分数乘法教案

时间:2024-08-11 07:30:53 教案 我要投稿

关于分数乘法教案集锦七篇

  作为一位无私奉献的人民教师,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写才好呢?以下是小编为大家收集的分数乘法教案7篇,希望对大家有所帮助。

关于分数乘法教案集锦七篇

分数乘法教案 篇1

  教学目标:

  1.组织学生动手实践、自主探究,明确把谁看作单位“1”,引导学生采用数形结合的方法——画线段图分析数量之间的关系。

  2.引导学生从分数乘法意义的角度思考,理解“求一个数的几分之几是多少”应该用乘法计算,学会解决“求一个数的几分之几是多少”的实际问题。

  3.使学生能综合运用所学的知识解决一些简单的问题,逐渐形成技能,增强应用意识;引导学生形成一些解决问题的策略,促进学生分析、判断和推理能力的发展。

  重点难点:

  1.掌握解决求一个数的几分之几是多少的方法,能解决相关实际问题;

  2.理解算理,会用线段图正确地分析题意。

  教学方法:

  讲授法、讨论法、谈话法、探究法

  教学准备:

  教师准备多媒体课件。

  教学过程:

  一、回顾旧知,导入新课

  谈话:我们在信息窗1和信息窗2已经初步解决了分数乘整数和分数乘分数的问题,还会做吗?

  出示练习:20的4/5是多少?6的2/3 是多少?

  请同学说一说这两个题为什么用乘法计算。

  谈话:同学们,我们知道,已知求一个数的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,运用这一知识还可以解决什么问题呢?今天我们就来一起研究。

  二、合作探究,获取新知

  (一)创设情境,提出问题

  谈话:在学校举行的泥塑大赛中,同学们制作出许多精美

  的作品,请看大屏幕。

  出示课本10页的情境图和信息。

  谈话:从图中你获取了哪些信息?

  谈话:根据上面的信息你能提出什么数学问题?

  学生提出问题,教师板书:一班男生做了多少件?二班女生做了多少件?

  谈话:同学们提的问题比较准确,下面我们分别来解决这些问题。

  (二)探究方法,建立模型

  1.解决第一个问题:一班男生做了多少件?

  谈话:请同学们尝试用自己喜欢的方法先来分析题目中数量之间的关系,再试着解决这个问题,不仅要得出答案,还要把道理说清楚。

  (1)讨论操作。学生分小组进行尝试活动,教师巡视指导,了解信息。

  (2)小组内说想法。

  (3)交流展示。指名到展示台前进行汇报。

  方法一:画线段图分析数量关系

  谈话:你是怎样画图的?先画什么?再画什么?怎样想的?

  学生回答的过程中,教师重点引领学生理解谁是找单位“1”,如何找单位“1”?如何在线段图中表示出已知条件“3/5”?

  谈话:线段图是个很好的工具,同学们用的非常棒!它可以清楚表示出题中数量间的关系,这个工具用的好,即使以后解决一些复杂的问题也会得心应手。

  方法二:不借助于直观图,直接列式解决

  谈话:你是怎样想的'?教师适时引领:题中哪句话是关键句?谁是单位“1”?“3/5”这个分数在题中的具体意义是什么?为什么用乘法做?

  (男生做了总数的3/5,总数是单位“1”,把总数平均分成5 份,求其中的3份,也就是求15的3/5是多少,所以15×3/5)

  2.学生自己解决第二个问题:二班女生做了多少件?

  谈话:小组交流,自己想办法来分析题意,解决问题。组织学生汇报交流,说自己的分析思路,其他小组可以给予完善补充。

  着重引导学生理解:谁是单位“1”?怎么找单位“1”?为什么画两条线段?结合学生汇报,教师课件动态演示P11图示

  (三)观察比较

  谈话:你在分析解决这两个问题时,有哪些相同点?哪些不同点?

  学生回答时,教师适时引领:相同点都是“求一个数的几分之几是多少”,用乘法做;不同点是第一组是部分与整体的关系,通常画一条线段图来表示它们之间的关系,第二组是两种量之间的关系,通常画两条线段图来表示它们之间的关系。画线段图时通常先画出表示单位“1”的量。

  三、应用模型,解决问题

  1.课本11页自主练习2:出示短吻鳄照片

  帮助学生理解题意,引导学生利用画线段图的办法分析数量关系,自己列式解决问题。

  2.自主练习4:这一题和第2题属于同一类型,都是研究部分与整体的关系,画一条线段图,让学生自主完成,全班交流自己的想法和思路。

  3.自主练习

  这一题与前两题有什么不同之处?研究的是两个数量之间的关系,应该怎样用线段图表示?

  尝试自主解决,全班交流,说出自己的想法和思路。

  四、引导总结,构建网络

  谈话:我们应该如何解决“求一个数的几分之几是多少”的问题?(引导学生总结解决问题的方法)

  五、作业布置

  自主练习5、6题

  板书设计:

  求一个数的几分之几是多少”的实际问题

分数乘法教案 篇2

  设计说明

  本节课是在学生学习了分数乘法的意义和计算方法的基础上进行教学的。围绕教学重点,以探究为主线设计教学过程,通过观察、对比、讨论、交流来理解分数乘法的意义,探究分数乘法的计算方法。本节教学在设计上主要有以下两个特点:

  1.重视数形结合在学习中的作用。

  数形结合是学生获取数学知识的有效手段之一,它能促进学生对抽象数学知识的理解。上课伊始,就充分地调动了学生动手操作的积极性,通过画图的方式初步感知一个数的几分之几是多少;在新课的教学中,再次利用数形结合的方法,帮助学生在自主探索和合作交流的过程中理解分数乘法的意义并获得广泛的数学活动经验。

  2.注重从不同的问题情境中引导学生从不同的角度理解分数乘法的意义。

  在教学过程中从生活情境中提出不同的问题,引导学生根据已有的知识经验或画图法去解决问题,从中理解分数乘法的意义。

  课前准备

  教师准备 PPT课件

  学生准备 圆形卡片

  教学过程

  第1课时 求一个数的几分之几是多少

  ⊙创设情境,激趣导入

  1.动手操作。

  (1)你能从桌面上的12根小棒中拿出它的吗?呢?

  (2)说一说你是怎么想的。

  2.引导发现。

  从刚才的操作中,你发现了什么?

  3.交代学习目标。求一个数的几分之几是多少。

  设计意图:通过动手操作,使学生初步感知分数乘整数的意义,为理解整数乘分数的意义作铺垫。

  ⊙类比推理,明确意义

  1.获取信息,提出问题。

  课件出示问题:奇思早上吃了6块饼干,笑笑吃的饼干数是奇思的,淘气吃的饼干数是奇思的。

  (1)从题中你获得了哪些数学信息?

  (2)你能提出哪些数学问题?

  预设

  ①笑笑吃了多少块饼干?

  ②淘气吃了多少块饼干?

  ……

  2.分析、解决问题。

  (1)讨论解题策略。

  师:要求笑笑吃了多少块饼干,这道题应该如何解答呢?请大家在小组内讨论、交流一下。

  (学生独立思考,小组交流)

  (2)学生试做。

  (指导学生通过画图的方法帮助思考)

  (3)汇报,并说出思考过程和解答方法。

  方法一

  生:笑笑吃的饼干数是奇思的,也就是说把奇思吃的6块饼干看作单位“1”,再把单位“1”平均分成2份,其中的1份是笑笑吃的.饼干数。

  师:说得真好!把6块饼干看作一个整体,6块饼干的是3块饼干。

  方法二

  生:把每块饼干都分成2个,6块饼干的就相当于6个,也就是3块饼干。

  师:这也是一个很好的方法。我们知道了6块饼干的是3块饼干。

  师:那么这道题应该如何列式计算呢?(6个列式为6×)

  设计意图:引导学生借助“画图”的方法来理解数学问题,得到解决数学问题的策略的方法,渗透了数形结合思想,让学生通过实践得出“画图”是一种很好的解决问题的方法。

  3.拓展分数乘整数的意义。

  师:综合以上两种方法,你们有什么发现?

分数乘法教案 篇3

  教学目标

  1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

  2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

  3.培养学生分析、解决问题的能力,以及知识迁移的能力。

  4.培养学生良好的审题习惯。

  教学重点和难点

  1.会分析数量关系,掌握解题思路,正确解答。

  2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

  教学过程

  导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

  (一)复习铺垫

  1.说图意填空。(投影)

  问:谁是单位1?

  2.说图意回答问题。(投影)

  问:①谁和谁比,谁是单位1?

  3.准备题:

  (做在练习本上,画图列式计算,一个学生到黑板板演。)

  教师订正讲评。

  提问:①谁是单位1?

  ③要求用去多少吨就是求什么?

  少。)

  ④根据什么用乘法计算?

  (根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

  师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

  (二)学习新课

  1.学习例4。

  (1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

  (2)分析数量关系。(同桌互相说。)

  提问:单位1变了吗?单位1是谁?

  请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

  学生汇报结果,让学生说解题思路,老师一边把图补充完整。

  =2500-1500

  =1000(吨)

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

  师追问:求用去多少吨你是怎么想的?

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

  (3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

  相同点:两种解法都是经过两步计算。

  不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

  第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

  (4)练习做一做(1):

  昆虫标本有多少件?

  (做完让学生说解题思路、投影订正。)

  2.学习例5。

  六月份捕鱼多少吨?

  (1)读题找出条件、问题。

  (2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

  问:①谁和谁比,谁是单位1?

  (3)列式解答。

  师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

  学生汇报结果。(老师板书列式)

  答:六月份捕鱼3000吨。

  师追问:你是怎么想的?

  生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

  师再追问:怎样求六月份比五月份多捕的吨数?

  捕的吨数。

  答:六月份捕鱼3000吨。

  师追问:怎么想的?

  生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

  师问:这两种解法有什么联系和区别?

  (联系:两种解法都利用了分数乘法的意义求已知数的`几分之几。区别:解题思路不同。)

  (4)练习做一做(2)。

  答。

  (三)巩固练习

  1.补充问题并列式解答。(复合投影片)

  ________?

  2.选择正确答案的序号填在( )里。

  包?列式是

  [ ]

  [ ]

  A.乙队修了多少米?

  B.乙队比甲队多修多少米?

  C.甲队比乙队多修多少米?

  D.乙队比甲队少修多少米?

  (3)根据条件和问题列出算式。

  已知一袋大米重40千克。

  (四)课堂总结

  今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

  (复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

  课堂教学设计说明

  (1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

  (2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

  (3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

分数乘法教案 篇4

  本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

  分数与整数相乘

  用乘法求几个相同分数的和(例1)

  用乘法求整数的几分之几是多少(例2)

  求一个数的几分之几是多少的实际问题(例3) 练习八

  分数乘分数

  分数乘分数(例4、例5)

  分数连乘(例6) 练习九

  倒数

  倒数的意义,求倒数的方法(例7) 练习十

  整理与练习

  教材在编排上有以下特点。

  第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

  乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

  第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

  先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

  整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

  分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

  第三,编排倒数知识,为分数除法作准备。

  分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  一、 例1着重教学分数与整数相乘的算法。

  首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。

  例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

  例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

  二、 例2着重教学用乘法求一个数的几分之几是多少。

  10朵绸花的'1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

  在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

  首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

  然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

  沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

  练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

  例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

  三、 例3用分数乘法解决实际问题。

  例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

  解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

  比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

  第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

  四、 例4、例5构建分数乘法的计算法则。

  分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

  构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

  例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

  例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

  两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

  第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

  五、 例6教学分数连乘的算法和技巧。

  例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

  例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

  六、 例7教学倒数的知识。

  倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

  教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

  求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

  第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。

分数乘法教案 篇5

  设计说明

  1.重视学生的实践操作。

  动手实践是学生学习数学的主要方式之一,它能加深学生对抽象的数学知识的理解。在本设计中,教师为学生提供充分的动手操作的机会,学生通过分一分、算一算等活动,进一步体会分数乘整数的意义,同时还可以进一步体会“分数乘整数时,分子和整数相乘,分母不变”的道理。

  2.实现数学学习的`个性化。

  本设计充分挖掘学生潜力,留给学生充足的时间和空间,放手让学生联系已有知识经验,自主探究计算方法,极大程度地发挥了学生学习的主体性和主动性。学生在自主探究中产生了多种算法,让学生通过尝试、感悟、体验、探索,总结出“能约分的先约分,再计算比较简便”这一最优的计算方法。学生自主构建知识,充分体现了“不同的人学习不同的数学”的理念。

  课前准备

  教师准备 PPT课件

  学生准备 彩色纸 剪贴画 长方形纸条

  教学过程

  第1课时 分数乘整数的意义及其计算方法

  ⊙复习引入,提出问题

  1.把8+8+8+8+8改成乘法算式。(8×5)

  2.把0.5+0.5+0.5改成乘法算式。(0.5×3)

  3.列式计算。

  (1)5个12是多少?(12×5)

  (2)12个1.5是多少?(1.5×12)

  4.提出问题。

  师:3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。

  (板书课题:分数乘整数的意义及其计算方法)

  设计意图:通过复习整数乘法和小数乘法,引出分数乘法问题,不仅自然地过渡到下一个环节,而且激发了学生探究新知的欲望。

  ⊙合作交流,探究新知

  1.探究分数乘整数的意义,初步感知分数乘整数的计算方法。

  课件出示问题:1个

  占整张纸条的,3个

  占整张纸条的几分之几?

  (1)引导学生分析问题。

  你们打算用什么方法来解决这个问题?怎样获得最后的计算结果?

  (2)小组内讨论、交流。

  (3)全班汇报。

  预设

  ①图示法计算。

  把一个长方形纸条看作单位“1”,把它平均分成5份,其中的一份就是一个

  ,是,3份就是3个,如下图:

  3个是。

  ②加法计算。

  求3个

  占整张纸条的几分之几,就是求3个相加的和是多少。

  列式:++==。

  ③乘法计算。

  通过尝试计算,发现结果和其他算法的结果相同,说明几个相同分数相加也可以用乘法计算。

  ×3=++===

  (教师在学生汇报的过程中,适时提问,引导学生完整表述计算过程)

  师:同学们真厉害!这就是我们今天要学习的新知识——分数乘整数。

分数乘法教案 篇6

  第一单元

  分数乘法

  第五课时

  小数乘分数

  教学内容:

  教材第8页例5,做一做,练习二1~4。

  教学目标:

  1、在解决问题的过程中学习并掌握小数乘分数的计算方法。

  2、经历小数乘分数的计算方法的探究过程。

  3、体会算法多样化的数学思想,提高计算能力。

  教学重点:

  掌握小数乘分数的计算方法。

  教学难点:

  灵活选择不同的计算方法,熟练地进行小数乘分数的计算。

  教学过程:

  一、复习导入。

  1、计算

  交流时让学生说一说计算方法和计算过程中的约分方法。

  2、把下面的小数化成分数,分数化成小数。

  1.2()

  0.4()

  3.5()

  1.25()

  让学生说一说怎样将一个小数化成分数?

  二、探索新知

  1、例题5:松鼠的尾巴长度约占身体长度的 。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。

  (1)提取题中的已知条件和所求问题

  已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。

  所求问题:松鼠欢欢的尾巴有多长?

  (2)确定单位1,根据松鼠的尾巴长度约占身体长度的34可知,应把松鼠欢欢的身体长看作单位1,单位1已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的34是多少,用乘法计算,列式为2.134

  启发观察,这个算式和我们前面学习的分数乘法有什么不同?

  (3)探讨小数乘分数的计算方法。

  提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。

  学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把 化成小数。汇报交流计算方法,教师结合交流情况进行板书。

  小数化成分数: = = (分米)

  分数化成小数: =2.10.75=1.575(分米)

  3、解决问题二。

  (1)出示问题:松鼠乐乐的'尾巴有多长?

  (2)学生独立解答。

  组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。

  学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?

  当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书

  小数和分母约分: (分米)

  4、观察比较,回顾思考。

  提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)

  三、巩固练习。

  1、教材第8页做一做。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。

  2、教材第10页练习二第2题。

  3、教材第10页练习二第3题。

分数乘法教案 篇7

  能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的'能力。

  知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。

  情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重点、难点:学生能够熟练的计算整数乘以分数

  教学方法:师生共同归纳和推理

  教学准备:教学参考书、教科书

  教学过程:

  一、复习导入:

  教师出示教学板书,请学生计算下列分数加减运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变…)并注意更正学生的错误和表扬回答问题的同学。

  二、讲授新课

  同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?

  学生同桌之间讨论,教师提问学生回答问题。

  教师板书例题,让学生想一想如何计算?

  学生列出算式3×=,学生同桌之间相互讨论,如何计算整数乘以分数?

  教师提问学生说一说自己是怎样计算的?

  (学生1:3×==;学生2:3×====……)

  教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)

  三、巩固练习:

  做课本2页涂一涂,算一算,2个的和是多少?

  让学生熟练计算,教师及时纠正学生错误的计算方法。

  做课本试一试1、2题。

  四、课堂小结:

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法

  3×==3×====

  分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。)

  教学反思:

【分数乘法教案】相关文章:

分数乘法教案11-16

分数的乘法教案01-20

分数乘法教案05-18

分数乘法教案[必备]09-06

关于分数乘法教案模板11-25

分数乘法教案15篇01-22

分数乘法教案(精选15篇)02-10

分数乘法教案[精华15篇]10-20

分数乘法教案实用(15篇)10-20

分数乘法教案实用[15篇]05-24