分数除法教案

时间:2023-04-21 13:48:38 教案 我要投稿

关于分数除法教案模板锦集9篇

  作为一位杰出的教职工,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。写教案需要注意哪些格式呢?以下是小编帮大家整理的分数除法教案9篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

关于分数除法教案模板锦集9篇

分数除法教案 篇1

  教学目标:

  1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

  3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  教学重点:

  能求一个数的倒数。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  长方形纸片。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼平均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的`意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1) 引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

  师:对这种做法大家有什么疑问吗?

  生:这儿是除法怎么变成了乘法?

  师:老师也有这个疑问,你能讲讲吗?

  师:谁能结合图来讲一讲呢?

  师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

  能再讲讲这样做的道理吗?

  师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/7的多少?

  通过直观图理解4/7的1/3是4/21

  (3)比较归纳,发现规律。

  ①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

  ②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

  ③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

  小组活动,说算法。

  ④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

  出示:分数除以整数,等于分数乘这个整数的倒数。

  还有需要注意的地方吗?

  生:有,除数不能为0。

  师:谁能把分数除以整数的计算法则用自己的话来说一说?

  完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  ⑥那象这样的分数除以整数的题目在计算时要注意些什么?

  生:要约分!结果最简。除号要变成乘号!

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

  板书设计:

  分数除以整数

分数除法教案 篇2

  教学内容:

  分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。

  教学目标:

  使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。

  教学重点:

  分数除以整数的计算方法 。

  教学难点:

  除转化为乘和道理。

  教学过程:

  一、 复习

  1.口答下面各题的倒数。

  2 、1、0.4

  2.根据一个乘法算式写出两个除法算式。

  3×15=45 125×8=1000

  二、 新授

  揭示课题:分数除法

  1.分数除法的意义和计算法则

  (1) 出示25页的月饼图。

  (2) 引导学生回答问题

  1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?

  板书:×4=2 (块)

  2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?

  板书:2÷4=(块)

  3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?

  板书:2÷=4(人)

  (3) 让学生观察比较(板书的)3个式子的已知数和得数。

  明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。

  第二算式是已知两个因数的积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。

  小结:分数除法的意义。

  强调:分数除法的意义和整数除法的意义相同。

  (4) 练习:教科书第25页"做一做。

  2.分数除以整数的计算方法。

  (1)出示例子:把米铁丝平均分成2段,每段长多少米?

  (2)启发学生分析数量关系。(画线段图表示)

  米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。

  板书 解法1:÷2==(米)

  使学生明白。

  1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。

  2)这种计算方法有限制条件的,分子必须能被整数整除。

  还有其它的'解法吗?

  引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的是多少,所以用×来计算。

  板书 解法2:÷2=×=(米)

  (3) 小结:分数除以整数的计算方法。

  板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。

  强调。

  1)被除数不变;

  2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;

  3)0不能做除数,0没有倒数;

  4)这种计算方法在一般情况下都可以进行,应用普遍。

  5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。

  三、 巩固练习

  练习七第1、3题。

  四、 作业

  练习七第2、4、5、6题

  五、 课外思考

  练习七第7题。

分数除法教案 篇3

  教学目标

  1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位1,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位1

  1.铅笔的支数是钢笔的 倍.

  2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔.

  4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位1?

  (2)如果要求全村耕地面积的` 是多少,应该怎样列式?(全村耕地面积 ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

分数除法教案 篇4

  教学内容:

  教材第27~28页的内容及练习。

  教学目标:

  1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2.掌握一个数除以分数的计算方法,并能正确计算。

  3.培养学生解决简单实际问题的能力。

  教学重难点:

  1.掌握一个数除以分数的计算方法,并能正确计算。

  2.整数除以分数的计算法则推导过程。

  教学过程:

  一、创设情景 激趣揭题

  1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

  2.引入并板书课题:分数除法(二)

  设计意图:设疑激趣。 明确目标。

  二、扶放结合 探究新知

  1.分一分,引导感知一个数除以分数的意义。

  2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

  3.引导完成28页的填一填,想一想,你发现了什么?

  4.引导归纳计算方法。

  设计意图: 理解一个数除以分数的'意义。 总结归纳计算法则。

  三、反馈矫正

  出示P28的试一试。

  1.统一分数除法的计算法则。

  2.指导完成P28练一练的1~4题。

  四、小结评价 布置预习

  1.引导小结:通过这节课的学习,你有什么收获?

  2.布置预习: P29 分数除法(三)

  板书设计: 分数除法(二)

  4÷1/2=4×2=8 ;4÷1/4=4×4=16

  一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

分数除法教案 篇5

  教学内容

  复习分数除法的意义和计算

  教材第46、第47页的内容。

  教学目标

  1.使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。

  2.熟练掌握分数除法的计算法则,提高灵活解题的能力。

  3.在整理知识体系的过程中,帮助学生掌握复习的'方法。

  重点难点

  重点:概念和计算法则的整理。

  难点:运用所学概念,灵活解决问题。

  教具学具

  练习题投影片。

  教学过程

  一、整理本单元的知识

  1.课前布置作业,学生自己整理本单元的知识点。

  2.展示学生的知识结构图。

  二、复习分数除法的意义和计算法则

  1.回忆。

  分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法,小组讨论。

  2.根据学生的汇报整理成下表。

  三、课堂作业新设计

  四、思维训练参考答案

分数除法教案 篇6

  教学目标:

  使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,能够正确地进行计算。

  教学重点:

  掌握分数除法的计算法则。

  教学过程:

  一、复习

  说出下列分数的倒数。

  二、新课

  1、教学例3

  提问:按照题意应该怎样列式?(生说师板书)

  想一想:分数除以分数应该怎样计算?(学生回答计算步骤,教师板书)÷=×==3

  教师:分数除以分数的计算方法跟整数除以分数有什么联系?

  让学生总结:(整数除以分数,被除数不变,把除法转化成乘法,也就是转化成乘原分数的倒数。分数除以分数,也是被除数不变,把除以分数转化成乘除数的倒数。)也就是:(教师板书)一个数除以分数,等于这个数乘以除数的倒数。

  学生看书P29读法则。

  教学分数除法的统一法则。

  做完后让学生进行对比,三道题的'计算过程有什么相同点?(第一题是乘整数的倒数,第2、3题是乘分数的倒数。)

  教师提问:整数能否看成分数?(可以看成分母是1的分数)

  教师:前面学过的分数除以整数和一个数除以分数的计算法则,能否统一成一个法则呢?(可以,这就是:甲数除以乙数(0除外),等于甲数乘乙数的倒数。教师板书)

  学生看书P30并读统一的法则。

  三、巩固练习

  1、做P30例4前面的做一做题目。学生独立完成,然后集体订正,订正时让学生说一说法则。

  2、做练习八第5题第1行的小题。第6题的前两栏的题目。

  3、做第7题。注意引导学生列式,(这是求一个数是另一个数的几倍或几分之几的文字题。用除法计算。)

  4、做练习八的第8题。

  学生做后教师让学生说一说想法。

  5、做练习八第9题。

  做题前提问:1米等于多少厘米?1千米等于多少米?1 吨等于多少千克?1小时等于多少分?然后让学生独立做题,做完后集体订正。做练习八第10题。教师让学生独立审题,然后提问:这题求什么?分析以后,让学生独立完成,集体订正。

  四、小结

  教师先问学生今天学习了什么?然后指出:分数除法法则是除法普遍适用的法则。

  五、作业

  练习八第5题第2行的小题,第6题的第3、4栏小题。

分数除法教案 篇7

  教学目标

  1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。

  2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

  教学重点和难点

  确定单位1,理清题中的数量关系。利用题中的等量关系用方程解答。

  教学过程

  (一)复习准备

  1.找出单位1。

  2.出示第88页的复习题。

  (1)画图分析并列式解答。

  (2)说说你是怎样思考和解答的?

  (3)学生分析教师板演线段图。

  3.导入:

  今天我们继续学习分数应用题。

  (二)学习新课

  现在老师把这道题改动一下。

  1.出示例6。

  千克?

  2.分析解答。

  (1)读题,找出已知条件和问题。

  (2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的

  不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

  (3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

  (4)谁来分析这个条件?

  成8份,吃了的占其中的`5份。)

  学生分析的同时教师板演线段图:

  (5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

  生在黑板上画出:

  (6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

  (7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

  (8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它

  (9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

  (10)试着在练习本上列方程解答。

  (11)谁能说说你是怎样解答的?

  生口述:

  解 设买来大米x千克。

  答:买来大米40千克。

  题中的等量关系式是什么?

  (买来的重量还剩几分之几=还剩的重量。)

  3.小结。

  通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)

  解答方法相同吗?为什么?

  (解答方法不同。单位1已知,可根据数量关系用算术方法解答;单位1未知,可用x代替,运用数量关系式列方程解答。)

  4.出示例7。

  烧煤多少吨?

  (1)读题,找出已知条件和所求问题。

  (3)画图分析解答。

  ①从这个条件可以看出题中是几个数量相比?(两个数量相比。)

  追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)

  我们应把哪个数量看作单位1?为什么?(把原计划烧煤量看作单位1。因为和它相比,以它为标准,所以把它看作单位1。)

  ②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)

  下一步画什么?(实际烧煤吨数。)

  指名回答:把计划烧煤量看作单位1,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的

  这两条线段谁为已知?谁为未知?

  在提问回答的过程中教师板演线段图:

  ③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

  (计划烧煤吨数-节约吨数=实际烧煤吨数。)

  计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)

  ④试做在练习本上。

  ⑤反馈:说说你的解答方法及依据。

  解 设四月份原计划烧煤x吨。

  答:四月份原计划烧煤135吨。

  (1)学生独立画图分析并列式解答。

  (2)反馈提问:

  ②你用什么方法解答的?依据的等量关系式是什么?

  (三)课堂总结

  今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

  (数量间的等量关系相同,解答方法不同。)

  (四)巩固反馈

  (1)课本第91页的第2题。

  (2)根据列式补充条件:

  (五)布置作业

  课本第91页第1,3题。

  课堂教学设计说明

  本节课的内容是在学习了已知一个数的几分之几是多少,求这个数的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。

  由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。

  在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

分数除法教案 篇8

  设计说明

  苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。

  另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣

  课前准备

  教师准备 PPT课件、长方形包装纸

  学生准备 长方形纸

  教学过程

  ⊙创设情境,提出问题

  1.问题导入。

  师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。

  请你们列出算式并计算。

  (1)每人吃张饼,4个人共吃多少张饼?

  (2)把2张饼平均分给4个人,每人分得多少张饼?

  (3)有2张饼,每人分得张饼,可以分给几个人?

  (引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)

  2.揭示分数除法的意义。

  讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。

  ⊙合作交流,探究新知

  1.引导参与,探究新知。

  (1)出示教材55页例题。

  师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的'平均分成2份就够了,每份是这张纸的几分之几呢?

  (2)动手操作,分一分,涂一涂。

  师:请大家拿出一张长方形纸,涂色表示出这张纸的。

  (学生动手操作,教师巡视指导)

  师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。

  (学生活动,教师指导)

  (3)观察发现。

  师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?

  预设

  (教师利用课件配合学生汇报)

  生1:把平均分成2份,每份是2个小格,占这张纸的。

  生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。

  设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。

  2.初探算法。

  师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?

  预设

  生:分母不变,被除数的分子除以整数得到的商作商的分子。

  提出质疑,验证猜想,理解新知。

  (1)尝试验证,发现问题。

  师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?

  (学生汇报验证的结果)

  师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)

分数除法教案 篇9

  学习目标:

  1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2 .掌握一个数除以分数的计算方法,并能正确进行计算。

  学习重点:理解一个数除以分数的意义和基本算理。

  学习难点:运用分数除法的计算方法解决实际问题。

  学习内容:

  一、分一分

  有4张同样的圆形纸片。

  (1)每2张一份,可以分成多少份?

  画一画:

  列示:

  (2)每1张一份,可以分成多少份?

  画一画:

  列示:

  (3)每1/2张一份,可以分成多少份?

  画一画:

  列示:

  (4)每1/3张一份,可以分成多少份?

  画一画:

  列示:

  (5)每1/4张一份,可以分成多少份?

  画一画:

  列示:

  二、画一画

  1.有1根2米长的绳子。

  (1)截成每段长1/3米,可以截成几段?

  画一画:

  列示:

  (2)截成每段长2/3米,可以截成几段?

  画一画:

  列示:

  2.3/4里面有几个1/8?

  画一画:

  列示:

  三、填一填,想一想

  在〇里填上“>”“<”或“=”。

  4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4

  2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8

  你发现了什么?( )

  四、试一试

  8÷6/7 5/12÷3

  你能把“除以一个整数(零除外),等于乘这个整数的.倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?

  ( )

【分数除法教案】相关文章:

《分数除法》教案02-23

分数与除法教案12-15

分数除法教案10-27

分数除法教案(精选21篇)05-16

分数除法教案10篇07-30

分数除法教案(精选15篇)02-14

《分数除法》数学教案02-06

分数除法教案15篇01-14

分数与除法教案(精选27篇)02-21

分数与除法教案(15篇)01-19