《方程》教案

时间:2023-04-01 15:01:45 教案 我要投稿

《方程》教案(15篇)

  作为一位杰出的教职工,编写教案是必不可少的,教案是备课向课堂教学转化的关节点。如何把教案做到重点突出呢?以下是小编收集整理的《方程》教案,仅供参考,欢迎大家阅读。

《方程》教案(15篇)

《方程》教案1

  1。教学目标

  (1)知识目标: 1。在平面直角坐标系中,探索并掌握圆的标准方程;

  2。会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

  (2)能力目标: 1。进一步培养学生用解析法研究几何问题的能力;

  2。使学生加深对数形结合思想和待定系数法的理解;

  3。增强学生用数学的意识。

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

  2。教学重点。难点

  (1)教学重点:圆的标准方程的求法及其应用。

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的`坐标系解决与圆有关的实际问题。

  3。教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2。7代入,得 。

  即在离隧道中心线2。7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1。根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2。如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={MMC=r}

  由两点间的距离公式,点M适合的条件可表示为 ①

  把①式两边平方,得(x?a)2 (y?b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

《方程》教案2

  教学内容:

  教科书第12~13页,“回顾与”、“练习与应用”第1~4题。

  教学目标:

  1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

  2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

  教学过程:

  一、回顾与

  1、谈话引入。

  本单元我们学习了哪些内容?

  你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

  在小组中互相说说。

  2、组织讨论。

  (1)出示讨论题。

  (2)小组交流,巡视指导。

  (3)汇报交流。

  你是怎么获得这个知识的`?我们在学习这个知识时运用了什么方法?

  (等式与方程都是等式;等式不一定是方程,方程一定是等式。)

  (含有未知数的等式是方程。)

  (等式性质:)

  (求方程中未知数的值的过程叫做解方程。)

  3、。

  同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

  二、练习与应用

  1、完成第1题。

  (1)独立完成计算。

  (2)汇报与展示,说说错误的原因及改正的方法。

  2、完成第2题。

  (1)学生独立完成。

  (2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

  3、完成第3题。

  (1)列出方程,不解答。

  (2)你是怎样列的?怎么想的?大家同意吗?

  (3)完成计算。

  4、完成第4题。

  单价、数量、总价之间有怎样的数量关系?

  指出:抓住基本关系列方程,y也可以表示未知数。

  三、课堂

  通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?

《方程》教案3

  一、目标

  1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程

  2.能够利用给定条件求抛物线的标准方程

  3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。并进一步感受坐标法及数形结合的思想

  二、重点

  抛物线的定义及标准方程

  三、教学难点

  抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)

  四、教学过程

  (一)复习旧知

  在初中,我们学习过了二次函数 ,知道二次函数的图象是一条抛物线

  例如:(1) ,(2) 的图象(展示两个函数图象):

  (二)讲授新课

  1.课题引入

  在实际生活中,我们也有许多的抛物线模型,例如1965年竣工的密西西比河河畔的萨尔南拱门,它就是用不锈钢铸成的抛物线形的建筑物。到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征?它的方程是什么呢?

  这就是我们今天要研究的`内容.(板书:课题2.4.1 抛物线及其标准方程)

  2.抛物线的定义

  信息技术应用(课堂中展示画图过程)

  先看一个实验:

  如图:点F是定点, 是不经过点F的定直线,H是 上任意一点,过点H作 ,线段FH的垂直平分线 交MH于点M。拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?(学生观察画图过程,并讨论)

  可以发现,点M随着H运动的过程中,始终有MH=MF,即点M与定点F和定直线 的距离相等。(也可以用几何画板度量MH,MF的值)

  (定义引入):

  我们把平面内与一个定点F和一条定直线 ( 不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线 叫做抛物线的准线.(板书)

  思考?若F在 上呢?(学生思考、讨论、画图)

  此时退化为过F点且与直线 垂直的一条直线.

  3.抛物线的标准方程

  从抛物线的定义中我们知道,抛物线上的点 满足到焦点F的距离与到准线 的距离相等。那么动点 的轨迹方程是什么,即抛物线的方程是什么呢?

  要求抛物线的方程,必须先建立直角坐标系.

  问题 设焦点F到准线 的距离为 ,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.

  (引导学生分组讨论,回答,并不断补充常见的几种建系方法,叫学生应用投影仪展示计算结果)

  注意:1.标准方程必须出来,此表格在黑板上板书。

  2.若出现比较复杂建系方案,可以以引入的字母参数较多为由,先排除计算

  3.强调P的意义。

  4.教师说明曲线方程与方程的曲线:从上述过程可以看到,抛物线上任意一点的坐标都满足方程,以方程的解 为坐标的点到抛物线的焦点的距离与到准线的距离相等,即方程的解为坐标的点都在抛物线上。所以这些方程都是抛物线的方程.

  (选择标准方程)

  师:观察4(3)个建系方案及其对应的方程,你认为哪种建系方案使方程更简单?

  (学生选择,说明1.对称轴 2.焦点 3.方程无常数项,顶点在原点)

  推导过程:取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴建立直角坐标系,如右图所示,则有F( ,0),l的方程为x=— .

  设动点M(x,y),由抛物线定义得:

  化简得y2=2px(p>0)

  师:我们把方程 叫做抛物线的标准方程,它表示的抛物线的焦点坐标是 ,准线方程是 。

  师:在建立椭圆、双曲线的标准方程的过程中,选择不同的坐标系得到了不同形式的标准方程,对于抛物线,当我们选择如图三种建立坐标系的方法,我们也可以得到不同形式的抛物线的标准方程:

  (学生分前两排,中间两排,后面两排三组分别计算三种情况,一起填充表格)

  图形标准方程焦点坐标准线方程

  y2=2px(p>0)

  ( ,0)

  x=—

  y2=—2px(p>0)

  (— ,0)

  x=

  x2=2py(p>0)

  (0, )

  y=—

  x2=—2py(p>0)

  (0,— )

  y=

  (三)例题讲解

  例1(1)已知抛物线的标准方程是 ,求它的焦点坐标和准线方程,

  (2)已知抛物线的焦点是 ,求它的标准方程.

  解:(1)∵抛物线方程为y2=6x

  ∴p=3,则焦点坐标是( ,0),准线方程是x=— .

  (2)∵焦点在y轴的负半轴上,且 =2,∴p=4

  则所求抛物线的标准方程是:x2=—8y.

  变式训练1:

  (1)已知抛物线的准线方程是x=— ,求它的标准方程.

  (2)已知抛物线的标准方程是2y2+5x=0,求它的焦点坐标和准线方程.

  解(1)∵焦点是F(0,3),∴抛物线开口向上,且 =3,则p=6

  ∴所求抛物线方程是x2=12y

  (2)∵抛物线方程是2y2+5x=0,即y2=— x,∴p= [高考XK]

  则焦点坐标是F(— ,0),准线方程是x=

  例2 点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程.

  解:如右图所示,设点M的坐标为(x,y)

  由已知条件可知,点M与点F的距离等于它到直线x+4=0的距离.根据抛物线的定义,点M的轨迹是以F(4,0)为焦点的抛物线.

  ∵ =4,∴p=8

  因为焦点在x轴的正半轴上,所以点M的轨迹方程为y2=16x.

  变式训练2:

  在抛物线y2=2x上求一点P,使P到焦点F与到点A(3,2)的距离之和最小.

  解:如下图所示,设抛物线的点P到准线的距离为PQ

  由抛物线定义可知:PF=PQ

  ∴PF+PA=PQ+PA

  显然当P、Q、A三点共线时,PQ+PA最小.

  ∵A(3,2),可设P(x0,2)代入y2=2x得x0=2

  故点P的坐标为(2,2).

  (四)小结

  1、抛物线的定义;

  2、抛物线的四种标准方程;

  3、注意抛物线的标准方程中的字母P的几何意义.

《方程》教案4

  教学内容:

  教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

  教学目标:

  理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

  教学重点:

  理解并掌握方程的意义。

  教学难点:

  会列方程表示数量关系。

  教学过程:

  一、教学例1

  1.出示例1的天平图,让学生观察。

  提问:图中画的是什么?从图中能知道些什么?想到什么?

  2.引导

  (1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

  (2)如果学生能主动列出等式,告诉学生:像50+50=100这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出你会用等式表示天平两边物体的质量关系吗?

  二、教学例2

  1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

  2.引导:告诉学生这些式子中的x都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

  3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

  三、完成练一练

  1.下面的式子哪些是等式?哪些是方程?

  2.将每个算式中用图形表示的`未知数改写成字母。

  四、巩固练习

  1.完成练习一第1题

  先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

  2.完成练习一第2题

  五、小结

  今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

  六、作业

  完成补充习题

  板书设计:

  方程的意义

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式叫做方程

《方程》教案5

  学习目标

  1.通过求做匀速圆周运动的质点的参数方程,掌握求一般曲线的参数方程的基本步骤.

  2.熟悉圆的参数方程,进一步体会参数的'意义。

  学习过程

  一、学前准备

  1.在直角坐标系中圆的标准方程和一般方程是什么?

  二、新课导学

  探究新知(预习教材P12~P16,找出疑惑之处)

  如图:设圆 的半径是 ,

  点 从初始位置 ( 时的位置)出发,按逆时针方向在圆 上作匀速圆周运动,点 绕点 转动的角速度为 ,以圆心 为原点, 所在的直线为 轴,建立直角坐标系。显然,点 的位置由时刻 惟一确定,因此可以取 为参数。如果在时刻 ,点 转过的角度是 ,坐标是 ,那么 。设 ,那么由三角函数定义,有

  即

  这就是圆心在原点 ,半径为 的圆的参数方程,其中参数 有明确的物理意义(质点作匀速圆周运动的时刻)。考虑到 ,也可以取 为参数,于是有

  应用示例

  例1.圆 的半径为2, 是圆上的动点, 是 轴上的定点, 是 的中点,当点 绕 作匀速圆周运动时,求点 的轨迹的参数方程.

  (教材P24例2)

《方程》教案6

  一、复习引入

  1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.

  2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?

  3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?

  二、探索新知

  解下列方程,并填写表格:

  方程 x1 x2 x1+x2 x1?x2

  x2-2x=0

  x2+3x-4=0

  x2-5x+6=0

  观察上面的表格,你能得到什么结论?

  (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?

  (2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的.猜想吗?

  解下列方程,并填写表格:

  方程 x1 x2 x1+x2 x1?x2

  2x2-7x-4=0

  3x2+2x-5=0

  5x2-17x+6=0

  小结:根与系数关系:

  (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)

  (2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.

  即:对于方程 ax2+bx+c=0(a≠0)

  ∵a≠0,∴x2+bax+ca=0

  ∴x1+x2=-ba,x1?x2=ca

  (可以利用求根公式给出证明)

  例1 不解方程,写出下列方程的两根和与两根积:

  (1)x2-3x-1=0 (2)2x2+3x-5=0

  (3)13x2-2x=0 (4)2x2+6x=3

  (5)x2-1=0 (6)x2-2x+1=0

  例2 不解方程,检验下列方程的解是否正确?

  (1)x2-22x+1=0 (x1=2+1,x2=2-1)

  (2)2x2-3x-8=0 (x1=7+734,x2=5-734)

  例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)

  例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.

  变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;

  变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.

  三、课堂小结

  1.根与系数的关系.

  2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.

  四、作业布置

  1.不解方程,写出下列方程的两根和与两根积.

  (1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

  (4)3x2+x+1=0

  2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.

  3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值

《方程》教案7

  一、教材分析

  1、教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

  2、教学重难点

  重点:一次函数与二元一次方程(组)关系的探索。

  难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

  3、教学目标

  知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

  数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

  解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

  情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

  二、教法说明

  对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

  三、教学过程

  (一)感知身边数学

  学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

  [设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  (二)享受探究乐趣

  1、探究一次函数与二元一次方程的关系

  [设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  2、探究一次函数与二元一次方程组的关系

  [设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

  (三)乘坐智慧快车

  例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0。1元的价格按上网时间计费;方式B除收月基费20元外再以每分0。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

  [设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的.求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

  (四)体验成功喜悦

  1、抢答题

  2、旅游问题

  [设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  (五)分享你我收获

  在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

  (六)开拓崭新天地

  1、数学日记

  2、布置作业

  [设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。

  四、教学设计反思

  1、贯穿一个原则——以学生为主体的原则

  2、突出一个思想——数形结合的思想

  3、体现一个价值——数学建模的价值

  4、渗透一个意识——应用数学的意识

《方程》教案8

  教学目标:

  1、通过本节课课前及课堂上的探索研究过程,使学生理解椭圆的定义,掌握椭圆的标准方程;

  2、复习和巩固求轨迹方程的基本方法.

  3、能够理解椭圆轨迹和方程之间的关系,进一步提高学生解析能力;

  教学重点:

  1、椭圆的定义和椭圆的标准方程及其求法,

  2、椭圆曲线和方程之间的相互关系.

  教学难点:

  1、建立适当的坐标系,求椭圆标准方程.

  2、利用椭圆的定义和标准方程研究曲线.

  教学方式:体验式

  教学手段:多媒体演示.

  学生特点:本节课的教学对象为高中实验班学生,数学基础较好.

  教学过程:

  1、给出椭圆定义

  由学生根据课前的预习叙述椭圆的定义:

  1)椭圆的定义:

  平面内与两定点F1,F2的距离的和等于常数(大于 )的点的轨迹(或集合)叫做椭圆.F1, F2叫做椭圆的焦点; 叫做椭圆的焦距.

  2)展示学生通过预习椭圆知识,结合椭圆的.知识所作的“图形”,并介绍椭圆的做法,帮助同学了解椭圆的定义,同时引出椭圆标准方程

  2、推导椭圆标准方程

  推导方程:(以下方程推导过程由学生完成)

  ①建系:以 和 所在直线为 轴,线段 的中点为原点建立直角坐标系;

  ②设点:设 是椭圆上任意一点,设 ,则

  ③列式:由 得

  ④化简:移项平方后得

  整理得

  两边平方后整理得,

  由椭圆的定义知, 即 ,∴ ,令 ,其中 ,代入上式,得 ,两边除以 ,得: ( ))

  3.进一步认识椭圆标准方程

  (掌握椭圆的标准方程,以及两种标准方程的区分)

  (1)方程 ( )叫做椭圆的标准方程.它表示焦点在 轴上,焦点坐标为 , ,其中 .

  (2)方程方程 ( )也是椭圆的标准方程.它表示焦点在 轴上,焦点坐标为 , ,其中 .

  4.通过例题巩固椭圆的标准方程.

  例1 求适合下列条件的椭圆的标准方程:

  (1) 两个焦点的坐标分别是(-3,0),(3,0),椭圆上任意一点与两焦点的距离的和等于8;

  (2) 两个焦点的坐标分别是(0,-4),(0,4),并且椭圆经过点 .

  5.再次展示学生所作椭圆,让学生利用椭圆方程和椭圆定义来判断所作的“椭圆”,并说明判断的依据,进一步椭圆定义和椭圆的标准方程.

  6.小结:

  这节课我们围绕椭圆及其标准方程研究了椭圆这几个方面的问题:

  (1)椭圆的定义;

  (2)椭圆的标准方程推导;

  (3)利用椭圆的定义和标准方程研究曲线;

  7.作业:

  (1)P42,练习A第1,2,3,4题; (2)求演示图形5中椭圆的方程.

《方程》教案9

  一元一次方程

  一、教学目标:

  1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、通过观察,归纳一元一次方程的概念

  3、积累活动经验。

  二、重点和难点

  重点:归纳一元一次方程的概念

  难点:感受方程作为刻画现实世界有效模型的意义

  三、教学过程

  1、课前训练一

  (1)如果 || =9,则=;如果2 =9,则=

  (2)在数轴上距离原点4个单位长度的数为

  (3)下列关于相反数的说法不正确的是( )

  A、两个相反数只有符号不同,并且它们到原点的距离相等。

  B、互为相反数的两个数的绝对值相等

  C、0的相反数是0

  D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

  E、有理数的相反数一定比0小

  (4)乘积为1的两个数互为 倒数 ,如:

  (5)如果,则( )

  A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0

  (6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )

  A、B、C、D、00

  2、由课本P149卡通图画引入新课

  3、分组讨论P149两个练习

  4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )

  A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310

  课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。

  5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0。8元。已知每个笔记本比练习本贵1。2元,求每个练习本多少元?

  解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:

  6、归纳方程、一元一次方程的概念

  7、随堂练习PO151

  8、达标测试

  (1)下列式子中,属于方程的是( )

  A、B、C、D、

  (2)下列方程中,属于一元一次方程的是( )

  A、B、C、D、

  (3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

  解:设甲队胜了场,则平了 场,依题意可列得方程:

  解得=

  答:甲队胜了 场,平了 场。

  (4)根据条件“一个数比它的一半大2”可列得方程为

  (5)根据条件“某数的与2的差等于最大的一位数”可列得方程为

  四、课外作业 P151习题5。1

  一元一次方程

  一、教学目标:

  1、通过对多种实际问题的`分析,感受方程作为刻画现实世界有效模型的意义。

  2、通过观察,归纳一元一次方程的概念

  3、积累活动经验。

  二、重点和难点

  重点:归纳一元一次方程的概念

  难点:感受方程作为刻画现实世界有效模型的意义

  三、教学过程

  1、课前训练一

  (1)如果 || =9,则=;如果2 =9,则=

  (2)在数轴上距离原点4个单位长度的数为

  (3)下列关于相反数的说法不正确的是( )

  A、两个相反数只有符号不同,并且它们到原点的距离相等。

  B、互为相反数的两个数的绝对值相等

  C、0的相反数是0

  D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

  E、有理数的相反数一定比0小

  (4)乘积为1的两个数互为 倒数 ,如:

  (5)如果,则( )

  A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0

  (6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )

  A、B、C、D、00

  2、由课本P149卡通图画引入新课

  3、分组讨论P149两个练习

  4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )

  A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310

  课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。

  5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0。8元。已知每个笔记本比练习本贵1。2元,求每个练习本多少元?

  解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:

  6、归纳方程、一元一次方程的概念

  7、随堂练习PO151

  8、达标测试

  (1)下列式子中,属于方程的是( )

  A、B、C、D、

  (2)下列方程中,属于一元一次方程的是( )

  A、B、C、D、

  (3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

  解:设甲队胜了场,则平了 场,依题意可列得方程:

  解得=

  答:甲队胜了 场,平了 场。

  (4)根据条件“一个数比它的一半大2”可列得方程为

  (5)根据条件“某数的与2的差等于最大的一位数”可列得方程为

  四、课外作业 P151习题5。1

《方程》教案10

  教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

  2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

  3、培养学生获取信息,分析问题,处理问题的能力。

  教学难点均是从实际问题中寻找相等关系。

  知识重点

  教学过程(师生活动)设计理念

  情境引入教师提出教科收第66页的问题,并用多媒体直观演示,同进出现下图:

  问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

  教师可以在学生回答的基础上做回顾小结

  问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)

  教师可以在学生回答的基础上做回顾小结:

  1、问题涉及的三个基本物理量及其关系;

  2、从知的信息中可以求出汽车的速度;

  3、从路程的角度可以列出不同的算式:

  问题3:能否用方程的知识来解决这个问题呢?用多媒体演示的目的是使学生能直观地理解“匀速”的含义,为后面寻相等关系做准备。

  培养学生读图的能力和思维的广阔性。

  这样既可以复习小学的算术方法,又为后面与方程的比较打下伏笔。

  提出问题:引出新课

  学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.

  如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.

  2、教师引导学生寻找相等关系,列出方程.

  问题1:题目中的“汽车匀速行驶”是什么意思?

  问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

  问题3:根据车速相等,你能列出方程吗?

  教师根据学生的回答情况进行分析,如:

  依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

  依据“王家庄至青山路段的车速=青山至秀水路段的车速”

  可列方程:

  3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

  4、归纳列方程解决实际问题的两个步骤:

  (1)用字母表示问题中的未知数(通常用x,y,z等字母);

  (2)根据问题中的相等关系,列出方程.渗透列方程解决实际问题的思考程序。

  理解题意是寻找相等的关系的前提。

  考虑到学生寻找关系的难度,教师在此处有意加以引导。

  教师要根据课堂教学的情况灵活处理,不能把学生的思维硬往教材上套。

  举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.

  列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

  列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

  2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、

  建议按以下的顺序进行:

  (1)学生独立思考;

  (2)小组合作交流;

  (3)全班交流.

  如果直接设元,还可列方程:

  如果设王家庄到青山的路程为x千米,那么可以列方程:

  依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:

  ,再列出方程=60

  说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.通过比较能使学生学会到从算式到方程是数学的进步。

  问题的开放性有利于培养学生思维的发散性。

  这样安排的`目的是所有的学生都有独立思考的时间和合作交流的时间。

  初步应用

  课堂练习1、例题(补充):根据下列条件,列出关于x的方程:

  (1)x与18的和等于54;

  (2)27与x的差的一半等于x的4倍.

  建议:本例题可以先让学生尝试解答,然后教师点评.

  解:(1)x+18=54;

  (2)(27-x)=4x.

  列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.

  2、练习(补充):

  (1)列式表示:

  ①比a小9的数;②x的2倍与3的和;

  ③5与y的差的一半;④a与b的7倍的和.

  (2)根据下列条件,列出关于x的方程:

  (1)12与x的差等于x的2倍;

  (2)x的三分之一与5的和等于6.补充例题(练习)的目的一方面是增加列式的机会,另一方面介绍列代数式的有关知识。

  小结与作业

  课堂小结可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:

  1、本节课我们学了什么知识?

  2、你有什么收获?

  说明方程解决许多实际问题的工具。

  本课作业1、必做题:阅读教科书上70页的《阅读与思考》;第73页习题2.1第1,5题。

  2、选做题:根据下列条件,用式表示问题的结果:

  (1)一打铅笔有12支,m打铅笔有多少支?

  (2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?

  (3)根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本教学设计着力体现以下几方面特点:

  1、突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.

  2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.

  3、体现学生思维的层次性.教师首先引导学生尝试用算术方法解决间题,然后再逐步

  引导学生列出含未知数的式子,寻找相等关系列出方程.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.

  4、渗透建模的思想.把实际间题中的数量关系用方程形式表示出来,就是建立一种数

  学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.

《方程》教案11

  教学目标:

  1.知识与技能:结合具体的问题,使同学们学会用解方程和用方程解决具体的问题。

  2.过程与方法:结合课本内容和实际问题来使同学们形成用方程解决问题的观念。

  3.情感态度价值观:在学习方程解决问题的过程中培养同学们对于学习数学的兴趣,培养同学们克服困难的品质,培养同学们探索新知的勇气和信心。

  教学过程:

  一、回顾与交流。

  1.复习方程概念。

  什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)

  判断下面是不是方程:

  3X+5

  6+8=14

  6X=15

  7X+315

  (通过这个教学使学生充分理解方程的定义)

  让学生先独立解课本P61.T1.两道解方程的题目再让学生说说是怎样解的。

  通过这里的两道练习复习小学所学习的解方程的`方法(即根据等式的性质来解。)

  2.解简易方程。

  复习61页第二题

  首先让学生找出这三个题的等量关系,让学生分小组讨论讨论,在小组内说一说怎样找的等量关系。然后请学生在班内汇报一下。再请三位同学演板,并请演板的同学解释自己的做法。

  (在这个过程中,让学生首先学会找出题目的等量关系,再根据等量关系去列方程,使学生养成用方程解决问题的时候,要懂得方程是根据等量关系列出的。)

  集体订正:解(1)方程是怎样想的,检查解方程时每一步依据什么做的。(2)方程与(1)有什么不同,解方程时有什么不同? 师生共同小结解方程的一般步骤(略)。怎样检验方程的解对不对? 增加找数量关系练习。

  1.六一班有50人,其中男生有28人,女生有多少人?

  2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?

  首先让学生独立找出题目中的等量关系,然后让同桌2人互相说一说,然后再解答。

  二、巩固与应用。

  引导学生做课本巩固练习题

  1.解方程。组织学生独立完成,然后让学生上去讲一讲解题的方法。

  2.看图列出方程,并求出方程的解。首先让学生在小组内说一说解决的方法,再请学生汇报交流。

  3.看图理解题意,引导学生分析数量关系,再列方程解答。请学生演板,演板后组织学生讨论。

  4.理解文字题,根据数量关系列出方程并求解。请学生找出题中的等量关系,再让学生完成。

  三、总结提高。

  通过这节课的学习,你解决了那些问题,还有那些困惑?

  (通过学生的汇报,查漏补缺,找出这节课可能没有涉及到的问题加以解决。)

  四、习题设计。

  1.课本62页第5题。这里的两个小题,第1小题是用字母表示,学生要想用字母表示出来,必须先找出题目的等量关系。第2小题是用方程解决问题,除了要找出等量关系外还要列出方程并解答。

  2.课本62页第6题。这是一道拓展性的习题,是数与形的结合,通过这道题的练习,除了锻炼学生用方程解决问题的能力,同时也复习了有关几何的知识。

《方程》教案12

  【考点及要求】:

  1.掌握直线方程的各种形式,并会灵活的应用于求直线的方程.

  2.理解直线的平行关系与垂直关系, 理解两点间的距离和点到直线的距离.

  【基础知识】:

  1.直线方程的五种形式

  名称 方程 适用范围

  点斜式 不含直线x=x1

  斜截式 不含垂直于x=轴的直线

  两点式 不含直线x=x1(x1x2)和直线y=y1(y1y2)

  截距式 不含垂直于坐标轴和过原点的直线

  一般式 平面直角坐标系内的直线都适用

  2.两条直线平行与垂直的判定

  3.点A 、B 间的距离: = .

  4.点P 到直线 :Ax+Bx+C=0的距离:d= .

  【基本训练】:

  1.过点 且斜率为2的直线方程为 , 过点 且斜率为2的直线方程为 , 过点 和 的直线方程为 , 过点 和的直线方程为 .

  2.过点 且与直线 平行的直线方程为 .

  3.点 和 的距离为 .

  4.若原点到直线 的距离为 ,则 .

  【典型例题讲练】

  例1.一条直线经过点 ,且在两坐标轴上的截距和是6,求该直线的方程.

  练习.直线 与两坐标轴所围成的三角形的面积不大于1,求 的'取值范围.

  例2.已知直线 与 互相垂直,垂足为 ,求的值.

  练习.求过点 且与原点距离最大的直线方程.

  【课堂小结】

  【课堂检测】

  1.直线 过定点 .

  2.过点 ,且在两坐标轴上的截距互为相反数的直线方程是 .

  3.点 到直线 的距离不大于3,则 的取值范围为 .

《方程》教案13

  教学内容:方程的意义和解简易方程(教材第105一107页,练习二十六)。

  教学要求:

  1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

  2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

  教 具:

  教学天平、小黑板。

  学 具:

  自制的简易天平、定量方块。

  教学步骤:

  一、复习

  1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)被除数=( )○( )

  (6)除数=( )○( )

  2.求未知数X(并说说求下面各题X的依据)。

  (1)20十X=100 (2)3X=69

  (3)17—X=0.6 (4)x÷5=1.5

  二、新授

  1.理解和掌握“方程的意义”。

  (1)出示天平,介绍使用方法(演示)后,设问:

  在天平两边放物体,在什么情况下才能使天平保持平衡?

  (两边的物体同样重时,天平才能保持平衡。)

  (2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?

  板书:20十30=50

  指出:表示左右两边相等的式子叫等式。

  (并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

  (3)教学例2(课本105页)。

  ①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。怎样用等式表示出来呢?

  板书:20+?=100

  ②等式“20+?=100”中的?是未知数,通常我们用“X”来表示,那么上面的等式可写成 (板书)20十X=100

  ③比较:等式“20+X=100”与等式“20+30=50”有什么不同?(含有未知数)教师指出,“20+X=100”是含有未知数的等式。

  ④想一想:X等于多少,才能使等式“20+X=100”左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)

  (4)教学例3(课本106页)。

  出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:

  ①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)

  ②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?

  (板书)3X=234

  ③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)

  (5)方程的意义:

  综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:

  20+30=50……一般的等式

  20+X=200 含有未知数的等式

  3X=234 称之为方程

  (板书)像20+x=100 3X=234 X—10=35 X÷12=5等,含有未知数的等式叫做方程。

  ①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)

  ②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分,小学数学教案《数学教案-方程的意义和解简易方程》。)

  (6)练一练(指名学生判断,并说明理由)教材第106页“做一做”。

  2.学习“解简易方程”。

  (i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?

  (板书)使方程左右两边相等的未知数的值,叫做方程的解。

  例如:X=80是方程20+X=100的解;

  X=78是方程3X=234的解。

  (板书)求方程的解的过程叫做解方程。

  ②方程的解和解方程有什么联系和区别?

  方程的`解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。

  (2)教学例1:

  解方程X一8=16

  ①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

  ②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)

  (板书)解方程X一8=16

  解::根据被减数等于减数加差;

  X=16十8(与原来学过的求X的思路相同)

  X=24

  检验:把X=24代人原方程

  左边=24一8=16,右边=16

  左边=右边

  所以X=24是原方程的解。

  总结有关的格式要求:

  ①做题时要先写上“解”字。

  ②各行的等号要对齐,并且不能连等。

  ③方框里的运算根据可以不写。

  ④验算以“检验”的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

  指导学生看教材第105一107页。

  三、巩固

  1.教材107页“做一做”。

  2,教材第108页练习二十六第1、2题。

  四、练习

  教材第108页,练习二十六第3~5题。

  作业辅导

  1.判断题。

  (1)含有未知数的式子叫方程。 ( )

  (2)方程是等式,所以等式也叫方程。 ( )

  (3)检验方程的解,应当把求得的解代人原方程。()

  (4)36是方程X÷3=12的解。 ( )

  2.把下面的各关系式写完整。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)除数=( )○( )

  (6)被除数=( )○( )

  3.解下列方程。(第一行两小题要写出检验过程)

  10—X=0.42 4.5X=27 X十5.8=16.4

  X÷28=76 2÷X=0.5 X—8.75=4.65

  板书设计:

  解简易方程

  例1 解方程X-8=16

《方程》教案14

  课题:简易方程

  复习目标:

  1.使学生进五步理解用字母表示数的意义,会用字母表示数、数量、定律和计算公式。

  2.理解方程的意义,会判断方程。能解方程并验算。

  3.能根据题目中的数量关系,用方程解决实际问题,培养灵活的解题能力。

  复习重点:理解题中的数量关系,根据数量关系列方程解决问题。

  复习过程:

  一、谈话导入

  今天这节课将对议程这部分知识进行整理和复习。

  一、概念回顾。

  1、复习用字母表示数。

  (1)填空。

  图书角原来有X本书,被同学借走10本后还有( )本。

  小芳今年岁,妈妈的年龄是小芳的6倍,妈妈今年( )岁。

  一个正方形的连长是A分米,它的面积是( )平方分米。

  指名口答,集体订正。

  问:用字母表示数的简写应该注意什么?

  (2)判断。

  a×b×8可以简写成ab8。( )

  a的立方等于3个a相加。( )

  a÷b中,a、b可以是任何数。( )

  3、总复习第3题。

  学生独立填书,完成后集体订正。

  2、复习方程

  (1)什么叫做方程?等式与方程有什么区别和联系?什么叫做方程的解和解方程?

  (2)判断。

  4+X>9是方程。( )

  方程一定是等式。( )

  x+5=4×5是方程。( )

  X=4是方程2X—3=5的解。( )

  (3)121页第4题

  指名板演,核对时请学生说一说解方程的方法。

  3、解决问题

  (1)121页第5题

  学生审题后同桌互说等量关系式。板书:地球赤道长度的7倍+2万千米=光每秒传播速度。

  根据等量关系式让学生列方程解答,指名板演,集体订正。

  说一说用方程解决问题的步骤是什么?

  (2)补充练习

  解方程。

  10.2-5X=2.2 3×1.5+6X =33 5.6X-3.8=1.8

  3(X+5)=24 600÷(15-X)=200 X÷6-2.5=1.1

  解决问题。

  一辆公共汽车到站时,有5人下车,9人上车,现在车上有21人,车上原来有多少人?

  小明是5月份出生的,他今年的年龄的3倍加上7正好是5月份的总开数。小明今年多少岁?

  学校买回3个足球和2个篮球共90元,足球每个22元,篮球每个多少元?

  学校买10套课桌用500元,已知桌子的单价是凳子的4倍,每张桌子多少元?

  爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?

  油桶里有一些油,用去20千克,比剩下的油的4倍还多2千克,油桶里原有油多少千克?

  三、作业。

  P123第5题,P124第6题,P125页第14题。

  教学反思:

  运用等式的性质来解方程是新教材在代数知识上的最大改革。我为这项改革叫好!因为以往学生依据加减乘除法各部分之间的关系来解答时,必须熟记 6句关系式才能正确解方程,可现在大家只要理解并掌握了等式的性质后,完全可以做到以不变应万变,学困生对教材中的方程解法掌握情况都非常好。

  可教研员明确指出除教材中出现的几种类型外,如a-x=b和a÷x=b也属于必考内容,这给我的教学带来了挑战,也给学生的学习带来了一定困难。我不想因此而回到老方法上去,也不想拔苗助长,直接用初中的移项来教学,我希望所有类型的方程解法都能植根于等式的'性质基础之上,使学生体会到等式性质的“妙用”。因此,有必要特别用一节课的时间给学生补充讲解这类方程解法。

  其次,学生在判断“a÷b中,a、b可以是任何数”一题时,全班发生明显分歧。有的认为字母a、b可以代表任何数,所以是对的;有的认为这里a不能是0,有的认为b不能是0,还有的认为a、b都不能是0。看来这题出得好!借此我帮助学生分析为除数不能为0的原因,主要有以下两点:

  1、除数为0,被除数为除0以外的任何数时,无解。因为0乘任何数都得0,而不会等于被除数。

  2、当除数为0,且被除数也为0时,有无数个解。因为0乘任何数都得0,商不唯一,所以除数不能为0。

  在经过讲解后,学生终于明白了其中的道理。

  最后,在练习中要针对学生以下薄弱点加强引导:

  1、加强两种不同类型方程的对方,防止混淆。如:5.6X-3.8=1.8和5.6X-3.8X=1.8

  2、补充讲解当一道算式中既有乘法又有平方时,应该先算平方,再算乘法。如:当X=5时,3X2等于(),应该先算52=25,再将3乘25=75。

  3、解方程时,尽量让所有的未知数在等式的一边,而不要出现等式两边都有未知数的情况。如“爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?”就应该推荐大家根据爸爸的年龄—儿子的年龄=相差的年龄的等量关系式来列方程,而不要列成X+32=9X,否则也得多向学生介绍一种类型方程的解法。

  4、注意培养学生养成检验的习惯,即使不用笔读检验,也应及时进行口头检验。

《方程》教案15

  教学目标:

  1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

  2、会用方程表示简单的等量关系,会列方程解决简单问题。

  3、感受式与方程在解决问题中的价值,培养初步的代数思想。

  教学重点:

  明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

  教学难点:

  找等量关系式,用方程解决实际问题。

  教学过程:

  一、导入

  我们都记得这首儿歌

  一只青蛙一张嘴,两只眼睛四条腿;

  两只青蛙两张嘴,四只眼睛八条腿;

  请你来接下句

  三只青蛙_________;

  五只青蛙呢?

  N只青蛙呢?

  一首小小的儿歌展示了数学的.机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

  二、进行复习

  1、用字母表示数

  (1)同学们想一想,在数学中有哪些地方常用字母来表示?

  生列举:数量关系(路程、速度、时间即s=vt)

  计算公式(长方形面积计算公式:s=ab圆柱的体积公式:v=sh等)

  运算定律(加法结合律:a+b+c=a+(b+c)等)

  (2)请同桌之间相互举两个这样的例子。

  (3)你们知道为什么用字母表示数吗?

  (4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。

  (5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

  算法有两种:其一:算术方法:160÷(5+3)=20

  依据:总插秧数量÷时间=单位时间量

  其二:列方程:x(5+3)=160

  依据:单位时间量×时间=总插秧数量

  观察比较:以上两种解法有哪些相同点和不同点?

  相同点:都是根据数量间的相等关系列式。

  不同点:解法一:以已知推出未知,是算术法。

  解法二:把未知数用x表示,列出含有未知数的等式,即方程。

  同学们想一想,等式和方程有什么联系和区别?

  方程有哪些性质呢?(等式、含有未知数)

  2、方程

  (1)判断下列哪些是方程(说明理由)

  7+8=3×5 4a+5b a+12=89

  4x=y 3+100>25+y 6+x=0.5×3

  (2)你会解方程吗?从中选择一个试一试。

  (3)如何判断方程的解是否正确?

  (4)列方程解应用题的解题步骤是怎样的?

  讨论后得出:①弄清题意,找出未知数,并用x表示;

  ②找出应用题中数量之间的相等关系,列方程;

  ③解方程;

  ④检验,写出答案。

  3、列方程解决问题

  (1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

  请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

  引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

  (2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

  (3)练习

  ①练一练1

  ②师展示习题:说出下面每组数量之间的相等关系。

  (1)女生人数,男生人数,全班人数;

  (2)苹果的重量,梨的重量,梨比苹果少的重量。

  (3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

  (4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

  ③课本练一练5

  三、小结

  说一说你今天的收获在哪里?