  =50(m )

  方法五:从一个长方形的面积中减去一个梯形的面积。

  108-(10+5)(8-4)2

  =80-30

  =50(m )

  ⑥议一议。组织讨论,比较算法。上面五种计算和思考方法有何异同?为什么有的用加法算,有的用减法算?比一比,哪种计算方法比较简便?

  3.小结计算方法。

  先把组合图形分解成学过的几个简单图形,然后寻找计算简单图形面积的条件,最后运用加、减法求出组合图形的面积。但要注意,分解图形时应当考虑计算方便且要有计算面积所必需的数据。

  教师板书:合理分解(转化)寻找计算简单图形面积的条件计算简单图形的面积运用加、减法(求和或求差)。

  (设计意图:通过让学生想一想、画一画、找一找、算一算,鼓励学生寻求不同的解题策略,运用不同的思路计算面积,培养学生思维的灵活性,让学生创造性地解决问题;通过学生说一说、议一议,交流各自的计算方法,拓宽计算组合图形面积的思路,明确计算组合图形面积时不仅可以用加法算,有时也需要用减法算;明确分解图形时要考虑尽量用简便的方法计算,促进算法优化;通过小结计算方法,使学生进一步理解和掌握组合图形面积的计算方法,并认识到根据已知条件对图形进行分解,不是任意分解都能计算,培养学生思维的深刻性;通过教师板书解题思路,渗透数学转化思想,提升学生的数学思维能力。)三、解决问题,发展能力

  1.下面是少先队的中队队旗,做一面中队旗要用红布多少平方米?

  师:先用虚线画一画,可以把它分割成哪些简单的图形?看看谁的方法多?

  (1)让学生独立完成。学生一般能想出下面两种方法:

  ①求两个梯形面积的和。

  ②求一个长方形和两个三角形面积的和。

  (2)组织小组交流,引导学生想出第三种方法:

  从一个长方形的`面积减去一个三角形的面积。

  (3)评价小结。

  师:同学们不但想出了多种计算方法,而且知道了计算组合图形的面积既可以是合并求和用加法,也可以是去空求差用减法。

  2.下图是一种机器零件的横截面图,求出阴影部分的面积是多少平方毫米?

  师:先观察这幅图,想一想可以怎样求阴影部分的面积?

  (1)让学生独立完成。

  (2)组织小组交流、讨论:怎样求(阴影部分)组合图形的面积,说说解题思路。为什么要用减法计算?

  (3)反馈评价。

  3.下图是教室的一面墙。如果砌这面墙每平方米用砖185块,一共需要多少块砖?

  师:要求一共需要用多少块砖?需要知道哪些条件?怎样求这面墙的面积?

  (1)让学生独立完成。

  (2)组织小组交流。

  (3)引导反馈评价。

  (4)自己订正错误。

  4.摆一摆,量一量,算一算。

  (1)用七巧板中的四块拼成一个组合图形,看看可以拼成怎样的组合图形?

  (2)想一想,还有别的组合方法吗?再动手拼一拼。

  (3)说一说,你是用哪四个图形组合起来的?

  (4)量一量,量出求组合图形需要的有关数据。

  (5)算一算,计算出组合图形的面积。

  (6)评一评,学生(可能)拼成以下几种组合图形,先展示观察,再引导学生评价。

  (设计意图:《数学课程标准(修改稿)》在解决问题目标中提出:初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的实际问题,发展应用意识和实践能力。根据课标这一理念,在巩固练习环节,设计了解决三道实际问题和一道摆摆、量量、算算的开放题,让学生独立思考,小组交流,动手操作,自主完成,相互评价,主动订正,旨在巩固所学知识,让学生进一步掌握组合图形面积的计算方法,发展学生的求异创新思维能力,培养学生分析问题和解决简单实际问题的能力。)

  四、全课总结,情知共融

  师:怎样计算组合图形的面积?通过这节课的学习,你有什么收获?

《组合图形的面积》教案12

  教学内容:

  课本第21页。

  教学目标:

  1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

  2、能运用所学知识解决生活中组合图形的实际问题。

  3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

  4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  教学重点:

  探索并掌握组合图形的面积计算方法。

  教学难点:

  理解并掌握组合图形的组合及分解方法。

  教学准备:

  课件

  教学过程:

  一、创设情境,激趣导入。

  1、同学们,我们已经学习了哪些多平面图形?

  导学要点:

  请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

  2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。

  板书:组合图形的面积

  二、小组合作探究

  1、出示前置性作业小组交流

  复习

  (1)说说你学过哪些平面图形?

  (2)说说这些图形的面积计算公式?

  2、自学21页的例10

  (1)导学单

  1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的?

  2)尝试计算每个图形的面积。

  3)思考:组合图形的面积是怎样计算出来的?

  导学要点:

  (1)分割法:将整体分成几个基本图形,求出它们的面积和。

  (2)添补法:用一个大图形减去一个小图形求出组合图形的面积。

  师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  (2)小组交流

  1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?

  2)由于方法不同,我们计算组合图形的方法有什么不同?

  3)求组合图形面积时关键是做什么?

  导学要点:

  (1)要根据原来图形的'特点进行思考。

  (2)要便于利用已知条件计算简单图形的面积。

  (3)可以用不同的方法进行割补。

  (3)全班交流

  1)学生举例并解答(前置作业我的例子)

  2)结合学生自己举的例子解答讲解。

  三、应用新知,解决问题

  1、课本第21页练一练

  (1)生独立计算。

  (2)生展示思路。

  点拨:

  计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。

  2、课本第23页练习四第1题前两题。

  点拨:

  (1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?

  (2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?

  3、课本第23页练习四第二题

  点拨:

  引导说说组合图形面积的计算方法。

  四、课堂总结

  通过这节课的学习,你学到了什么知识呢?

  教学反思:

《组合图形的面积》教案13

  教学内容:92和93页练习十八

  教学目标:明确组合图形的意义;

  知道求组合图形的面积就是求几个图形面积的和(或差);

  能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

  教学过程:

  一、复习。

  “第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab

  “第二个图形呢?”

  ......

  学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.

  教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

  二、认识组合图形

  1、让学生指出92页页的四幅图有哪些图形?

  2、引导学生把下面的图形,组合成多边形(展示台上拼)

  对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

  分别说出这些图形是由哪几个简单的图形组合而成。

  师:怎样计算这些组合图形的面积呢?(板题)

  二、组合图形面积的计算。

  1.讨论计算上面拼成的.组合图形的面积。(生板演其余每组完成一图)

  订正,讨论第一图的两种方法。

  5×5+5×6÷2[5+(5+6)]×5÷2

  =25+15=16×5÷2

  =40(平方厘米)=40(平方厘米)

  2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

  图表示的是一间房子侧面墙的形状。

  它的面积是多少平方米?

  如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

  5×5+5×2÷2

  还能用其他的划分方法求出它的面积吗?(分组讨论)

  汇报讨论结果。可能有下面情况。

  [5+(2+5)]×(5÷2)÷2×2

  小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)

  三、巩固初步

  1.做一做/书93页

  2.练习十八/第1题

  3.练习十八/第2题

  (1)由中队旗引入

  (2)算出它的面积。(单位:厘米)--可能有下面几种情况

  S总=S梯×2S总=S长-S三

  5.练习十八/第3、4题

  四、拓展练习

  练习十八8*

  课后记:

《组合图形的面积》教案14

  教学目标:

  使学生初步了解组合图形面积计算的方法,会计算一些较简单的组合图形的面积。

  教学过程:

  一、复习

  1、提问:是什么?面积怎么计算?(生答师板书出面积公式)

  2、这些图形的面积我已经会算了,但在实际生活中,有些图形是由几个简单的图形组合而成的。这种组合图形的面积该怎么计算呢?今天我们来学习这个内容。出示课题:组合图形面积的.计算

  二、新课教学

  1、教学例题

  师:组合图形就是由我们学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有时需要计算这些组合图形的面积。例如房子侧面墙的形状是这样的:(出示图)

  ⑴、计算这个图形的面积我们学过吗?

  ⑵、小组讨论能否把它分成几个我们学过的图形?

  ⑶、汇报:这个图形分成了一个三角形和一个正方形,它的面积就是这两个图形的和。

  ⑷、学生在书上完成,集体订正。

  ⑸、:在实际生活中见到的物体,有很多是由我们学过的这些基本图形组合而成的。计算组合图形的面积,应鸹把它分成简单图形,分别计算各块的面积,再把它们合起来就行了。

  2、试一试

  90页“做一做”

  ⑴、看图,说说这个图形由哪些图形组合成?

  ⑵、独立练习

  ⑶、订正

  三、巩固练习

  第二题出示中队旗

  小组讨论有几种解法。

  独立做

  汇报:说说你的想法。

  第四题理解题意

  独立思考,小组交流

  做出来

  四、作业

  练习二十一(1、2)

  板书设计:

  组合图形的面积计算

  教后感:

《组合图形的面积》教案15

  教学目标:

  知识与能力

  1、结合生活实际认识组合图形,初步掌握用分解发和割补法计算组合图形的面积。

  2、能综合运用平面图性积计算的知识,培养分析。综合的能力,发展学生的空间观念。

  过程与方法

  1、通过拼一拼。找一找的过程,体会各种图案之间的内在联系,知道生活中各种物体的组合规律。

  2、培养动手操作能力,合作交流能力和空间想象能力。

  情感态度与价值观

  通过学习,体验生活中美丽图案的组合规律,激发主动学习的兴趣,培养审美观念和热爱学习数学的思想情。

  教学重难点:

  初步掌握组合图形面积的计算方法。正确、灵活地把组合图形转化为所学过的基本图形,并能根据各种组合图形的条件,有效地选择计算方法。

  教学准备:

  多媒体课件、练习题卡片。

  教学过程:

  一、复习导入,巩固基础

  1、我们已经学习了哪些基本的平面图形?

  2、他们的面积计算公式分别是什么?(请学生说一说)

  3、计算下面各图形的面积。(出示所学过的图形)

  师:这些单个的图形称之为简单的基本图形。

  师:在我门的生活中,有许多物体的表面是由这些简单的图形组合而成的,我们称之为组合图形。同学们,仔细观擦一下我们的教室,看一看哪些地方有组合图形。

  二、阅读质疑,自主探究

  师:同学们,我们刚才观察了教室内的组合图形,在我们的课本上也有几副美丽的图案,我们一起来看一看。

  1、同学们阅读课本。

  2、同桌交流图案的组成。

  3、小组和作,拼一拼,讲一讲所拼图形的`组成。

  4、用自己的话说一说什么是组和图形?

  三、合作探究

  1、出示例题4的图。

  师:这是一间房子侧面墙的形状,它是什么图形?怎样求它的面积?先独立想一想再小组交流。 提示。

  (1)这个图形有哪些简单的图形组合而成的?

  (2)求它的面积就是求哪几个图形的面积?

  (3)要求它们的面积需要什么条件?

  (4)教师给出条件,试求出它的面积。 小组讨论,教师巡视指导。

  2、汇报结果。

  (1)把组合图形分成一个三角形和一个正方形。分别算出它们的面积,再想加。

  (2)把组合图形分成两个完全一样的梯形,先算出一个梯形的面积,再乘以2。

  (3)仔细阅读课本,补充完整。

  (4)引导学生,总结方法 。 教师:想一想我们刚才是怎样求这个组和图形的面积的? 你认为那种方法简单呢?

  总结:在计算组合图形的面积时,先把组合图形分成易学过的简单徒刑,然后分别求出他们的面积在相加。

  四、练习巩固

  1、练习二十二第一、二题。

  教师出示相关的图形,请同学说说她是由那几种图形组成的。 (学生独立列式,并计算,教师巡回指导并讲解)

  2、发放练习卡片给学生做一做。

  说方法:长方形的面积—正方形的面积=阴影部分的面积请学生上黑板演示计算过程。 教师小结:通过刚才的练习,可见求组合图形的面积可以用相加的方法,也可以用相减的方法。

  3、你能用几种方法计算下图的面积。

  五、课堂小结

  1、通过这一节课的学习,同学们有什么收获?

  2、教师总结:组合图形在我们的生活中处处可见,应用广泛。只要我们细心观察,多动脑筋,就会掌握方法。

  板书设计:

  组合图形的面积

  几个简单图形组合而成

  (根据已知条件相加或相减)

  方法:分割法或添补法

【《组合图形的面积》教案】相关文章:

《组合图形的面积》教案01-26

《组合图形的面积》数学教案(精选10篇)07-20

《比较图形的面积》教学反思03-22

北师大版五年级数学上册组合图形的面积教学反思07-27

分解与组合教案11-24

《积木组合》教案02-08

面积的教案11-19

图形的教案10-28

面积单位教案11-14