有关可能性教案模板汇总七篇
作为一名辛苦耕耘的教育工作者,常常要根据教学需要编写教案,教案有助于学生理解并掌握系统的知识。如何把教案做到重点突出呢?下面是小编收集整理的可能性教案7篇,希望对大家有所帮助。
可能性教案 篇1
教学目标:
1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,体会统计是研究、解决问题的方法之一。
2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。
3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。
教学重、难点:
经历实验的具体过程,从中体验某些事件发生的可能性的大小,体验某些事件发生的可能性是相等的。体会等可能性的特点:单次试验的偶然性和大量实验的必然性。
教学准备:多媒体课件、摸球统计表、摸球用具
教学过程:
一、复习导入
师:我们在二年级的时候已经学过了一些关于《统计与可能性》的知识,请看(出示既有黄球又有白球的袋子)。
在这个袋子中任意摸一个球,结果会怎样?(引导用“可能”描述)
(拿走白球)现在在这个袋子中任意摸一个球,结果会怎样?(引导用“一定”、“不可能”描述)
今天我们要进一步学习关于《统计与可能性》的知识。
二、新授探索
(一)体会数量不同时,可能性的大小
1、1个白球7个黄球
师:首先,我们将进行摸球比赛,请看规则(请一名学生读出规则)。
规则:1、袋子中装有白球和黄球共8个,每人每次从袋中任意摸1个球,摸完后把球放回口袋摇一摇继续摸。2、每人摸2次,摸到白球算男生赢,摸到黄球算女生赢。3、最终如摸到白球的次数大于黄球的次数,男生获胜;黄球的次数大于白球的次数,女生获胜。
待会老师要请3名男同学和3名女同学上来摸球比赛,还要请一位记录员上来记录摸球情况。在比赛前,老师有一个问题,如请你做记录员,你用什么方法记录来记录?(打“√”,涂方块,写“正”字)
今天我们来学习用写“正”字的.方法进行统计,正字的一画表示一次,一个正字表示几次?(5次)我们一起来数一数。
教师板书“正”字,全班一起数。
请一名记录员。
请3名男生、3名女生交替排队,进行摸球。(袋中有7个黄球,1个白球)
情况一:摸的中间有同学提出异议
摸球中止
师:我发现有的小朋友有意见,请问你有什么问题吗?(不公平,袋中黄球多)
展示袋中的球。
师:果然黄球多,白球少,看来这样的比赛不公平。
情况二:摸球结束后,学生没有异议
展示袋中的球
师:你们有什么想法?(可能袋子里黄球多白球少)
2、3个白球5个黄球
看来这样的比赛不公平。我们再来一次比赛,请3个男同学3个女同学,一个记录员。
学生可能还是会说不公平。
提问:为什么你认为不公平?
小结:袋中黄球多,摸到的次数就多;白球少,摸到的次数就少。也就是说数量多,可能性大;数量少,可能性就小。
(板书:数量多,可能性大;数量少,可能性小)
(二)体会数量相同时,可能性相等
1、分组活动
提问:既然大家觉得比赛不公平,那么规则中哪些地方不合理呢?
你觉得应该怎样放球?(放4个黄球,4个白球)为什么?
引出并板书:数量相同,可能性相等。
师:白球和黄球的数量相等,是不是摸到的次数就一定相同呢?呆会我们来分组实验。
可能性教案 篇2
教学内容:
国标本苏教版数学四年级上册《可能性》
教材简析:
在小学阶段,苏教版教材对可能性知识的教学共安排了四次(见下表)。本节课是苏教版教材第一次安排有关可能性内容。 二年级 用一定可能和不可能描述事件的可能性 三年级 用经常、偶尔、差不多描述一些事件发生可能性的大小 四年级 游戏规则的公平性 六年级 用分数表示可能性的大小 本节课将可能性和摸球等活动相结合,在活动中让学生体验可能性,借助活动的素材用语言描述可能性。一定和不可能是用来对确定事件发生结果的预测,可能则是对不确定事件发生结果的预测。但无论是确定事件还是不确定事件,都存在事件发生的随机性,这是教学中的难点,难在无法用语言描述,难在无法在一节课中用事实证明,难在学习对象是二年级孩子他们的.逻辑思维能力还很弱。对随机思想渗透的时机和程度是教学设计时的重要和难点问题。
教学目标:
1. 通过摸球,经历事件发生的过程,初步感受事件发生的随机性。
2. 会用不可能、可能和一定,描述摸球事件发生的结果。
3. 能根据摸球的结果设计事件,并进行解释。
4. 能用不可能、可能和一定描述抛硬币、转盘和掷骰子事件的结果。
5. 尝试用不可能、可能和一定描述已经掌握的简单数学知识。 教学重点: 学会用不可能、可能和一定,描述数学与生活。 教学难点: 理解不确定事件,感受随机性。
教学过程:
故事引入,定位起点 出示故事乌鸦喝水的三幅图,请学生用一定可能和不可能分别说一说这三幅图上的故事。
【设计意图:乌鸦喝水是小学语文一年级课本中的一篇文章,是学生耳熟能详的故事。借助这个故事,让孩子们用一定可能和不可能进行描述,可以充分了解他们对一定可能和不可能这三个词的理解,定位孩子们对可能性知识的已有认知水平。】
可能性教案 篇3
【教学目标】
1.通过让学生经历实际问题的情景,认识事件发生可能性大小的意义。
2.了解事件发生的可能性大小是由发生事件的条件来决定的。
3.会在简单情景下比较事件发生的可能性大小。
4.通过创设游戏情境,让学生感受到生活中处处有数学。主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。
【教学重点、难点】
教学重点:认识事件发生可能性大小的意义。
教学难点:在问题情景比较复杂的情况下,比较事件发生的可能性大小
【教学过程】
一、 创设情境引入新知
提出问题:在一个盒子里放有4个红棋,1个蓝棋,摸出一个棋子,可能是什么颜色?摸出红棋的可能性大还是摸出蓝棋的可能性大?
为了解决这个问题,可先让学生分小组进行摸球游戏:
1、每位同学轮流从盒子中摸球,记录所摸得棋子的颜色,并将球放回盒中。
2、做20次这样的活动,将最终结果填在表中。
3、全班将各小组活动进行汇总,摸到红棋的次数是多少?摸到蓝棋的次数是多少?
4、如果从盒中任意摸出一球,你认为摸到哪种颜色的棋子可能性大?
游戏的结论:
在上面的摸球活动中,每次摸到的球的颜色是不确定的。摸出红棋的可能性比摸出蓝棋的可能性大,原因是红棋的数量比蓝棋多。
一般地,不确定事件发生的可能性是有大小的。
说明:摸棋游戏教师首先要使学生明确试验的过程,“摸出一个棋子,记录下它的颜色,再放回去,重复20次”。然后还要使学生明确组内成员的分工,应有人负责摸出棋子,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法(可以用画“正”字的方法)。而且还要向学生说明在试验的过程中,应注意保证试验的'随机性,如:每次摸棋子前应将盒中的棋子摇匀;摸棋子时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。
二、观察思考 理解新知
请考虑下面问题:
(1)如果你和象棋职业棋手下一盘象棋,谁赢利的可能性大?
分析:根据本人的实际棋艺水平来确定,答案不唯一。
(2)有一批成品西装,经质量检验,正品率达到98%。从这批西装中任意抽出1件,是正品的可能性大,还是次品的可能性大?
分析:要比较“任意抽出1件是正品”与“任意抽出1件是次品”两个事件发生的可能性大小,只要比较两个事件发生的条件:“正品率达到98%”与“次品率达到2%”,显然抽到正品的可能性大。
(3)任意抛一枚均匀的硬币,出现正面朝上、反面朝上的可能性相等吗?
分析:任意抛一枚均匀的硬币,有两种可能①正面朝上②反面朝上,因为它们出现的机会均等,所以出现正面朝上、反面朝上的可能性相等。
(4)一个游戏转盘如图,红、黄、蓝、绿四个扇形的圆心角度数分别是90°,60°,90°,120°。让转盘自由转动,当转盘停止后,指针落在哪个区域的可能性最大?在哪个区域的可能性最小?有可能性相等的情况吗?为什么?
分析:因为绿色扇形区域面积最大,黄色扇形区域面积最小,红、蓝色扇形区域面积相等,所以指针落在绿域的可能性最大,黄域的可能性最小,红、蓝域的可能性相等。
从上可得出以下结论:
①事件发生的可能性大小是由发生事件的条件来决定的。
②可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
三、师生互动运用新知
例1某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?
分析:在教学中要求学生先分清事件发生的条件分别是什么?事件“遇到红灯”发生的条件是“红灯时间设置40秒”,事件“遇到绿灯”发生的条件是“绿灯时间设置60秒”,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到红灯的可能性最小。本例相对容易,可让学生通过交流自己完成。
完成P76 1,2的做一做
例2某旅游区的游览路线图如图3—4所示.小明通过入口后,每逢路口都任选一条道.问他进人A景区或B景区的可能性哪个较大?请说明理由.
分析:本题有一定难度,教学时要抓住这两个事件发生的条件,可分以下几个步骤:
(1)小明进入旅游区后一共有多少种可能的路线?可以把小明进入旅游区的A景点或进入旅游区B景点的过程分解为两个步骤:第一步进入左、中、右主干线,有3种可能,第2步进入每条主干线的两条支线,各有2种可能;
(2)将上述结果列表或画树状图;
(3)确认各种可能性是否相等,确认“进入A景点” “进入B景区”分别占了多少种,也就是确定两个事件发生的条件;
(4)比较两个事件发生的条件,判定哪个事件发生的可能性大。
完成课内练习1,2
四、梳理知识 形成结构
通过本节课的学习,谈谈你的收获?
在交流中,师生可共同梳理知识点:
(1)事件发生的可能性大小是由发生事件的条件来决定的。
(2)可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
五、应用新知 体验成功
1、小明任意买一张电影票(每排有40个座位),座位号是2的倍数与座位号是5的倍数的可能性哪个大?
答案: 2的倍数可能性哪个大。
2、请你在班上任意找一名同学,找到男同学与找到女同学的可能性哪个大?为什么?
答案:要根据该班的男、女实际人数来确定.如该班男同学22名,女同学24人,则任意找一名同学,找到女同学与的可能性比找到男同学的可能性大。
3、某公交车站共有1路、12路、31路三路车停靠,已知1路车8分钟一辆;12路车5分钟一辆、31路车10分钟一辆,则在某一时刻,小明去公交车站最先等到几路车的可能性最大。
答案:间隔时间最短,31路车间隔时间最长,所以小明去公交车站最先等到12路车的可能性最大。
4、盒子中有8个白球、4个黄球和2个红球,除颜色外其他相同。任意摸出一个球,可能出现哪些结果?哪一种可能性最大?哪一种可能性最小?
答案:任意摸出一个球,可能摸出白球、黄球或红球。任意摸出一个球,摸出白球可能性最大,摸出红球可能性小。
5、如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:小猫踩在哪种颜色的正方形地板上可能性较大?
讲故事 5张
唱 歌 3张
跳 舞 1张
答案:由于黑色正方形比白色正方形块数多,所以小猫在地板上行走,踩在黑色的正方形地板上可能性较大。
6、联欢会上小红可能抽到什么节目?
抽到什么节目的可能性最大?抽到什么节目的 可能性最小?
答案:联欢会上小红可能抽到的节目是讲故事、唱歌或跳舞。抽到讲故事节目的可能性最大。
7、连续两次抛掷一枚均匀的硬币,朝上一面有几种可能?你认为两次正面朝上与一次正面朝上、一次正面朝下发生的可能性哪个大?
答案:
朝上一面有4种可能:①正、正 ②正、反③反、正 ④反、反。
一次正面朝上,另一次正朝面下发生的可能性大。
六、布置作业巩固新知
作业题:1 — 4必做5、6选做。
可能性教案 篇4
学具准备:
学生学具:
1、每组一盒 3红3白(号盒子2红2黄2白,号盒子5白1红,发给左侧两小组)
2、分好6个小组,按坐的顺序定好1-6号,中间一人组长,培训组长、示范摸球。
教师学具:
1、四个硬纸板盒子(其中13号打印,塑封;还有一个用作放球用);三块黑卡纸;4红4黄4绿吸铁石。
2、教师有3个盒子,一号1白1红1黄(例题演示),二号7白(备10白1红),三号4红3黄(用作猜球练习)。
3、备红粉笔1支,确认磁性黑板,在黑板上布好点,放好12个吸铁石。
教学过程:
一、摸球
师:同学们一定在想,今天给我们上课的怎么是杨老师?不过,杨老师上课可不空手,今天,我给大家带来了一盒球礼品,想不想看看?
生:想(很兴奋)
师:咱们看看。(满面含笑摸出一个球,高举这是一个),
生:齐答:黄球
师:(放进去再摸出一个),里面啊还有(生接:白球),还有(生接:红球)
师:(欣喜)这红球漂亮吗?(漂亮)想要吗?(想)
师:这红球可不是心里想要就要得到的',我得把这几种颜色的球放在一个盒子里,让小朋友们去摸,如果你摸到红球,就把它送给你,想不想试试?
生:(斩钉截铁)想
师:现在,老师这儿有三个盒子,都装了些什么球呢,瞧(贴,这是1号盒子,这是2号盒子,这是3号盒子)现在,如果你特别想从盒子里摸出一个红球,你会选择到几号盒子里去摸?1号、2号还是3号?
生1:第3个,生2:第3个,生3:第3个。
师:想摸3号盒子的举手。哇,你们都想摸第3个盒子?奇怪,为什么你们都选3号?
生:因为3号盒子全部都是红球。
师:追问:全部是红球怎么了呢?
生1继续:随便摸哪个球都是红球。 生2:先摸哪个球都是红球。
师:都这么想吗?还有补充吗?是呀,盒子里全是红球,任意摸一个,会怎么样啊?(贴一定摸出红球:数学上,我们可以说)
可能性教案 篇5
教学目标:
1、学生能够预测简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、使学生能够对一些问题简单事件发生的可能性作出描述。
3、培养学生分析问题,解决问题的能力。
4、思想教育:在引导学生探索新知的过程中,培养学生合作学习的意识以及养成良好的学习习惯。
教学重、难点:
1、使学生能够预测简单试验所有可能发生的结果,知道事件发可能性是有大小的。
2、能够对一些简单事件发生的可能性作出描述。
教具准备:
硬币、红球、黄球若干、空袋子
教学过程:
一、创设情景,激发兴趣
师:同学们猜猜看,老师手里握着什么?(学生猜一猜)
师伸手出示一枚硬币。请大家再猜猜看,老师把硬币向上抛起,落下时会正面向上呢,还是反面向上?(学生猜一猜)看来,生活中存在着非常多的可能性。(板书课题)可能性已经是我们的老朋友了。下面,我们和这位老朋友一起来做一个小游戏
二、男女生摸球比赛
1、游戏规则:选出的男女队员各2名分别从盒子里摸出一个球,各摸十次,摸到黄球可以加一分,摸到红球不加分
为男生准备的盒子:9个红球1个黄球。
为女生准备的盒子:1个红球9个黄球。
2、比赛开始(现在男女队员已经摸完球了,咱们来统计一下两队摸球的情况,老师记录。
3、仔细观察统计结果,你发现了什么?总结:女队获胜。
4、男生交流失败的原因。
5、得出结论:可能性有大有小。(板书)
师:为什么女生摸出黄球的可能性大?男生摸出黄球的可能性小?什么原因造成的?
(板书:数量 多 少)
集体交流:数量多的`,可能性就大;数量少的, 可能性就小。
6、师:那这样的比赛公平吗?男同学服气吗?那我们再来一次公平的比赛。(两个盒子装上同样多的黄球和红球,再来一次)
比赛之前,大家预测一下,这次谁获胜的可能性大一些?(学生猜一猜,到底会怎样呢?我们来一起验证一下)
(渗透 数量相等时 可能性一样大)
可能性教案 篇6
【教材分析】
(一)教学内容分析:
可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。
教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。
(二)学情分析
考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。
【教学目标】
1、 了解概率的意义
2、 了解等可能性事件的概率公式
3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率
进一步认识游戏规则的公平性
【教学重点、难点】
重点:概率的意义及其表示
难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。
【教学过程】
(一) 创设情境,引入新知:
引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?
分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。
解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)
(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)
(二) 师生互动,探索新知:
从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:
①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。
②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。
③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。
接着类似的可以让学生自己结合生活经验独立举一些例子。
(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)
然后教师归纳,在教学中我们把事件发生的可能性的`大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。
如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:
强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。
例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。
(三) 讲解例题,综合运用:
在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。
例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?
分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。
解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。
一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。
(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)
从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。
(四) 练习反馈,巩固新知:
做一做:
1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?
(根据班级各小组的实际人数回答)
2、 转盘上涂有红、蓝、绿、黄四种颜色,
每种颜色的面积相同。自由转动一次转盘,
指针落在红色 区域的概率是多少?
指针落在红色或绿色 区域的概率是多少?
(1/4,1/2)
(五)变式练习,拓展应用:
例2:如图所示的是一个红、黄两色各占
一半的转盘,让转盘自由转动2次,指针2
次都落在红色 区域的概率是多少?一次落在
红色 区域,另一次落在黄色 区域的概率是多少?
分析:
(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。
(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。
(3)统计所求各个事件所包含的可能结果数。
解:根据如图的树状图,所
有可能性相同的结果数有4种:
黄,黄;黄,红;红,黄;红,红。
其中2次指针都落在红色 区域的可能结
果只有1种,所以2次都落在红色 区域
的概率 ;
一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。
变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。
(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)
(五) 反思总结,布置作业:
引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。
五、教学说明:
本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。
可能性教案 篇7
【教学内容】
义务教育课程标准实验教科书(西师版)四年级上册第125~126页例1、例2,第127页课堂活动,练习二十五第1题。
【教学目标】
1.能在活动中初步体验有些事件的发生是可能的,有些则是不可能的。
2.在具体的情景中能用“一定”、“可能”、“不可能”等术语来判断生活中的确定现象和不确定现象。
3.体验数学与生活的联系,培养学生猜想、分析、判断、推理以及语言表达能力。
【教学重点】
在具体的活动情景中体验生活中的确定现象和不确定现象。
【教学难点】
能用比较规范的数学语言对确定现象和不确定现象进行分析描述。
【教具学具准备】
硬币、装乒乓球的盒子等。
【教学过程】
一、情景引入
1.教师:上课之前告诉同学们一个消息,我们班马上要转来一位新同学,请同学们猜一猜,是男同学还是女同学?”
2.学生猜:可能是男同学,也可能是女同学,不能确定,都有可能。
3.教师小结:生活中,有些事情我们可以确定它的结果,有的事情则不能确定它的结果。这节课我们一起来研究事情发生的可能性。
(板书课题)
二、探究新知
1?研究不确定现象。
(1)教师:大家喜欢玩游戏吗?我们来玩一个抛硬币游戏怎么样?抛硬币之前请同学们猜一猜硬币落地后,是
正面向上呢?还是反面向上?
(2)学生分组进行抛硬币活动,注意记录和观察硬币落地后,是正面向上还是反面向上。
(3)活动后请学生用语言描述硬币落地后,是正面向上还是反面向上,得出这件事是不确定的结论。
(4)教师引导学生用规范语言描述:同学们的这些意思,在数学上我们一般用“可能……也可能……”(板书:可能……也可能……)这个词语来描述这种不确定现象。
(5)教师小结:抛一枚硬币,落地后可能是正面向上,也可能是反面向上,在数学上,我们把像这样的,可能出现的结果不止一种,而使人们事先不能确定的现象叫做“不确定现象”
(板书:结果不止一种?不确定)。
2?研究确定现象
(1)展示盒子里的球——全是白球。学生可分组摸球后,记录摸球后的结果。教师:当盒子里全是白球时,从里面任意摸出一个,结果怎样呢?学生用自己的语言进行描述:全是白球,都是白球……
教师引导规范语言:同学们的这些意思,在数学上我们一般用“一定”这个词来说。
(板书:一定)
教师:这样放球可能从盒子里摸出黄球吗?
学生用自己的语言进行描述:不可能,不会……
教师引导规范语言:同学们的这些意思,在数学上我们一般用“不可能”这个词来说。
(板书:不可能)
教师:(展示盒子里的球——全是黄球)当盒子里全是黄球时,从里面任意摸出一个,结果又怎样呢?
学生用“一定”、“不可能”来描述摸球结果。教师小结:像这样结果只有一种,我们就用“一定”、“不可能”来描述确定现象。
三、猜想验证
1.(教师将两种球混装)提问:现在盒子里装了3个黄球和3个白球,从里面任意摸出一个,会是什么球呢?教师引导学生用规范语言来描述摸球结果。
2.小组摸球,试验验证。
(1)试验要求。
教师:老师给每组都准备了一个盒子,里面有3个黄球和3个白球。请组长负责安排,小朋友按次序摸球。
要求:
①每人可以摸两次,摸之前要先想想:会摸出什么球呢?然后再摸。
②组内的记录员要将小朋友每次摸球的结果记录下来。
③每次摸出的球要放回盒子里摇一摇,再继续摸。教师:比一比哪个小组最会合作,小组活动开展得又快又好。小组活动,教师巡回指导。
(2)教师小结:完成教科书127~128页1~3题。
2.讨论生活中的不确定现象。
教师:生活中,哪些是可能发生的`事情?哪些是一定要发生的事情?
教师举例,引导思考,如:“猜中指”、“石头、剪子、布”等游戏。教师:谁来介绍一下这些游戏?你能预测一下结果吗?
教师小结:可能出现的结果不止一种,是事先不能确定的。
学生举例,分析游戏结果。
教师:想一想,平常你还玩过哪些游戏,或者你能不能自己来设计这样一个游戏,使它可能出现的结果不止一种,是事先不能确定的。
要求:独立思考,同桌互玩,边玩边想:这个游戏的结果是确定的吗?为什么?
学生汇报交流。
教师小结:刚才大家说的这些有趣的游戏,它可能出现的的结果不止一种,在玩之前是不能确定的,属于数学上的“不确定现象”。也正是因为结果的不确定,人们才可以反复玩,在可能出现的结果中去感受无穷的乐趣。
四、全课小结
教师:今天我们研究了什么知识?你有哪些收获?
【可能性教案】相关文章:
可能性教案07-25
可能性教案范文04-13
可能性教案15篇02-18
《可能性》教案15篇01-31
《可能性》教案(15篇)03-11
可能性教案模板(精选15篇)12-08
可能性教案模板(精选11篇)12-28
可能性教案集锦5篇04-04
关于可能性教案合集7篇04-18
可能性教案模板汇编九篇04-08