《方程》教案

时间:2024-10-09 14:03:43 教案 我要投稿

《方程》教案15篇

  作为一名专为他人授业解惑的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么什么样的教案才是好的呢?下面是小编收集整理的《方程》教案,欢迎阅读与收藏。

《方程》教案15篇

《方程》教案1

  课型:新授课

  教学目标:

  1、知识与技能

  (1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

  (2)能正确利用直线的点斜式、斜截式公式求直线方程。

  (3)体会直线的斜截式方程与一次函数的关系.

  2、过程与方法

  在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

  3、情态与价值观

  通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

  教学重点:直线的点斜式方程和斜截式方程。

  教学难点:直线的点斜式方程和斜截式方程的应用

  教学过程:

  问题

  设计意图

  师生活动

  1、在直线坐标系内确定一条直线,应知道哪些条件?

  使学生在已有知识和经验的基础上,探索新知。

  学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标满足的关系式。

  2、直线经过点,且斜率为。设点是直线上的任意一点,请建立与之间的关系。

  培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标满足的关系式,从而掌握根据条件求直线方程的方法。

  学生根据斜率公式,可以得到,当时,即(1)教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

  3、(1)过点,斜率是的直线上的点,其坐标都满足方程(1)吗?

  使学生了解方程为直线方程必须满两个条件。

  学生验证,教师引导。

  问题

  设计意图

  师生活动

  (2)坐标满足方程(1)的点都在经过,斜率为的直线上吗?

  使学生了解方程为直线方程必须满两个条件。

  学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的`点斜式方程,简称点斜式(point slope form).

  4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

  使学生理解直线的点斜式方程的适用范围。

  学生分组互相讨论,然后说明理由。

  5、(1)轴所在直线的方程是什么?轴所在直线的方程是什么?

  (2)经过点且平行于轴(即垂直于轴)的直线方程是什么?

  (3)经过点且平行于轴(即垂直于轴)的直线方程是什么?

  进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

  教师学生引导通过画图分析,求得问题的解决。

  6、例1的教学。(教材93页)

  学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

  教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

  7、已知直线的斜率为,且与轴的交点为,求直线的方程。

  引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

  学生独立求出直线的方程:

  (2)

  再此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

  8、观察方程,它的形式具有什么特点?

  深入理解和掌握斜截式方程的特点?

  学生讨论,教师及时给予评价。

  问题

  设计意图

  师生活动

  9、直线在轴上的截距是什么?

  使学生理解“截距”与“距离”两个概念的区别。

  学生思考回答,教师评价。

  10、你如何从直线方程的角度认识一次函数?一次函数中和的几何意义是什么?你能说出一次函数图象的特点吗?

  体会直线的斜截式方程与一次函数的关系.

  学生思考、讨论,教师评价、归纳概括。

  11、例2的教学。(教材94页)

  掌握从直线方程的角度判断两条直线相互平行,或相互垂直;进一步理解斜截式方程中的几何意义。

  教师引导学生分析:用斜率判断两条直线平行、垂直结论。思考(1)时,有何关系?(2)时,有何关系?在此由学生得出结论:

  且;

  12、课堂练习第95页练习第1,2,3,4题。

  巩固本节课所学过的知识。

  学生独立完成,教师检查反馈。

  13、小结

  使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

  教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?

  14、布置作业:第106页第1题的(1)、(2)、(3)和第3、5题

  巩固深化

  学生课后独立完成。

  例3.如果直线沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,求直线l的斜率.

  归纳小结:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?

  作业布置:第100页第1题的(1)、(2)、(3)和第3、5题

  课后记:

《方程》教案2

  教学内容:

  义务教育人教版数学五年级上册67页内容。

  教学目标:

  知识目标:

  1、通过演示操作理解天平平衡的原理。

  2、初步理解方程的解和解方程的含义。

  3、会检验一个具体的值是不是方程的解,掌握检验的格式。

  能力目标:

  1、提高学生的比较、分析的能力;

  2、培养学生的合作交流的意识。

  情感目标:

  1、感受方程与现实生活的联系。

  2、愿意与别人合作交流。

  教学重点:

  理解方程的解和解方程的含义,会检验方程的解。

  教学难点:

  利用天平平衡的原理来检验方程的解。

  关键:

  天平与方程的联系。

  教具 :

  课件

  教学过程:

  一、游戏铺垫,引出课题(出示课件)

  师:明明周末在超市玩起了称糖果的称,我们一起合作使称保持平衡!

  师:同学们反映真敏捷,能通过观察马上想出使天平保持平衡的策略。

  生:从中你有什么想说的?或者你联想到了什么?

  生:只要两边都拿掉或增加相同数量的糖果,就能保持平衡;让我想到了等式的性质(全班一起口答:等式两边加上或减去同一个数,左右两边任然相等;等式两边乘同一个数,或除以同一个部位0的数,左右两边任然相等)(板书“等式性质”)

  师过渡:是的,知识就是这样被有心人所发现的。

  二、探究新知

  师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)

  再给你点信息,这幅图谁能用一个方程来表示。

  生列方程,并说说你是怎么想的。

  1、解方程

  师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)

  汇报预设:①因为9-3=6②因为6+3=9所以x的值为6 所以x的值为6 (多少)

  师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的'思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值,这种思考的方法到初中遇上更加复杂的方程时仍然会用到。

  师:现在我们就将X+3=9这个方程转换到天平上来?(黑板贴图)

  师:球在天平不好摆,我们可以用方块来代替它。

  自主尝试:看着天平,如何去寻求x的值?

  请用笔记录下你的想法。

  组织好语言上台汇报你的想法。

  教师统一书写:

  师介绍:求解x的过程我们在最前面写“解”字。(板书写“解”字)

  追问:两边都拿掉3个,天平还能平衡吗,两边还相等吗?(贴图展示)

  为什么要减3个?(可以方程的一边只剩x,就可以知道x=?)(再叫2-3个)

  生活动:我们看着板书来说说是怎么成功得到x的值,每一步的依据是什么。(2-3个)

  你学会了吗?赶紧和你的同桌说一说方法。

  2、强调格式:

  师:这个求解的过程和以前递等式有什么区别或相同的地方?

  生:等号对齐;等号两边都要写;最前面要写解字

  3、练习一:

  师:按照大家借助天平运用等式性质的想法,就是说当我们遇到方程33+x=65你也能求解? 解:33+x○( )=65○( )

  x=( ) 那么x-4.5=10 呢?(学生独立尝试,一个学生板演)

  生完成填空和独立节解方程。(课件中校对)

  4、介绍概念:像这些(课件中圈出来),使方程左右两边相等的未知数的值,

  叫“方程的解”;举例:x=3是方程x+3=9的解??

  而求方程的解的过程,我们叫“解方程”(板书)

  这些知识在数中有介绍,我们找到划一划读一

  两个词都有解字,有什么区别呢?(“方程的解”中的“解”是名词,它指能使方程左右两边相等的未知数的值,是一个数值;“解方程”中的“解”是动词,它指求方程解的过程,是一个演算的过程.)

  5、验算:

  师:刚才我们解出来x的值是不是正确的答案呢?你打算怎么检验?

  生:放进去计算一下。

  师:大家心里都有了想法,但方程的检验也是有一定格式的,下面我们到书本中来学习一下。 生自学书本后回答:根据等式性质,把x=6代入方程,看方程左右两边是否相等。 生活动:尝试验算一个方程的解,另一个放心里代入验算。

  6、小结

  师:你学会了吗?你会解怎样的方程了?(含加法或减法)

  解方程的步骤?(结合板书和课件)

  生:解方程的步骤:

  a)先写“解:”。

  b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。 c)求出X的值。

  d)验算。

  四、巩固练习

  练习二:解方程比赛(书P67)

  (1)100+x=250(2)x+12=31※(3) x -63=36

  练习三:我是小法官:1.X=10是方程5+x=15的解( )。

  2.X=10是方程x-5=15的解( )。

  3. X=3是方程5x=15的解( )。

  4.下面两位同学谁对谁错?

  X-1.2=4 X+2.4=4.6

  解:X-1.2+1.2=4-1.2=4.6-2.4

  X=2.8 =2.2

  师:谈谈你觉得解方程过程中有什么要提醒大家注意的?

  生:注意等式性质的正确运用!注意解方程时的格式!

  练习四:看图列方程并求解

  五、课堂总结

  师:我们这节课学习了什么?和大家来分享下!

  板书设计:

  解方程(含有加法或减法) 等式性质 解:X+3-3 =9-解方程 (过程)学生板演天平贴图

  X=6 ?解 (值)检验:方程左边=x+3

  =6+3

  =9

  =方程右边

  所以,x=6是方程的解。

《方程》教案3

  教学目标:

  1、使学生通过自主探索学会列方程解比较容易的两步应用题

  2、培养学生的主体意识,创新意识,合作意识以及分析能力,观察能力,发散思维能力,表达能力

  3、使学生体验到生活中处处是数学,体验到数学的应用价值,体验到数学学习的乐趣和成就感。 教学重点:掌握列方程解应用题的方法步骤。 教学难点:根据题意分析数量间的相等关系。

  教学准备:多媒体课件

  教学设计:教师创设生活情境,使孩子在一个充满鼓励,充满肯定,充满分享,充满赞美的环境中学习。培养他们感悟生活的能力。

  教学过程:

  一、创设生活情境,复习旧知,导入新课

  1、师:同学们,休息日的时候,你们都做些什么? 生:看电视、补课等。

  2、师:出去玩同样会学到知识,只要你留心,生活中处处都是数学, 上周日小明和妈妈去公园玩就遇到了好多数学问题。 (课件显示)小明最喜欢坐飞机了,于是妈妈给了他一些钱,让他自己去买票。(课件显示)他花了5元钱,还剩15元,妈妈给了小明多少钱,你们知道吗? 学生汇报,解题思路并列式 师:谁还有不同的方法? 学生用含未知数X的方法进行汇报 肯定学生的发言,引出课题。

  二、合作学习,探索新知

  教学例题 (课件显示)玩下一项游乐项目,先去买票,票价6元,买两张,还剩38元,你知道这次妈妈又给了小明多少钱吗? 想一想,这组信息中蕴含着怎样的关系呢? 学生汇报。 师肯定学生发言。 下面,我们就用列方程的方法来解决这个问题吧!你们认为应该怎样做? 学生猜想。 师:现在,请同学们用自己找出的数量关系,根据刚才讨论的结果来列方程解决这个问题吧?。学生汇报,老师板书。 归纳步骤. 师:学到这,请同学们回顾并讨论一下,刚才我们用列方程的方法解题时经过了哪些步骤? 学生充分讨论后汇报。 师:看看数学专家是怎么归纳的呢?(出示投影) 肯定学生,赞扬学生。

  三、实际应用

  1、师:小明玩了半天,他和妈妈都感到口渴了,不知买什么饮料好。谁愿意帮小明出出主意? 师:现在我们虚拟购买饮料的场景。我当售货员,各小组派一名同学买饮料。用今天学习的知识求每瓶水的.价钱。 学生在小组内合作,共同解决问题。 汇报时让学生说说是怎么思考的,请其他同学针对他们的思考方法和解答过程提出意见。

  2、(课件演示)小明选择了买酸奶。 (出示小票)看了小明的购物小票,从中你知道了什么?还有什么是不知道的?( 数量) 学生解决问题,独立完成后小组成员互评,并给有困难的同学帮助。 教师巡视指导。 学生汇报。

  3、最后,妈妈还剩下38元钱,要买些水果回去,看到苹果每千克3元;梨每千克2元;香蕉每千克6元;桔子每千克4元,可还要剩下20元钱买生日蛋糕。如果你是小明,你想卖哪种水果呢?利用本节课所学的知识算一算,看看能买几斤? 学生可讨论,可试做。做后汇报。

  四、全班总结

  师:通过这节课的学习,你有哪些收获? 学生从各方面回答。 师:今天,同学们的收获可真不小!课后让我们继续运用今天所学的知识去解决生活中的实际问题吧!最后我送给大家一句话:生活中处处充满了知识,要学会做一个生活中的有心人,你才能成为学习上的成功者。

《方程》教案4

  一、教学目标

  【知识与技能】

  理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。

  【过程与方法】

  经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。

  【情感、态度与价值观】

  通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的.体验。

  二、教学重难点

  【教学重点】

  用公式法解一元二次方程。

  【教学难点】

  一元二次方程求根公式的推导。

  三、教学过程

  (一)引入新课

  复习回顾:用配方法解一元二次方程。

  配方,得

  (四)小结作业

  小结:引导学生做知识总结:本节课学习了什么叫公式法,怎样运用公式法解一元二次方程。如何判断一个方程是否有实数根?

  作业:课后练习题,试着用多种方法解答。

  四、板书设计

  略

《方程》教案5

  【知识拓展】

  分 母里含有未知数的方程叫做分式方程.解分式方程组的基本思想是:化为整式方程.通常有两种做法:一是去分母;二是换元.

  解分式方程一定要验根.

  解分式方程组时整体代换的思想体现得很充分.常见的思路有:取倒数法方程迭加法,换元法等.

  列分式方程解应用题,关键是找到相等关系列出方程.如果方程中含有字母表示的已知数,需根据题竞变换条件,实现转化.设未知数而不求解是常见的技巧之一.

  例题求解

  一、分式方程(组)的解法举例

  1.拆项重组解分式方程

  【例1】解方程 .

  解析 直接去分母太繁琐,左右两边分别通分仍有很复杂的分子.考虑将每一项分拆:如 ,这样可降低计算难度.经检验 为原方程的解.

  注 本题中用到两个技巧:一是将分式拆成整式加另一个分式;二是交换了项,避免通分后分子出现x.这样大大降低了运算量.本讲趣题引路中的问题也属于这种思路.

  2.用换元法解分式方程

  【例2】解方程 .

  解析 若考虑去分母,运算量过大;分拆也不行,但各分母都是二次三项式,试一试换元法.

  解 令x2+ 2x―8=y,原方程可化为

  解这个关于y的分式方程得y=9x或y=-5x.

  故当y=9x时,x2+2x―8=9x,解得x1=8,x2=―1.

  当y=-5x时,x2+2x―8=-5x,解得x3=―8,x4=1.

  经检验,上述四解均为原方程的解.

  注 当分式方程的结构较复杂且有相同或相近部分时,可通过换元将之简化.

  3.形如 结构的分式方程的解法

  形如 的分式方程的解是: , .

  【例3】解方程 .

  解析 方程左边两项的乘积为1,可考虑化为上述类型的问题求解.

  , 均为原方程的解.

  4.运用整体代换解分式方程组

  【例4】解方程组 .

  解析 若用常规思路设法消元,难度极大.注意到每一方程左边分子均为单项式,为什么不试一试倒过来考虑呢?

  解 显然x=y=z=0是该方程组的一组解.

  若x、y、z均不为0,取倒数相加得x=y=z=

  故原方程组的解为x=y=z=0和x=y=z= .

  二、含字母系数分式方程根的讨论

  【例5】解关于x的方程 .

  解析 去分母化简 为含字母系数的一次方程,须分类讨论.

  讨论:(1)当a2-1≠0时

  ①当a≠0时,原方程解为x= ;

  ②当a=0时,此时 是增根.

  (2) 当a2-1=0时即a= ,此时方程的解为x≠ 的任意数;

  综上,当a≠±1且a≠0时,原方程解为x= ;当a=0时,原方程无解,;当a= 时,原方程的'解为x≠ 的任意数.

  三、列分式方程解应用题

  【例6】 某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部.

  (1)扶梯露在外面的部分有多少级?

  (2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与 自动扶梯的级数相等,两个孩子各自到扶梯顶部后按原 速度再下楼梯 ,到楼梯底部再乘自动扶梯上楼(不考虑扶梯与楼梯间的距离).求男孩第一次迫上女孩时走了多少级台阶?

  解析 题中有两个等量关系,男孩走27级的时间等于扶梯走了S-27级的时间;女孩走18级的时间等于扶梯走S―18级的时间.

  解 (1)设女孩上梯速度为x级/分,自动扶梯的速度为y级/分,扶梯露在外面的部分有S级,则男孩上梯的速度为2x级/分,且有

  解得 S=54.

  所以扶梯露在外面的部分有54级.

  (2)设男孩第一次追上女孩时走过自动扶梯rn遍,走过楼梯n遍,则女孩走过自动扶梯(m―1)遍、走过楼梯(n―1)遍.

  由于两人所走的时间相等,所以有 .

  由(1)中可求得y=2x,代人上面方程 化简得6n+m=16.

  无论男孩第一次追上女孩是在自动扶梯还是在下楼时,m、n中都一定有一个是正整数,且0≤m―n≤1.

  试验知只有 m=3,n= 符合要求.

  所以男孩第一次追上女孩时走的级数为3×27+ ×54=198(级).

  注 本题求解时设的未知数x、y,只设不求,这种方法在解复杂的应用题时常用来帮助分析数量关系,便于解题.

  【例7】 (江苏省初中数学竞赛C卷)编号为1到25的25个弹珠被分放在两个篮子A和B中.15号弹珠在篮子A中,把这个弹珠从篮子A移至篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加 ,篮子B中弹珠号码数的平均数也等于原平均数加 .问原来在篮子A中有多少个弹珠?

  解析 本题涉及A中原有弹珠,A、B中号码数的平均数,故引入三个未知数.

  解 设原来篮子A中有弹珠x个,则篮子B中有弹珠(25-x)个.又记原来A中弹珠号码数的平均数为a,B中弹珠号码数的平均数为b.则由题意得

  解得x=9,即原来篮子A中有9个弹珠.

  学力训练

  (A级)

  1.解分式方程 .

  2.若关于x的方程 有增根x=1,求k的值.

  3.解分式方程 .

  4.解方程组 .

  5.丙、丁三管齐开,15分钟可注满全池;甲、丁两管齐开,20分钟注满全池.如果四管齐开,需要多少时间可以注满全池?

  (B级)

  1.关于x的方程 有唯一的解,字母已知数应具备的条件是( )

  A. a≠b B.c≠d C.c+d≠0 D.bc+ad≠0

  2.某队伍长6km,以每小时5 km的速度行进,通信员骑马从队头到队尾送信,到 队尾后退返回队头,共用了0.5 h,则通信员骑马的速度为每小时 km.

  3.某项工作,甲单独作完成的天数为乙、丙合作完成天数的m倍,乙单独作完成的天数为甲、丙合作完成天数的n倍,丙单独作完成的天数为甲、乙合作完成天数的k倍,则 = .

  4.m为何值时,关于x、y的方程组: 的解,满足 , ?

  5.(天津市中考题)某工程由甲、乙两队合做6天完成,厂 家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的 ,厂家需付甲、丙两队共5500元.

  (1)求甲、乙、丙各队单独完成全部工程各需多少天?

  (2)若工期要求不超过15天完成全部工程,问:由哪队单独完成此项 工程花钱最少?请说明理由.

  6.甲、乙二人两次同时在同一粮店购买粮食(假设两次购买的单价不同),甲每次购买粮食100kg,乙每次购买粮食用去100元.设甲、乙两人第一次购买粮食的单价为x元/kg,第二次单价为y元/kg.

  (1)用含x、y的代数式表示甲两次购买粮食共需付款 元,乙两次共购买 kg粮食.若甲两次购买粮食的平均单价为每千克Ql元,乙两次购粮的平均单价为每千克Q2元则Q1= ;Q2= .

《方程》教案6

  【教学目标】

  1.熟练掌握一元一次方程的解法;

  2.进一步感受列方程的一般思路;

  3.进一步培养学生的建模能力及创新能力.

  4.通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程.

  【对话探索设计】

  〖探索1

  一项工程,甲要做12天才能做完.如果把总工作量看作1,

  那么,根据工作效率=________÷________,

  得甲一天的工作量(工作效率)为________.

  他做3天的工作量是__________.

  〖探索2

  一项工程,甲单独做要6天,乙单独做要3天,两人合做要几天?

  (1)你能估算出答案吗?

  (2)试一试,怎样用直线型示意图寻求答案:

  如图,线段AB表示总工作量1,怎样在线段AB上分别表示甲、乙一天的工作量?通过示意图,能够很直观地看出答案吗?

  如图,用整个圆的面积表示全部工作量1,怎样用扇形的面积分别表示甲、乙两人一天的工作量?通过示意图,能够很直观地看出答案吗?与直线型示意图相比,你更乐意用哪一种图形分析?

  〖探索3

  一项工程,甲单独做要12天,乙单独做要18天,两人合做要几天?

  解:把总工作量看作1,那么,

  根据工作效率=________÷________,得

  甲一天的工作量(工作效率)为______;乙一天的工作量为______;

  设两人合做要x天,那么,

  甲的'总工作量为________;乙的总工作量为________;

  这工作由两个人完成,根据两人完成的工作量之和等于1,可列方程:

  _____________________.解这个方程得________________.

  答:_____________________.

  把这道题的解法与小学时的算术解法进行比较,你有什么发现?

  〖探索4

  整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?(P92例5)

  解:把总工作量看作1,那么,

  根据工作效率=________÷________,得

  人均效率(一个人1小时的工作量)为________.

  设先安排x人工作4小时,那么,

  这x个人4小时的工作量为_______________(可化简为_________).

  显然,再增加2人后,参加工作的人数为x+2,这(x+2)个人工作8小时

  的工作量为___________________(可化简为_________).

  这工作分两段完成,根据两段完成的工作量等于1可列方程:

  ________________________.

  解得_______.

  答:_________________.

  想一想:如果不是把总工作量看作是1,而是把一个人一小时的工作量看作是1,该如何解这道题?比较两种解法,你有什么感受?

  教师本身要认真备课,要敢于质疑,要不失时机地培养学生独立思考的习惯.

  〖作业

  P93.习题3(3),(4);P94,8,9

《方程》教案7

  一、复习引入

  (学生活动)解下列方程:

  (1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)

  老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

  二、探索新知

  (学生活动)请同学们口答下面各题.

  (老师提问)(1)上面两个方程中有没有常数项?

  (2)等式左边的各项有没有共同因式?

  (学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

  因此,上面两个方程都可以写成:

  (1)x(2x+1)=0 (2)3x(x+2)=0

  因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

  (2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

  因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的'乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

  例1 解方程:

  (1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2

  思考:使用因式分解法解一元二次方程的条件是什么?

  解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)

  练习:下面一元二次方程解法中,正确的是( )

  A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

  B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

  C.(x+2)2+4x=0,∴x1=2,x2=-2

  D.x2=x,两边同除以x,得x=1

  三、巩固练习

  教材第14页 练习1,2.

  四、课堂小结

  本节课要掌握:

  (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

  (2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

  五、作业布置

  教材第17页习题6,8,10,11

《方程》教案8

  课题:简易方程

  复习目标:

  1.使学生进五步理解用字母表示数的意义,会用字母表示数、数量、定律和计算公式。

  2.理解方程的意义,会判断方程。能解方程并验算。

  3.能根据题目中的数量关系,用方程解决实际问题,培养灵活的解题能力。

  复习重点:理解题中的数量关系,根据数量关系列方程解决问题。

  复习过程:

  一、谈话导入

  今天这节课将对议程这部分知识进行整理和复习。

  一、概念回顾。

  1、复习用字母表示数。

  (1)填空。

  图书角原来有X本书,被同学借走10本后还有( )本。

  小芳今年岁,妈妈的年龄是小芳的6倍,妈妈今年( )岁。

  一个正方形的连长是A分米,它的面积是( )平方分米。

  指名口答,集体订正。

  问:用字母表示数的简写应该注意什么?

  (2)判断。

  a×b×8可以简写成ab8。( )

  a的立方等于3个a相加。( )

  a÷b中,a、b可以是任何数。( )

  3、总复习第3题。

  学生独立填书,完成后集体订正。

  2、复习方程

  (1)什么叫做方程?等式与方程有什么区别和联系?什么叫做方程的解和解方程?

  (2)判断。

  4+X>9是方程。( )

  方程一定是等式。( )

  x+5=4×5是方程。( )

  X=4是方程2X—3=5的解。( )

  (3)121页第4题

  指名板演,核对时请学生说一说解方程的方法。

  3、解决问题

  (1)121页第5题

  学生审题后同桌互说等量关系式。板书:地球赤道长度的7倍+2万千米=光每秒传播速度。

  根据等量关系式让学生列方程解答,指名板演,集体订正。

  说一说用方程解决问题的步骤是什么?

  (2)补充练习

  解方程。

  10.2-5X=2.2 3×1.5+6X =33 5.6X-3.8=1.8

  3(X+5)=24 600÷(15-X)=200 X÷6-2.5=1.1

  解决问题。

  一辆公共汽车到站时,有5人下车,9人上车,现在车上有21人,车上原来有多少人?

  小明是5月份出生的,他今年的年龄的3倍加上7正好是5月份的总开数。小明今年多少岁?

  学校买回3个足球和2个篮球共90元,足球每个22元,篮球每个多少元?

  学校买10套课桌用500元,已知桌子的单价是凳子的4倍,每张桌子多少元?

  爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?

  油桶里有一些油,用去20千克,比剩下的油的4倍还多2千克,油桶里原有油多少千克?

  三、作业。

  P123第5题,P124第6题,P125页第14题。

  教学反思:

  运用等式的性质来解方程是新教材在代数知识上的最大改革。我为这项改革叫好!因为以往学生依据加减乘除法各部分之间的关系来解答时,必须熟记 6句关系式才能正确解方程,可现在大家只要理解并掌握了等式的性质后,完全可以做到以不变应万变,学困生对教材中的方程解法掌握情况都非常好。

  可教研员明确指出除教材中出现的几种类型外,如a-x=b和a÷x=b也属于必考内容,这给我的教学带来了挑战,也给学生的学习带来了一定困难。我不想因此而回到老方法上去,也不想拔苗助长,直接用初中的移项来教学,我希望所有类型的方程解法都能植根于等式的'性质基础之上,使学生体会到等式性质的“妙用”。因此,有必要特别用一节课的时间给学生补充讲解这类方程解法。

  其次,学生在判断“a÷b中,a、b可以是任何数”一题时,全班发生明显分歧。有的认为字母a、b可以代表任何数,所以是对的;有的认为这里a不能是0,有的认为b不能是0,还有的认为a、b都不能是0。看来这题出得好!借此我帮助学生分析为除数不能为0的原因,主要有以下两点:

  1、除数为0,被除数为除0以外的任何数时,无解。因为0乘任何数都得0,而不会等于被除数。

  2、当除数为0,且被除数也为0时,有无数个解。因为0乘任何数都得0,商不唯一,所以除数不能为0。

  在经过讲解后,学生终于明白了其中的道理。

  最后,在练习中要针对学生以下薄弱点加强引导:

  1、加强两种不同类型方程的对方,防止混淆。如:5.6X-3.8=1.8和5.6X-3.8X=1.8

  2、补充讲解当一道算式中既有乘法又有平方时,应该先算平方,再算乘法。如:当X=5时,3X2等于(),应该先算52=25,再将3乘25=75。

  3、解方程时,尽量让所有的未知数在等式的一边,而不要出现等式两边都有未知数的情况。如“爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?”就应该推荐大家根据爸爸的年龄—儿子的年龄=相差的年龄的等量关系式来列方程,而不要列成X+32=9X,否则也得多向学生介绍一种类型方程的解法。

  4、注意培养学生养成检验的习惯,即使不用笔读检验,也应及时进行口头检验。

《方程》教案9

  教学内容:

  教材第81页例3、例4,练习十六9---14题。

  教学目标:

  1、经历交流、讨论、练习等学习过程,理解方程的含义和等式的性质,根据等式的性质正确熟练地解方程。

  2、掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。

  3、能根据问题的特点选择恰当的方法来解答,进一步培养分析数量关系的能力,发展思维。

  教学重点:

  理解方程的含义和等式的性质。

  教学难点:

  较熟练地解简易方程,并能解决一些实际问题。

  教具准备:

  多媒体课件

  教学过程:

  一、导入复习

  1、什么叫做方程?(方程是含有字母的等式。)能举几个是方程的式子吗?

  2、什么叫做方程的解? (使方程两边左右相等的未知数的值叫做方程的解。求方程的`解的过程,叫做解方程。)

  3.解方程的依据是等式的性质:等式两边同时乘或除以(加或减去)相同的数,等式的大小不变。

  4、出示例3 学生交流。

  5、出示例4 学生交流。

  二、创设情境,引出知识

  1、出示:学校组织远足活动。原计划每小时走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)

  解题过程

  解:设现在平均每小时走了x千米。

  2.5x=3.83

  2.5x2.5=11.42.5

  x=4.56

  答:平均每小时走了4.56千米?

  2、提出问题

  这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的一种方法。请你以小组为单位,合作自主梳理有关代数的知识。

  三、分析知识建立联系

  (一)学生汇报各类知识

  小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。

  (二)解方程与方程的解

  1、具体知识

  4.56是方程的解,而求这个解的过程就是解方程。

  方程是含有字母的等式

  补充提问:能举几个是方程的式子吗?

《方程》教案10

  教学内容:

  教科书第12~13页,“回顾与”、“练习与应用”第1~4题。

  教学目标:

  1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

  2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

  教学过程:

  一、回顾与

  1、谈话引入。

  本单元我们学习了哪些内容?

  你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

  在小组中互相说说。

  2、组织讨论。

  (1)出示讨论题。

  (2)小组交流,巡视指导。

  (3)汇报交流。

  你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

  (等式与方程都是等式;等式不一定是方程,方程一定是等式。)

  (含有未知数的等式是方程。)

  (等式性质:)

  (求方程中未知数的值的过程叫做解方程。)

  3、。

  同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

  二、练习与应用

  1、完成第1题。

  (1)独立完成计算。

  (2)汇报与展示,说说错误的原因及改正的方法。

  2、完成第2题。

  (1)学生独立完成。

  (2)你用怎样的方法连线的?(解方程求出未知数的`值;把x的值代入方程。)

  3、完成第3题。

  (1)列出方程,不解答。

  (2)你是怎样列的?怎么想的?大家同意吗?

  (3)完成计算。

  4、完成第4题。

  单价、数量、总价之间有怎样的数量关系?

  指出:抓住基本关系列方程,y也可以表示未知数。

  三、课堂

  通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?

《方程》教案11

  教学目标:

  1、本节课使学生在学完了可化为一元二次方程的分式方程的解法后,解决实际问题应用之一.——行程问题,使学生正确理解行程问题的有关概念和规律,会列分式方程解有关行程问题的应用题.

  2、本节课通过列分式方程解有关行程问题的应用题,就是把实际问题转化为数学问题,这就要求学生能对实际问题分析、概括、总结、解,从而能进一步地提高学生分析问题和解决问题的能力.

  教学重点:

  列分式方程解有关行程问题.

  教学难点:

  如何分析和使用复杂的数量关系,找出相等关系,对于难点,解决的关键是抓住时间、路程、速度三者之间的关系,通过三者之间的关系的分析设出未知数和列出方程.

  3.疑点:对于列分式方程解应用题,学生往往考虑到所解出的答案是否和题意相吻合,而认为可以不需要检验.通过本节的学习,使学生清楚地懂得列分式方程解应用题应首先检验所求出的方程的解是否是所列分式方程的解,然后考虑所满足方程的解是否与题意相吻合.

  教学过程:

  在上一节课,我们已经学习了可化为一元二次方程的分式方程的解法,我们知道,我们现在所学习的理论是先人通过千百年的实践总结,概括出来的.,我们学习理论是为了更好地解决实践当中所出现的问题.这一节课所学的内容就是运用上节课所学过的分式方程解法的知识去解决实际问题,关于本节内容,是学生在上节课所学过的分式方程的解法的基础上而学习的,所以点出由实践——理论——实践这一观点,能更加激发学生的求知欲,使得学生能充分地认识到学习理论知识和理论知识的运用同等重要,从而抓住学生的注意力,能使得学生充分地参与到教学活动中去.

  为了使学生能充分地利用所学过的理论知识来解决实际问题,首先应对上一节课所学过的分式方程的解法进行复习,同时让学生回忆行程问题中的三个量——速度、路程、时间三者之间的关系,从而将学生的思路调动到本节课的内容中来,这样对于面向全体学生,大面积地提高教学质量大有益处.

  一、新课引入:

  1.解分式方程的基本思路是什么?解分式方程常用的两种方法是什么?

  2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?

  3.以前所学过的列方程解应用题的步骤有哪些?

  通过对问题1的复习,使学生对前一节内容得到巩固,对问题2的复习给学生设定一种悬念,以抓住学生的注意力,对问题3的复习,使学生对于问题2的悬念有了一种初步的判断,以便于点题——本节课所学的内容.

  通过对前面三个复习问题的设计,学生能充分的认识到本节所要学习的内容,再加上适时点题,完全地将学生的注意力全部地集中到教师身上,充分发挥教师的指导作用,并调动起学生的积极性,发挥学生的主体作用.

  二、新课讲解:

  例1甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?

  分析:

  (1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系在题中的隐含.

  (2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙

《方程》教案12

  教学内容

  解方程:教材P69例4、例5。

  教学目标

  1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

  2.进一步掌握解方程的书写格式和写法。

  3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

  教学重点

  理解在解方程过程中,把一个式子看作一个整体。

  教学难点

  理解解方程的方法。

  教学过程

  一、导入新课

  我们上节课学习了解方程,这节课我们来继续学习。

  二、新课教学

  1.教学例4。

  师:(出示教材第69页例4情境图)你看到了什么?

  生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

  师:你能根据图列一个方程吗?

  生:3x+4=40。

  师:你是怎么想的?

  生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

  师:说得好,你能解这个方程吗?

  学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

  师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

  生:先算出3个铅笔盒一共多少支,再加上外面的4支。

  师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

  让学生尝试继续解答,教师根据学生的`回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

  2.教学例5。

  师:(出示教材第69页例5)你能够解这个方程吗?

  生1:我们可以参照例4的方法,先把x-16看作一个整体。

  学生解方程得x=20。

  生2:我们也可以用运算定律来解。

  师:2x-32=8运用了什么运算定律?

  生:运用了乘法分配律。然后把2x

  看作一个整体。

  学生解方程得x=20。

  师:你的解法正确吗?你如何检验方程是否正确?

  生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。

  三、巩固练习

  教材第69页“做一做”第1、2题。

  第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

  这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

  四、课堂小结

  1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

  2.在解方程时,可以运用运算定律来解。

  五、布置作业

  教材第71页“练习十五”第6、8、9.题。

《方程》教案13

  ㈠课时目标

  1.掌握圆的一般式方程及其各系数的几何特征。

  2.待定系数法之应用。

  ㈡问题导学

  问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。 —2ax—2by+ =0

  问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?

  ① ; ② 1

  ③ 0; ④ —2x+4y+4=0

  ⑤ —2x+4y+5=0; ⑥ —2x+4y+6=0

  ㈢教学过程

  [情景设置]

  把圆的标准方程 展开得 —2ax—2by+ =0

  可见,任何一个圆的方程都可以写成下面的形式:

  +Dx+Ey+F=0 ①

  提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?

  [探索研究]

  将①配方得 : ( ) ②

  将方程 ②与圆的标准方程对照。

  ⑴当 >0时, 方程 ②表示圆心在 (— ),半径为 的圆。

  ⑵当 =0时,方程①只表示一个点(— )。

  ⑶当 <0时, 方程①无实数解,因此它不表示任何图形。

  结论: 当 >0时, 方程 ①表示一个圆, 方程 ①叫做圆的一般方程。

  圆的`标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:

  ⑴ 和 的系数相同,不等于0;

  ⑵没有xy这样的二次项。

  以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件

  [知识应用与解题研究]

  [例1] 求下列各圆的半径和圆心坐标。

  ⑴ —6x=0; ⑵ +2by=0(b≠0)

  [例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。

  分析:用待定系数法设方程为 +Dx+Ey+F=0 ,求出D,E,F即可。

  [例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为 的点的轨迹,求此曲线的方程,并画出曲线。

  分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。

  反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。

  ㈣提炼总结

  1.圆的一般方程: +Dx+Ey+F=0 ( >0)。

  2.二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件是:A=C≠0且B=0。

  3.圆的方程两种形式的选择:与圆心半径有直接关系时用标准式,无直接关系选一般式。

  4.两圆的位置关系(相交、相离、相切、内含)。

  ㈤布置作业

  1.直线l过点P(3,0)且与圆 —8x—2y+12=0截得的弦最短,则直线l的方程为:

  2.求下列各圆的圆心、半径并画出它们的图形。

  ⑴ —2x—5=0; ⑵ +2x—4y—4=0

  3.经过两圆 +6x—4=0和 +6y—28=0的交点,并且圆心在直线x—y—4=0上的圆的方程。

《方程》教案14

  教学目标

  (一)教学知识点

  1、用分式方程的数学模型反映现实情境中的实际问题。

  2、用分式方程来解决现实情境中的问题。

  (二)能力训练要求

  1、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力。

  2、认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型。

  (三)情感与价值观要求

  1、经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的.兴趣。

  2、培养学生的创新精神,从中获得成功的体验。

  教学重点

  1、审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型。

  2、根据实际意义检验解的合理性。

  教学难点

  寻求实际问题中的等量关系,寻求不同的解决问题的方法。

  教具准备

  实物投影仪

  投影片三张

  第一张:做一做,(记作3、4、3 A)

  第二张:例3,(记作3、4、3 B)

  第三张:随堂练习,(记作3、4、3 C)

  教学过程

  Ⅰ、提出问题,引入新课

  [师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程。

  接下来,我们就用分式方程解决生活中实际问题。

  Ⅱ、讲授新课

  出示投影片(3、4、3 A)

  做一做

  某单位将沿街的一部分房屋出租。每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9。6万元,第二年为10。2万元。

  (1)你能找出这一情境的等量关系吗?

  (2)根据这一情境,你能提出哪些问题?

  [师]现在我们一块来寻求这一情境中的等量关系。

《方程》教案15

  教学内容:方程的意义和解简易方程(教材第105一107页,练习二十六)。

  教学要求:

  1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

  2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

  教 具:

  教学天平、小黑板。

  学 具:

  自制的简易天平、定量方块。

  教学步骤:

  一、复习

  1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)被除数=( )○( )

  (6)除数=( )○( )

  2.求未知数X(并说说求下面各题X的依据)。

  (1)20十X=100 (2)3X=69

  (3)17—X=0.6 (4)x÷5=1.5

  二、新授

  1.理解和掌握“方程的意义”。

  (1)出示天平,介绍使用方法(演示)后,设问:

  在天平两边放物体,在什么情况下才能使天平保持平衡?

  (两边的物体同样重时,天平才能保持平衡。)

  (2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?

  板书:20十30=50

  指出:表示左右两边相等的式子叫等式。

  (并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

  (3)教学例2(课本105页)。

  ①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。怎样用等式表示出来呢?

  板书:20+?=100

  ②等式“20+?=100”中的?是未知数,通常我们用“X”来表示,那么上面的等式可写成 (板书)20十X=100

  ③比较:等式“20+X=100”与等式“20+30=50”有什么不同?(含有未知数)教师指出,“20+X=100”是含有未知数的等式。

  ④想一想:X等于多少,才能使等式“20+X=100”左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)

  (4)教学例3(课本106页)。

  出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:

  ①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)

  ②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?

  (板书)3X=234

  ③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)

  (5)方程的意义:

  综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:

  20+30=50……一般的等式

  20+X=200 含有未知数的等式

  3X=234 称之为方程

  (板书)像20+x=100 3X=234 X—10=35 X÷12=5等,含有未知数的等式叫做方程。

  ①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)

  ②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分,小学数学教案《数学教案-方程的意义和解简易方程》。)

  (6)练一练(指名学生判断,并说明理由)教材第106页“做一做”。

  2.学习“解简易方程”。

  (i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?

  (板书)使方程左右两边相等的未知数的值,叫做方程的解。

  例如:X=80是方程20+X=100的`解;

  X=78是方程3X=234的解。

  (板书)求方程的解的过程叫做解方程。

  ②方程的解和解方程有什么联系和区别?

  方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。

  (2)教学例1:

  解方程X一8=16

  ①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

  ②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)

  (板书)解方程X一8=16

  解::根据被减数等于减数加差;

  X=16十8(与原来学过的求X的思路相同)

  X=24

  检验:把X=24代人原方程

  左边=24一8=16,右边=16

  左边=右边

  所以X=24是原方程的解。

  总结有关的格式要求:

  ①做题时要先写上“解”字。

  ②各行的等号要对齐,并且不能连等。

  ③方框里的运算根据可以不写。

  ④验算以“检验”的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

  指导学生看教材第105一107页。

  三、巩固

  1.教材107页“做一做”。

  2,教材第108页练习二十六第1、2题。

  四、练习

  教材第108页,练习二十六第3~5题。

  作业辅导

  1.判断题。

  (1)含有未知数的式子叫方程。 ( )

  (2)方程是等式,所以等式也叫方程。 ( )

  (3)检验方程的解,应当把求得的解代人原方程。()

  (4)36是方程X÷3=12的解。 ( )

  2.把下面的各关系式写完整。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)除数=( )○( )

  (6)被除数=( )○( )

  3.解下列方程。(第一行两小题要写出检验过程)

  10—X=0.42 4.5X=27 X十5.8=16.4

  X÷28=76 2÷X=0.5 X—8.75=4.65

  板书设计:

  解简易方程

  例1 解方程X-8=16

【《方程》教案】相关文章:

《方程》教案01-27

《方程的意义》教案02-18

解方程教案09-13

方程的意义教案08-31

小学方程的教案11-28

解方程二教案10-13

《方程》教案(15篇)07-11

小学方程的教案(必备)11-29

《方程的意义》教案15篇02-18