五年级数学教案(15篇)
作为一位杰出的教职工,常常要写一份优秀的教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写呢?以下是小编帮大家整理的五年级数学教案,希望对大家有所帮助。
五年级数学教案1
活动目标
通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。
活动准备
教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。
活动过程
一、提出问题,揭示课题?
1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?
2.学生根据查询的资料和咨询科学教师得到的知识进行交流。
3.根据学生的交流,提出:我们也来试一试发豆芽。
揭示课题:发豆芽。
二、讨论交流,得出活动步骤
1.提问:发豆芽要做哪些准备?怎样记录发豆芽的.过程呢?对最后的记录如何分析呢?
结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。
2.学生结合教材了解4个环节应该做什么,并在全班交流。
教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?
三、学生分组活动
1.教师演示发豆芽的过程。
2.教师提出要求:
(1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。
(2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。
3.各组学生进行发豆芽实验。
时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。
四、小组交流,感受价值
交流发豆芽的具体做法和注意事项。
五、观察、记录、分析
1.观察豆芽的生长情况。(大约6天时间)
2.记录豆芽的生长情况。(每天进行记录)
3.把豆芽的生长情况制成统计图表。
4.分析统计图表,写好总结。
六、总结反思
小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。
注:五、六两个教学过程在课外进行。
[简评:本课设计采取课内课外相结合的方式,突出发豆芽的相关资料收集,讨论发豆芽的活动步骤,对发豆芽活动进行分析、交流、评价。通过分组活动,培养学生的合作意识与能力;统一在教室进行,便于学生观察、比较、交流、互相激励。同时,把发豆芽活动的重点放在依据实验数据制作、分析统计图表上,以体现数学在生活中的价值,体现综合应用的数学味。]
五年级数学教案2
(一)导入
提问:上节课我们学习了什么知识?什么叫真分数?什么叫假分数?
学生回忆并回答。
(二)教学实施
1.出示例3中的插图。
提问:从图中你知道了哪些分数信息?其中一个同学说:“我吃了一个半”,怎样用分数表示一个半?
老师随着提问,出示下图。
学生观察图,先独立思考,然后指名回答,“一个半”是l+的和。
老师提示:1+的和可以写成1。(板书:1)
2.再让学生观察插图中其他几个同学吃了多少个橙子?怎样用分数表示?
学生试着说一说,老师分另“板书:1,2,。
3.老师指出:像1,1,...这样的分数,叫带分数。观察这些带分数都是怎样组成的`?你会读出这几个带分数吗?4,请学生独立举出一两个带分数,让学生读一读。
5.老师小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。
6.指出:有时根据需要,要把假分数化成整数或带分数。
(三)思维训练
做同一种零件,王师傅2小时做15个,李师傅3小时做20个。谁做得快一些?(化成带分数再比较)
(四)课堂小结
通过本节课的学习,我们认识了什么是带分数,并会正确地把假分数化成带分数。
五年级数学教案3
一、分享目标:
1、通过与学生交流《课程纲要》,了解本学期数学学习的课程内容、课程目标以及课程评价。
2.通过了解教师对学生的评价方法,激发学生自主学习的主动性。
二、分享重点:
了解本学期学习内容和评价方法。
三、分享难点:
通过分享《课程纲要》明确学习目标。
四、分享过程:
(一)、谈话导入
师:同学们,今天是开学的第一课,大家都拿到了新课本,老师看到有的同学已经迫不及待的开始翻阅新书,那么今天这节课,老师将和同学们一起交流和熟悉本学期我们将学到哪些新知识。
(二)、了解学习内容、明确学习目标。
1、了解一册书有七个单元,及每单元内容的主题。
师:这学期的数学课,将由小学数学五年级下册这本书陪伴我们共同度过。这本书有七个单元内容。我们大概要用三、四个月的时间学习完这些内容,下面就是让我们走进书中看看吧!
2、了解每单元的内容(学生们先看,通过翻阅找出每一单元的重点,老师总结适当根据学生的发言总结如下)
(1)、数与代数(按领域划分):
第一单元“分数乘法”。学生将在这个单元的学习中,结合具体情境,在操作活动中,探索并理解分数乘法的意义;探索并掌握分数乘法的计算方法,并能正确计算;能解决简单的分数乘法的实际问题,体会数学与生活的密切联系。
第三单元“分数除法”。学生将在这个单元的学习中,结合具体情境,借助操作活动,探索并理解分数除法的意义;借助图形语言,探索分数除法的计算方法,并能正确计算;了解倒数的含义,能求一个数的倒数;能应用方程解决有关的分数除法的实际问题,体会数学与生活的密切联系。
第五单元“分数混合运算”。学生将在这个单元的学习中,理解分数混合运算的运算顺序,并能够正确进行分数混合运算;理解整数的运算律在分数运算中同样适用;能结合实际情境,解决简单分数混合运算的实际问题,体会分数混合运算在现实生活中的广泛应用;结合具体情境,能运用方程解决有关的分数混合运算的实际问题。
第六单元“百分数”。学生将在这个单元的学习中,经历从实际情境中抽象出百分数的过程,体会引入百分数的必要性;理解百分数的意义,会正确地读、写百分数,能运用百分数表示事物;探索小数、分数和百分数之间的关系,并能进行百分数与小数、分数之间的互化;会解决有关百分数的`简单实际问题(包括运用方程解决有关的问题),感受数学在现实生活中的应用价值,体会数学学习中的乐趣。
(2)、空间与图形:
第二单元“长方体(一)”。学生将在这个单元的学习中,通过观察、操作等,认识长方体、正方体及其基本特征,知道长方体、正方体的展开图;结合具体情境,探索并掌握长方体、正方体表面积的计算方法,并能解决生活中一些简单的问题;经历展开与折叠、寻找规律等活动,发展空间观念和探索规律的能力。
第四单元“长方体(二)”。学生将在这个单元的学习中,通过操作活动,了解体积(包括容积)的含义;认识体积(包括容积)单位(米3、分米3、厘米3、升、毫升),会进行单位之间的换算,感受1米3、1分米3、1厘米3以及1升、1毫升的实际意义;探索并掌握长方体、正方体体积的计算方法,并能解决简单的实际问题;探索某些不规则物体体积的测量方法;在观察、操作等活动中,发展动手操作能力和空间观念。
(3)、统计与概率:
第七单元“统计”。学生将在这个单元的学习中,经历收集数据、整理数据、分析数据的过程,体会统计的作用,发展统计观念;通过实例,认识扇形统计图,了解扇形统计图的特点与作用;能根据需要,选择条形统计图、折线统计图、扇形统计图直观、有效地表示数据;通过实例,理解中位数、众数的意义,会求一组数据的中位数、众数,并解释结果的实际意义;根据具体问题,能选择适当的统计量表示一组数据的不同特征;能从报刊杂志等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表。
(4)、综合应用:
本册教材安排了两个大的专题性的综合应用,即“数学与生活”、“数学与购物”,旨在综合运用所学的知识解决某一生活领域的实际问题。同时,还在其他具体内容的学习中,安排了某些综合运用知识解决简单的实际问题的活动。学生在从事这些活动中,将综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。
(5)、整理与复习:
教材安排了两个整理与复习。整理与复习改变单纯做题的模式,注重发展学生自我反思的意识。每个整理与复习都分成三部分:对所学内容的整理,提出数学问题并尝试解答和一些练习题目。
“你学到了什么”这个栏目,目的是鼓励学生对学过的知识进行回顾与反思,能运用列表或采用其他的形式对所学的主要内容进行简单的梳理。
“运用所学的知识提出相关的数学问题,并尝试解决问题”,目的是培养学生提出问题、解决问题的能力;在解决问题过程中加深对所学知识的理解;回顾在学习过程中自己的体会与进步。
3、了解课程目标(因为学生对整个了解不够,需要老师多加说明和解释)
(1)结合具体情境,理解分数乘法的意义,掌握它们的计算法则,并能正确熟练地计算。
(2)掌握长方体和正方体的特征,认识它们展开图的形状,理解掌握长方体和正方体的表面积含义并能正确计算。
(3)理解倒数的意义,掌握分数除法的计算法则,并能熟练地计算。
(4)认识理解物体体积概念,认识常用体积和容积单位(立方米、立方分数、立方厘米、升、毫升),能够掌握这些单位间的进率和换算,掌握长方体和正方体体积计算方法。
(5)掌握分数乘法、除法的数量关系,并能运用这些知识和技能解决简单的数学问题。
(6)理解百分数的意义,能正确熟练地进行小数、分数、百分数的互化,并能正确地解答百分数应用题。
(7)认识条形统计图、折线统计图、扇形统计图的特点,懂得中位数,众数的意义,并能针对具体问题选择使用。
(8)通过实践活动,体验数学与日常生活的密切联系,培养学生的数学应用意识和动手操作能力。
4、交流方法,轻松学习
师:为了更好的实现课程目标,大家共同来想想办法,我们应该采取哪些方法来帮助我们有效的达成目标呢?
提出学习建议:
(1)、课前预习。
预习的方法:看一看明天要学习什么内容,是否能用今天学习的知识去解决它;在不懂的地方画上记号;尝试地做一二道题,看哪里有困难……
(2)、课后整理。
要养成先复习当天学习的知识,再做作业,最后,把学习内容加以整理的习惯。
(3)、课堂听讲。
一要仔细看教师的操作演示、表情、手势;二要全神贯注地听老师的提问、点拨、归纳以及同学的发言;三要积极思考、联想;四要踊跃发表自己的想法,有困惑应发问,敢于质疑。
(4)、检查验算。
要养成做完每道题都能及时认真检查验算的好习惯。
5、交流评价方法,促进学习信心
为了让大家在日常学习中即使发现自己的进步,老师专门制定了一套评价方案来评价同学们的学习。我们一起来看看吧。
(1)、作业评价。
对于作业完全正确的学生本子上打优,稍差的打良,再差点就打合格。
字写得端正的,会再得到一个A,稍差的得B。
(2)、考试评价。
满分的盖3个“数学之星”;90分以上的盖2个“数学之星”,对于成绩有进步的,同样可以盖1个“数学之星”。
另外,书写也是评价的内容之一,每次卷面整洁的,可附加2分。
(3)、帮带评价。
一个后进生都配备一个小老师,负责教他,对于学习任务完成好的也进行奖励制度,如小老师能让自己的小学生及时订正作业的,学生和小老师都盖一个“数学之星”。
5、加油鼓励、树立信心
请同学们对自己说一句鼓励的话来为自己打打气吧!
把对自己鼓励的话记录在课本的首页,让我们不断用这句话来鞭策自己!
五年级数学教案4
平均数的初步认识
教学目标:
1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。
2、能正确列式解答“求平均数”问题。
教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。
教学过程:
一、引入
1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?
二、新授
1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。
刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。
生:用4来表示……; 用5来表示……。
师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?
生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……
师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?
遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。
2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。
第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。
师:你觉得用几来代表他1分钟的水平呢?
生:计算,是4。
师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。
生:3+7+2=12个 12÷3=4个(板书算式)
生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)
师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的.平均数。(板书)
我们说,4是3、7、2这3个三个数的平均数。
那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?
生:他投了3次,所以4是3、4、5的平均数。
师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?
师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)
3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?
师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。
老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。
老师第四次投中了1个。我赢了还是输了?算一算。
如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?
三、练习
1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……
不然移多补少补给谁去呢?
2、平均身高160,但不是人人都160,排在中间的人一定是160吗?
3、平均水深才110,所以以他140的身高肯定淹不死,是吗?
生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。
出示水下图片。
师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?
4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?
5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20xx年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。
四、总结
五年级数学教案5
【教学目标】
1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3、理解和掌握分数的基本性质,会比较分数的大小。
4、理解公因数与公因数、公倍数与最小公倍数的意义,能找出两个数的公因数与最小公倍数,能比较熟练地约分和通分。
5、会进行分数与小数的互化。
【重点难点】
1、分数的意义和分数的基本性质。
2、理解单位“1”的含义。
【教学指导】
1、充分利用教材资源,用好直观手段。
本单元教材在加强教学与现实世界的联系上做了不少努力,同时,教材还运用了多种形式的直观图式数形结合,展现了数学概念的几何意义,从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,发挥形象思维和生活体验对于抽象思维的支持作用。
2、及时抽象,在适当的.水平上,构建数学概念的意义。
为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,构建概念的意义。
3、揭示知识与方法的内在联系,在理解的基础上掌握方法。
在本单元中,假分数化为带分数或整数,约分与通分,分数与小数互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。因此,教学时不宜就方法论方法,而应突出方法的过程,使学生明白操作方法背后的算理,这样就能依靠理解掌握方法,而不是依赖记忆学会操作。
【课时安排】建议共分17课时
1、分数的意义3课时
2、真分数和假分数2课时
3、分数的基本性质2课时
4、约分4课时
5、通分4课时
6、分数和小数的互化2课时
五年级数学教案6
分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:
一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。
从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。
二、渗透数学建模思想,强化用方程解答分数除法问题。
从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的`分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。
三、借助线段图分析数量关系,发挥其工具性。
线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。
本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。
本单元的教育目标是:
1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。
2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。
3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。
4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。
●分数除法,安排4课时。
第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。
第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。
第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。
第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。
分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。
五年级数学教案7
教学内容
《除法估算》选自苏教版九年制义务教育小学教科书数学第九册P51的内容。
教学思路
小学数学应该与现实生活相联系,使学生的学习更具有现实性、趣味性和挑战性。“估算”在实际生活中有着广泛的应用,与其他知识也密不可分。因而,在教学“除法估算”这一部分内容时,设计围绕从学生刚经历的秋游活动来展开,让学生独立思考以发现估算的题材、自主探索以感知估算的价值、小组合作来交流估算的策略、尝试解题来总结估算的方法、实践运用以提高估算的能力。
设计理念
1、数学教学活动要关注学生的个人知识和直接经验
新的《国家数学课程标准》(实验稿)中明确指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。因此,教学活动要以学生的发展为本,把学生的个人经验(除法计算)、直接经验(秋游的感受)和现实世界(生活中的数学)作为数学教学的重要资源。
2、注重学生自主性和个性化的学习
引导学生通过独立思考、自主探索、合作交流获得知识,激励学生自得自悟。并且注意在教学过程中要充分利用学生的已有经验,尊重他们不同的思维方式,让数学学习活动成为一个生动活泼的、主动的和富有个性的过程。
教学目标
1、经历除法估算方法的探索过程,理解并掌握估算的方法。
2、能灵活运用估算方法解决实际的问题。
3、在探索学习活动中,培养学生的实践意识,培养探索意识、合作意识、创新意识,并获得积极的、成功的情感体验。
教学过程
一、秋游场景引入,调动学生学习兴趣。
上课后,出示秋游时拍的照片,询问学生当时的心情,一下就让学生回想起秋游那天的情景,因那天是远足秋游,学生对步行印象极深。在导入新课前,就提供路程和时间,让学生进行除数是一位数的除法估算的复习,求出同学们步行每小时大约行多少米。接着让学生把计时的单位改小,继续求每分钟的步行速度,便于我们判断走得比较快还是慢。此时顺利进入了除数是两位数的除法估算的教学中。
二、创设问题情景,激励学生自行探究。
1、关于所需车辆的计算:
师:同学们走的速度很快呢,是玩的心情很迫切吧!怪不得有同学问老师:“为什么不坐车呢?大家想知道原因吗?”
(1)出示题目并讲述:老师联系车子的时候只有中型客车,每辆车子可以坐44人,而我们四年级参加秋游活动的学生一共有235人。现在只有5辆车子可以用,你们认为够吗?
(2)学生自己思考解答后交流。
师:请同学来说说你的结果。(交流情况)
生1:我觉得不够。因为235÷44≈6(辆),要6辆车子才可以。现在只有5辆,所以不够。
(240)(40)
生2:我认为够了。235÷44,235的近似数取200,235÷44≈5(辆)。
(200)(40)
生3:我认为是不够的,老师还没有算在里面呢。
生4:老师,我用小数做的行吗?
师:当然可以了。你课外知识真丰富!请你说说看。
生4:我用235÷44≈5.3,把结果求近似数就是约等于5,所以我觉得5辆车就够了。
生5:可是在现实生活中有时不能把后面的直接去掉,应该要向前面进一。
生6:我同意生5的观点,5辆是不够的。我是这样想的:一辆车可以坐44人,那么5辆车大约可以坐44×5≈200(人),而200人<235人,多出来的人就坐不下了,要用6辆车才够。
师:是啊,多出来的人怎么办呢?不去了吗?
师:我看,问题主要是在生1和生2的两种解法中 235,也就是被除数的取近似数出现了分歧,那先来解决除数取近似数是怎样统一的?
生7:只要省略最高位后面的尾数,保留整十数。
师:其他同学有不同意见吗?(生都摇头表示没有)。问题是被除数到底该怎么考虑求近似数呢?在现实生活中来考虑这个问题,哪一种更符合实际呢?
生齐:生1说的那种。
生2:我现在想想应该是不够的,刚才没有仔细考虑。
师:那就是说,被除数取近似数时,要考虑尽量和原来的数接近。
生8:老师,那230也接近235的,为什么要取240呢?
师:谁能回答这个问题?
生9:因为240÷40是整数6,计算方便,算得快。
师:为什么会这么快?
生9:因为我想乘法口诀:四六二十四
师:这个方法真妙啊!把除数的.近似数求出来后,用乘法口诀来想,找个最接近被除数的,把它取作被除数的近似数。你真会动脑筋!
师:(小结)我们用估计的方法求出了5辆车是不够的,所以决定远足秋游,还能观赏沿途风光呢,倒也是一举多得。
2.关于缆车票价的估算(出示缆车图)
(1) 理解价格表
师:到了坐缆车的地方,同学们可兴奋了。不知道有没有同学注意到了这张价格表呢?你能看懂它吗?(指名学生发言)
生10:大人坐缆车上山要20元,上山、下山一起要30元。
生11:大人光上山不下山是20元。儿童的票价是大人的一半。
师:两人说得都很棒,生11补充得更好,那按价格表的说明,同学们每人应该付多少钱呢?
生12:(口答)30÷2=15(元)
师:老师要负责付同学们的费用了。请大家帮忙算一下:一个人的票价是15元,我们班级有58名同学参加秋游,那么该付多少钱呢?
(学生小组讨论后交流)
生13:我们小组认为老师要付15×58≈1200(元)
(20)(60)
生14:我们小组认为老师只要付15×58≈900(元)
(60)
师:怎么一下就相差了300元?该听谁的呢?
生15:我们小组是列竖式计算的,其实只要15×58=870(元)
师:同样是估算,相差300元,这里就要注意联系生活实际的情况,估算目的是计算快速,但也要注意准确。大家想知道事实上老师付了多少钱吗?
(学生纷纷猜测)
生16:老师,我想您付的钱应该比870元少。
师:为什么这么说?
生16:因为我想集体乘坐应该可以优惠的,很多地方集体购票都可以打折的。
师:你的生活经验真丰富!的确如你所料,老师实际上付了775元。
(生恍然,纷纷点头。)
师:58个同学乘坐缆车,总共用了775元,你能算算自己用了约多少钱吗?
列式:775÷58 ≈
生解答后交流:除数58的近似数是60,被除数考虑能被60整除,而又接近775,所以求近似数是780。师板书:775÷58 ≈ 13(元)
三、提供数据信息,鼓励学生自选解题。
在学生掌握了除法估算的方法以后,出示一组信息,让学生选择其中对于自己想了解的情况有用的数据,进行计算解答,并和小组里的同学交流。
反思:
这堂课上得生动活泼,同学们都投身于自己探究知识的活动之中。他们仔细观察,认真思考,合作交流,终于发现了知识、领悟了方法,品尝到了成功的喜悦。我在实践后的体会如下:
1、生活即教育
“生活即教育。”这句话是著名的教育家陶行知说的。也说明了学习应该是学生自己的实践活动。以往教科书上枯燥的例题让学生失去了学习数学的兴趣,而我们现在应该更加关注学生会关心什么、经历了什么、对什么感兴趣、在生活中想要发现些什么。因为生活本身就是一个巨大的数学课堂,将学习和学生们的生活充分融合起来,让他们在自己感兴趣的问题中去寻找、发现、探究、认识和掌握数学。只有这样,学生才会学得积极主动,才会学得兴趣盎然。
2、估算与生活
估算的内容在生活中随处可见,有着极其广泛的应用,在日常生活中,对量的描述,很多时候只要算出一个与精确数比较接近的近似数就可以了。这堂课的教学,让学生把自己的经历和数学知识在生活中的应用结合起来,因此培养了学生的素质和能力。
五年级数学教案8
一、创设情境
(1)展示主题图
(2)让学生说出从图中获取的主要信息
(3)揭示课题
二、师生共同探究新知
(一)再创情境,探案例1
1、中秋期间,我们的传统习俗是合家分享一块大月饼,喻示合家和美,团圆之意。小华一家也不例外。(示图)
他告诉我们什么?我分得这个月饼的1/4
谁能告诉大家,这里的1/4是把()看作一个整体呢??
2、小红家买的是盒装月饼,每盒8个,她说:我分得这盒月饼的1/4。谁知道小红所说的1/4是把什么看作一个整体呢?
分析一下他俩得到的月饼,你们发现了什么现象?有什么问题吗? 小组交流,再全班反馈
(二):教学单位“1”、分数意义和分数单位
1、关于单位“1”
学生小组交流“议一议”
师让学生小组“议一议”的3个情境,全班反馈(师对应板书)
归纳:一个物体或是由许多物体组成一个整体,通常把它叫做单位“1” 观察板书内容,体会这里单位1的量,及其所表示量的对应的分数的实际意义。(可以同桌交流)
2、关于分数的意义
理解了什么是单位1的量,我们进一步认识分数的意义
学生活动:(小组合作)拿出一些小棒,把它看作单位1
使它能平均分成5份,6份??
情况反馈
归纳分数的意义:让学生用自己的话先说,再对照书上的概念进行巩固。同时板书:分数
说一说,议一议,上面分数的实际意义
课堂活动:说一说生活中的分数;画一画(书上的第2题)
3、关于分数单位的认识
把单位“1”平均分成若干份,表示这样一份的数,又叫做这个分数的.单位。 让学和举例说一说:
再议一议:分数单位与分数什么有关系?(分母)
三、全课总结
1、反思与质疑
本课我们研究了哪些方面的新内容,说说自己的理解。再针对主题图的情境试述其中各分数的实际意义。
2、还有什么疑惑的,或者有什么不同的想法?
师生共同梳理
单位“1”——分数——分数单位
四、布置作业
课本第25~26页1、2、3题
分数
单位“1”:??
分数的意义:??
分数单位:??
单位“1”——分数——分数单位
五年级数学教案9
教学内容:课本第99页例8以及练习十九的3-6题。
教学要求:1、使学生理解循环小数、有限小数、无限小数的概念,能用循环小数或循环小数的近似值表示除法中的商。知道有限小数和无限小数的区别。使学生受到辩证唯物主义启蒙教育。
教具准备:小黑板
教学过程:
一、复习:
看谁算得快。
第一组:1.69÷26 58.3÷11
第二组:1÷35 8.6÷11
两个数相除时,会出现两种情况,第一组题都可以除尽,第二组都除不尽,等号后面的商该怎样写呢?
二、新授
1、出示例8挂图,说说从图中知道了哪些信息?
学生根据问题尝试列式计算,并截取商的近似值。
300÷45≈?个)
3、小组讨论:怎样取近似值才是合理的?(6个)
4、:根据本题的要求,用“四舍五入”的方法取近似值是不合理的,合适的近似数是6,而不是7。如果买了7个,就要超过300元。
完成试一试。
(1)学生独立完成练习;
(2)讨论:谁的想法合理?
(3)根据本题的要求,用“四舍五入”的方法取近似值也是不合理的,合适的`近似数是9,而不是8。因为过河8次后还剩6人,还需要用船再送一次。
综合练习
1、做练习十九第3题。一个人造地球卫星每小时大约运行30000千米。一架超音速飞机每小时大约飞行2千米。算一算,卫星运行的速度大约是这架飞机的多少倍?(得数保留整数)根据商不变规律,先把“30000÷2”转化成“300÷22”再进行计算。
2、练习十九4、5题。
重点指导学生根据具体的问题情境用合理的方法求出商的近似值。
3、练习十九第6题。
阅读“你知道吗?”
自主阅读,交流阅读后的认识。
五年级数学教案10
教学内容:冀教版《数学》五年级上册第10、11页。
教学目标:
1、在动手操作的活动中,经历探索莫比乌斯圈神奇特征的过程。
2、学会制作简单的莫比乌斯圈,了解莫比乌斯圈的特征。
3、感受莫比乌斯圈的神奇,体会数学活动的趣味性和探索性。
教学准备:三根长30厘米、宽3厘米的白纸条,彩笔,剪刀,胶水。
教学方案:
教学环节
设计意图
教学预设
一、创设情境
1.学生阅读书中的文字,初步了解莫比乌斯圈。
2.拿出一张纸条让学生估计它的长和宽。
二、探索活动1
1.师生一起动手制作莫比乌斯圈。
教师一边口述制作莫比乌斯圈的方法一边演示制作,然后让每个人制作一个。
2.交流、展示学生作品。
3.提出涂色要求,学生涂色。鼓励学生合作完成。
4.观察、交流学生涂色的结果,让学生说一说发现了什么?
三、探索活动Ⅱ
1.让学生在另一张纸条的正中画好一条线,再粘成一个莫比乌斯圈。通过沿莫比乌斯圈一面涂色却使纸圈两面都有了颜色的事实,使学生初步感受莫比乌斯圈的神奇。
2.提出:如果用剪刀沿中线把莫比乌斯圈剪开,结果会怎样?的问题,让学生先大胆猜测,再动手操作。
3.交流沿中线剪开后的结果。
4.提出书中(2)的操作要求,让学生想象剪开后的结果。
5.鼓励学生按要求实际操作。
6.交流学生沿画线剪开后的结果。使学生发现把一个三等分的莫比乌斯圈沿等分线剪开,变成了一大一小两个套在一起的纸圈。
四、课外延伸
教师进行激励性谈话,鼓励学生课下继续探索
通过激励性谈话引起学生的学习兴趣,通过阅读让学生初步了解莫比乌斯圈。
培养估计的意识,了解纸条的长和宽,方便下面的语言表述。
通过教师边口述边示范,让学生学会制作简单的莫比乌斯圈。每人制作一个,为下面的探索活动提供材料。
展示学生的作品,检查莫比乌斯圈做的是否正确。
让学生经历探索莫比乌斯圈的全过程。
通过自己动手做莫比乌斯圈,亲身体验它的神奇。
通过教师叙述制作要求,培养学生倾听的习惯,为探索活动提供材料。
通过让学生想象猜测,一方面培养学生联想的意识,更重要的是引出探索的活动。
在操作结果和提供的数据中,让学生感受莫比乌斯圈的'神奇和数学活动的探索性。
在前面探索活动的基础上,对看似相关问题进行猜测,激发学生探索的愿望。
带着问题进行实际操作,体验数学问题的探索性。
在猜测、操作、交流等探索活动中,进一步感受莫比乌斯圈的神奇和数学活动的趣味性。
激发学生的探索的积极性,培养科学探索精神。
师:同学们,今天我们就用老师给大家准备的纸条来探索一种神奇的纸圈,这个纸圈是什么呢?大家请打开书第10页,读一读前两段。
学生阅读书中的文字。
师:通过读书,你了解到哪些信息?
学生回答可能不同,只要是意思对就给予肯定。
师:德国数学家莫比乌斯发明的这个“纸圈”到底有什么神奇之处,下面我们就一起去探索。
师:请同学们拿出一张纸条,估计一下这张纸条有多长、多宽?
学生估计,对估计准确给予表扬。使大家知道:纸条的长30厘米,宽3厘米。
师:我们就用这张纸条做一个莫比乌斯圈。怎样做呢?把纸条儿的一端扭转180°,与另一端粘在一起,这样一个莫比乌斯圈就做好了。
教师边说边示范制作莫比乌斯圈。
师:下面同学们就用准备好的纸条也做一个莫比乌斯圈!
学生动手制作,教师巡视指导。
师:谁来展示一下你的莫比乌斯圈?
学生展示,关注是否都对。
师:同学们都有了自己的莫比乌斯圈,我们给它涂上颜色让它更漂亮。涂色的要求是:用一种颜色的彩笔在纸圈的一面涂色。可以同桌合作完成。
学生给莫比乌斯圈涂色,教师巡视指导。
师:请同学们仔细观察涂好色的莫比乌斯圈,你发现了什么?
生:两面都有颜色了。
生:太奇怪了。
师:沿一面涂色纸圈的两面都出现了颜色,真是个奇迹!这就是神奇的莫比乌斯圈!
教师板书:神奇的莫比乌斯圈。
师:请同学们接着做,你会发现更神奇的事情。听清这次的操作要求:取出一张新的纸条,在正中画一条线,再把它粘成莫比乌斯圈。
学生操作,教师巡视指导。
师:同学们想象一下,如果用剪刀沿中线把这个莫比乌斯圈剪开,结果会怎么样?
生:会得到2个莫比乌斯圈。
师:结果到底怎么样呢?请同学们用剪刀沿中线把它剪开,看一看结果会怎样。用剪刀时注意安全。
学生操作,教师巡视指导。
师:沿中线剪开后怎样?和你想象的结果一样吗?
学生可能回答:
●沿中线剪开后结果不是两个莫比乌斯圈,而是一个。
●这个新的纸圈比原来的大了。
……
师:真是出乎意料!把莫比乌斯圈沿中线剪开结果不是两个纸圈,而是一个更大的纸圈。那同学们,你们猜想一下,要是在纸条上画两条线,把纸条分成三等分,粘成莫比乌斯圈,再用剪刀沿画线剪开,猜一猜结果会怎么样?
学生可能回答:
●得到一个更大的纸圈。
●得到3个纸圈。
……
师:请同学们实际动手做一做,看一看结果会怎样?
学生动手操作,教师巡视指导。
师:这次剪开后结果怎么样?
生:得到了一大一小两个套在一起的纸圈。
师:这就是莫比乌斯圈的神奇之处!要是在纸条上画三条线,把它四等分,再粘成莫比乌斯圈,接着沿画线剪开,结果会怎样?要是画四条线呢?有兴趣的同学课下可以继续探索!
五年级数学教案11
一教学内容
和复习
教材第101页的内容。
二教学目标
1.通过复习,帮助学生梳理本单元的知识要点及知识间的联系。
2.培养学生归纳、知识的能力,掌握和复习知识的方法。
3.培养学生自觉复习的习惯。
三重点难点
归纳、本单元的知识点。
四教具准备
投影。
五教学过程
(一)导入
分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。
(二)教学实施
1.引导学生归纳、梳理知识点。
提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?
学生自己试着归纳,然后请学生汇报发言,集体补充。
老师随着学生的汇报,进行板书。
板书如下
2.应用知识练习。
(1)完成教材第101页的第1题。
先独立完成填空,集体订正。
然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?
(2)完成教材第101页的第2题。
让学生先将这7个分数分类,再说一说分类的依据,每一类分别是什么分数,它们之间有什么关系。
(3)完成教材第101页的第3题。
学生先独立完成,然后说说比较分数的大小有几种情况,怎样分别比较分数的大小。
(4)完成教材第101页的第4题。
先让学生说一说分数化成小数和小数化成分数的方法,再完成题目给出的分数与小数的互化练习。
提问:互化时要注意什么?
(四)思维训练
1.分数是真分数,而且可以化成有限小数,x最大是几?
2.一个分数,分子和分母的和是43,如果分母加上17,这个分数就可以化简成言,这个分数是()o
3.一个最简分数,把它的分子扩大2倍,而分母缩小到原来的.后,正好等于,这个分数原来是()。
(五)课堂
通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。
五年级数学教案12
教学内容:观察物体
教学目标:
1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。
2.培养学生从不同角度观察,分析事物的能力。
3.培养学生构建简单的空间想象力。
重点:帮助学生构建初步的空间想象力。
难点:帮助学生构建初步的空间想象力。
教学过程:
一、谜语导入
请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)
二、合作探究
(一)整体观察
1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:
你观察到的正方体是什么样的?
在你的位置上观察,你看到了哪几个面?
2.学生汇报交流。
学生自由走动,观察。汇报交流。
3.解释应用
教师出示两个正方体的立体图,一个有虚线,另一个没有。
提问:谁能用刚学到的知识解释一下正方体为什么这样画?
学生解释说明。
(二)分别从三个面进行观察(出示例1)
1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。
学生离开座位自由观察。
2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。
总结学生的发言:从不同的方向观察,所看到的形状是不一样的。
三、拓展应用
1.做教科书例2
2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的.同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。
学生玩游戏,教师指导。
四、总结
本节课你学会了什么?
五、作业布置
兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。
1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。
2.从一个面看到物体的形状,可以有多种不同的摆放方式。
3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。
五年级数学教案13
(一)、实践操作
1、组织谈话
师:上节课我们已经认识了平行四边形,同学们都学了哪些知识,谁还记得。
生:两组对边分别平行的四边形叫平行四边形。
生:认识了平行四边形的高。
2、媒体演示
(出示课件:小山羊的困惑。配音:一只莽撞的小山羊把一个长方形撞倒了,变成了一个平行四边形,于是小山羊就发现了一个问题,是什么问题呢?)
师:现在你能发现什么问题呢?
生:为什么会变成平行四边形呢?面积是否变了呢?
师:小山羊到底发现了什么问题?你们想不想知道呢?
(出示问题:现在的平行四边形和以前的长方形谁的面积大呢?)
生:一样大。
生:我认为长方形面积大,平行四边形面积小。
师:现在有两种意见,大部分同学认为面积一样大,个别同学认为长方形面积大。到底谁说得对呢?你们能不能想个办法比出这两个图形面积的大小?
师:有什么方法验证一下它们的面积是否一样大呢?
生:可以算一算它们的面积的大小。
师:怎样算呢?
生: 长方形的面积 =长×宽(板书)
平行四边形的面积 =底×高
师:你是怎样知道的?
生:我是看书知道的。
生:我是家长告诉的。
师:那么,为什么平行四边形的面积=底×高,公式是怎么来的呢?这节课,我们就重点来研究平行四边形面积公式的推导过程?
师:下面就用你自己手中的学具,试着把平行四边形转化成我们已经学过的图形。
(小组合作,4人一组,然后在全班汇报)
(二)交流汇报
师:你转化后的图形是什么?你是怎么转化的呢?谁能大胆的上来说一说。
生:是长方形,我是沿着高剪的。
师:你为什么这样剪,不沿着高剪开行不行?
生:长方形的四个角都是直角,所以只有沿着高剪开才能转化成长方形。
师:这个长方形和原来的平形四边形个部分之间有什么关系呢?同学们仔细观察(媒体演示转化的过程:找出底,画高,剪开,平移,拼补,转化成了长方形)。
师::长方形和原来的平行四边形有什么关系?
生:转化后的图形是长方形,我发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的'面积是底乘高。
师:谁再来完整的说一遍。
师:我们通过转化推导出来的面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。
师:平行四边形的面积计算公式还可以用字母表示呢?你知道怎样表示吗?(学生说,教师板书)
生:公式是s=ah
师:通过刚才的学生,我们知道了平行四边形面积计算的公式,下面一起来解决一些具体的实际问题。
(三)巩固发展
1.口算下列各题。
生:第一个平行四边形的面积是12平方厘米。
生:第二个平行四边形的面积是20平方分米。
生:第三个平行四边形的面积是8平方米。
2.辨析性练习:
师:你能根据图中给出的数据求平行四边形的面积吗?(课件出示下图,单位:厘米)
生:是54平方厘米。
生:我不同意,因为……
师:为什么说面积不是54平方厘米?
生:我也认为不是9×6=54(平方厘米),因为6厘米这条高不是9厘米这条底上。如果沿6厘米这条高剪开拼成长方形,长方形的长就是6厘米这条高,长方形的宽却不是9厘米这条底。所以不能用9×6=54。
师:谁再来说说。
师:让我们来看看。下面你能计算了吗?(课件出示)
生:2×9=18;3×6=18
五年级数学教案14
教学目标
1、使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题、
2、提高学生分析问题,解决问题的能力、
3、培养学生大胆尝试,勇于探索的精神、
教学重点
1、找到与求路程应用题的内在联系、
2、正确分析解答求相遇时间的应用题、
教学难点
掌握求相遇时间应用题的解题思路、
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来、小东每分走50米,小英每分走40米、经过3分钟两人相遇、两地相距多远?
1、画图,列式解答、
2、订正答案
3、小组讨论:试着改编一道求相遇时间应用题、
二、探究新知
例4、两地相距270米、小东和小英同时从两地出发,相对走来、小东每分走50米,小英每分走40米,经过几分两人相遇?
1、讨论:复习题的线段图该怎样改一改、并试着画一画、
2、联系复习题的解法,尝试解答
3、订正思路
想法一:两人相遇时,所走的路程是270米、几分走270米,就是几分相遇、
270÷(50+40)、
想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:
相遇时间=路程÷速度和、
三、反馈调节
两人同时从相距6400米的两地相向而行、一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1、学生独立分析解答、
2、订正答案、
3、质疑:对于“求相遇时间”应用题还有什么问题?
4、教师提问
(1)要求“相遇时间”题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米、两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米、两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开、一艘军舰每小时行38千米、另一艘军舰每小时行41千米、经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿、第一队每天开12.6米,第二队每天开14.2米、这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米、一列货车从长沙开往广州,每小时行69千米、这列货车开出后开往广州,每小时行69千米、这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米、再过几小时两车相遇?
五、课后小结
我们今天所学的`相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
探究活动
猜两位数
活动目的
激发学生学习数学的兴趣、
活动方法
表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数、
例如:观众想的是59,他按规定计算出
59×167+2500=12353
表演者根据报的得数计算
53×3=159
于是就知道观众想的是59、
活动过程
1、教师进行表演
2、学生探讨其中的奥妙
3、学生自己设计这样的几个游戏、
猜数方法
将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数、
六、板书设计
五年级数学教案15
一、 单元学习内容的前后联系
已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。
本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。
后续的相关内容:本册第五单元 异分母分数加减;加减混合运算;分数与小数的互化。第十册:分数乘法分数除法
二、单元编写特点与教学策略
1、在具体情境中进一步理解分数,体会分数的相对性
教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。
在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。
2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。
除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。
3、经历知识的形成过程,探索分数的基本性质
分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。
4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法
本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的'要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。
三、从《分数的基本性质》谈教学策略
“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。
(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。
(2)部分观察。先引导学生对其中一组数 = = ,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:
得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。
接着,引导学生从右向左观察,并练习:
得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。
在让学生观察其他几组分数,能得出同样的规律。
(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。
【五年级数学教案】相关文章:
五年级数学教案11-08
五年级教案数学教案12-27
五年级数学教案08-20
五年级下册数学教案11-09
小学五年级数学教案12-15
苏教版五年级数学教案02-07
五年级上册数学教案04-18
五年级数学教案(精选20篇)12-26
人教版五年级下册数学教案11-09
小学五年级下册数学教案11-03