实用的平行四边形教案范文汇总5篇
作为一名人民教师,通常会被要求编写教案,教案有助于学生理解并掌握系统的知识。怎样写教案才更能起到其作用呢?以下是小编收集整理的平行四边形教案5篇,仅供参考,大家一起来看看吧。
平行四边形教案 篇1
本单元教学平行四边形和梯形的特点以及它们的高。学生在第一学段直观认识了平行四边形,而梯形则是第一次学习。全单元的内容分成两部分编排: 先教学平行四边形,再教学梯形。编写的一篇你知道吗介绍了平行四边形容易变形的特性及其在日常生活中的应用。安排的一道思考题让学生体会应用图形的平移和旋转可以把平行四边形剪拼成长方形、把梯形剪拼成长方形、把长方形剪拼成三角形。
1、 让学生通过做图形发现平行四边形和梯形的特点。
《标准》要求学生通过观察、操作,认识平行四边形和梯形。短短一句话,指出了学生学习图形特征的方法和途径: 要以发现为主,而不是仅靠接受。
(1) 第43页例题要求学生凭已有的直观认识想办法做一个平行四边形,他们做的方法一定很多,教材里呈现的只是其中的一部分,很可能还有别的做法。做图形的目的是体会平行四边形的特点,教学时要注意四点:
① 课前要有充分的物质准备,如小棒、钉子板、方格纸这些材料可以是教师准备的,也可以是学生准备的。有些材料是预设的,有些材料是教学中即时想到的。
② 在做中发现特征,要让学生说说做的体会。做图形的目的是感受图形的形状特征,所以,要组织学生交流做法与思考。如用小棒摆平行四边形,上、下两根小棒一样长,左、右两根小棒也一样长。在方格纸上画平行四边形,上、下两条边互相平行,左、右两条边也互相平行
③ 要抓住平行四边形的主要特征进行教学。平行四边形有许多特点,如对角相等、邻角和是180等。例题的教学目的是使学生建立平行四边形的概念,所以要抓主要特点两组对边分别平行,两组对边长度分别相等。至于其他特点,不必提出过多的要求。
两组对边分别平行是平行四边形的本质特征,必须使学生充分体会。不仅凭眼睛看,还要用画平行线的工具和方法进行验证。两组对边长度分别相等是平行四边形的重要特点,在以后计算面积时经常用到。也要让学生通过度量发现或验证。
④ 要促进学生在交流中集思广益、互补共享。每个学生的发现往往是点滴的,用小棒摆容易发现对边相等,不注意对边平行;用直尺画容易体会对边平行,不注意长度相等。因此,相互倾听、相互评价、相互吸收、共享发现成果尤为必要。听听别人的发现,看看自己做的平行四边形是不是也这样,就能做到互补共享。教师参与学生一起交流,要帮助学生提高语言水平,如把上、下两条边互相平行,左、右两条边互相平行概括地说成两组对边分别平行。
(2) 在活动中体会长方形和平行四边形的关系,进一步认识这两种图形。想想做做第3、4题都是把一个平行四边形通过分移拼的活动变成一个长方形,让学生一方面体会到平行四边形和长方形的形状不相同,另一方面体会到变化前后的两个图形的面积相同。这些都为以后探索平行四边形面积的计算方法作了准备。第6题把4根饮料管先串成一个长方形,再拉成一个平行四边形。这些操作活动帮助学生发现长方形和平行四边形都是四边形,两组对边都互相平行且长度相等。它们的不同点主要表现在四个角上。
(3) 第一次教学梯形,先让学生观察屋顶的一个面、梯子、清洁箱的抛物口、足球门的侧面,形成对梯形的直观感知。然后通过做梯形体会它的特点。教学线索和主要活动与平行四边形基本相同,仅有两点变化: 一是白菜卡通的提问方式变了,不是问梯形有什么特点,而是问梯形与平行四边形比较,有什么区别;二是多了辣椒卡通在回答问题。这些变化是引导学生寻找梯形的本质特征,帮助他们建立准确的梯形概念。
学生有想办法做出一个平行四边形的活动体验,现在做一个梯形,教学可以放得更开一些。如做的材料自己寻找、做的方法自己设计,并要求学生通过做了解梯形的特点。在交流梯形的特点时,要紧扣教材中的问题进行,突出梯形只有一组对边平行。
2、 精心设计高的教学。
四年级(上册)教学平行的时候,曾经让学生在两条互相平行的直线中间画几条与两条直线都垂直的线段,通过度量还发现了画出的所有垂直线段长度都相等。那时候让学生做这道题的目的是体会平行与垂直是不同的位置关系。并通过平行线之间的垂直线段长度相等,体会两条平行的直线永远不会相交。这道题又可以成为本单元教学平行四边形和梯形的高的起点。
(1) 平行四边形有两组互相平行的对边,有两条长度不等的高。教材把两条高分两步教学,先讲平行四边形上、下一组对边间的高,再讲左、右一组对边间的高。
第44页例题要求学生量出平行四边形上、下一组对边间的距离。这两条边之间的距离是它们之间垂直线段的长度,量距离要先画出垂直线段。画垂直线段的方法一般是在一条边上确定一点,从这一点向对边作垂线。学生经过这样的过程,理解教材中关于平行四边形高的描述式定义就有了感性认识。所以,教学时要引导学生思考什么是两条红线间的距离,并画一画两条红线间的`垂直线段。
试一试的左边一题仍然是上、下两条边之间的高,通过这题巩固对平行四边形高的初步认识。同时看到,画高的时候要在上面一条边上任意确定一点,这任意一点也可以是上面一条边的一个端点,即平行四边形的一个顶点。右边两题是左、右两条边之间的高,要让学生想一想: 图中的红线是平行四边形的高吗,为什么?抓住高的本质特征思考,从而进一步理解平行四边形的高。
(2) 第47页教学梯形的高,教材的编写线索和安排的教学活动与教学平行四边形的高基本相同,有利于学生利用已有经验学习新知识。不同的地方有两处: 一是结合教学梯形的高讲了梯形的上底、下底和腰。二是例题里的梯形的底是上、下两条互相平行的边,试一试里出现底是左、右两条互相平行的边的梯形,还有直角梯形。直角梯形的高是垂直于底的那条腰。与画平行四边形的高相同,画梯形的高要在一条底上任意选一点。如果选的点是梯形的顶点,那么这条高把梯形分成一个三角形和一个梯形;如果选的点不是梯形的顶点,那么这条高把梯形分成两个较小的梯形。第48页第3题就为此而设计。
平行四边形教案 篇2
一、教学目标:
1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。
2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。
3.培养学生发现问题、解决问题的能力及逻辑推理能力。
二、重点、难点
1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用。
2.难点:运用平行四边形的性质进行有关的论证和计算。
3.难点的突破方法:
本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质。这一节是全章的重点之一,学好本节可为学好全章打下基础。
学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。
平行四边形的.定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。
为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚。
讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。
新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。这有利于培养学生观察、分析、猜想、归纳知识的自学能力。
教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。
平行四边形教案 篇3
教学目标
1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.
2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.
教学重点
掌握平行四边形的意义及特征.
教学难点
理解平行四边形与长方形、正方形的关系.
教学过程
一、复习准备.
我们已经学过一些几何图形,观察一下这些图形有什么共同特点?
在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.
教师提问:我们学过哪些四边形呢?
学生举例.
说说哪些物体表面是平行四边形?
教师出示下图,让学生初步感知平行四边形.
二、学习新课.
1.理解平行四边形的意义.
首先出示一组图形.
教师提问:这些图形是什么形?它们有什么特征?
(1)看到这个名称你能想到什么?(板书:平行、四边形)
教师提问:你认为什么是四边形?你学过的什么图形是四边形的?
(2)动手测量.
指名到黑板上用三角板检验一下,每个图形的对边怎样.
(3)抽象概括.
根据你测量的结果,能说说什么叫平行四边形吗?
小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)
教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.
(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】
2.平行四边形的特征和特性.
(1)教师演示.
教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?
学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.
(2)动手操作.
学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.
(3)归纳平行四边形特性.
根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)
(4)对比.
三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.
这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?
(如汽车间的保护网,推拉门、放缩尺等.)
3.学习平行四形的底和高.
(1)认识平行四边形的底和高.
教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.
(2)找出相应的底和高.【继续演示课件“平行四边形”】
引导学生观察:图中有几条高?它位相对应的底各是哪条线段?
使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.
(3)画平行四边形的高.【继续演示课件“平行四边形”】
教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的`延长线上.
①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)
引导学生比较长方形和平行四边形的异同点,使学生明确:
相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.
②引导学生比较正方形和平行四边形的相同点和不同点.
使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.
③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】
三、巩固练习.【继续演示课件“平行四边形”】
1.判断下列图形哪些是平行四边形?
2.指出平行四边形的底,并画出相应的高.
3.在钉子板上围出不同的平行四边形.
4.数一数下图中有( )个平行四边形.
四、教师小结.
1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)
2.组织学生对所学知识提出质疑,并解疑.
3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)
五、布置作业.
1.用一套七巧板拼出不同的平行四边形.
2.在下面每个平行四边形中分别画出两条不同的高。
平行四边形教案 篇4
教材分析:
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
教学目标:
1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。
2、掌握平行四边形面积计算公式并能解决实际问题。
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
教学重点:平行四边形面积的计算。
教学难点:平行四边形面积公式的推导过程。
教学准备:学具。
教学过程:
一、质疑引新
1、显示长方形图
长方形的面积怎样求?
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究
(一)、铺垫导引
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形
电脑在学生感到有困难的'时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索
刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?
学生实验操作
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
你在平行四边形上沿哪条线段剪开的?
这条线段实际上是平行四边形的什么?
在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳
问:
1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?
2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)
得出:平行四边形面积=底×高
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式
学生自学P44~P45有关内容
集体交流:S=a×h
S=a·h
S=ah
教师强调乘号的简写与略写的方法
三、深化认识
1、验证公式
学生利用公式计算P43表格平行四边形的面积,看结果是否和实验结果一样。
2、应用公式
a) 例题
学生列式解答,并说出列式的根据。
b) 做练一练
四、巩固练习
1、求下列图形的面积是多少?
底5厘米,高3。5厘米 底6厘米,高2厘米
2、计算下面图形的面积哪个算式正确?(单位:米)
3×8 3×6 4×8 6×8 3×4 4×6
3、求平行四边形的高是多少?
面积:56平方厘米
底:8厘米
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法
五、总结全课(电脑显示、学生口答)
把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。
平行四边形教案 篇5
【教学目标】
1、知识与技能:
探索与应用平行四边形的对角线互相平分的性质,理解平行线间的距离处处相等的结论,学会简单推理。
2、过程与方法:
经历探索平行四边形性质的过程,进一步发展学生的逻辑推理能力及有条理的表达能力。
3、情感态度与价值观:
在探索平行四边形性质的过程中,感受几何图形中呈现的数学美。让学生学会在独立思考的基础上积极参与对数学问题的讨论,享受运用知识解决问题的成功体验,增强学好数学的自信心。
【教学重点】:
探索并掌握平行四边形的对角线互相平分和平行线间的距离处处相等的性质。
【教学难点】:
发展合情推理及逻辑推理能力
【教学方法】:
启发诱导法,探索分析法
【教具准备】:多媒体课件
【教学过程设计】
第一环节回顾思考,引入新课
什么叫平行四边形?
平行四边形都有哪些性质?
利用平行四边形的性质,我们可以解决相关的计算问题。阿凡提是传说中很聪明的人。一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说:给你两块地,一块是平行四边形形状的(如下图,AB=10,OA=3,BC=8),还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?
[学生活动]此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到合适的解决办法.
[教学内容]教师乘机引出课题,明确学习任务.
第二环节探索发现,应用深化
1、做一做:(电脑显示P100“做一做”的内容)
如图4-2,□ABCD的两条对角线AC,BD相交于点O,
(1)图中有哪些三角形是全等的?有哪些线段是相等的?
(2)能设法验证你的猜想吗?
[教师活动]教师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具(刻度尺、剪刀、图钉),尝试在交流合作中动手探究平行四边形的对角线有何性质.
2、观察、讨论:(小组交流)
通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。
[教师活动]探究结束后,分组展示结果,教师利用课件展示“旋转法”的实验过程,增强教学的直观性.
结论:平行四边形的对角线互相平分。
[教师活动]“实验都是有误差的,我们能否对此进行理论证明?”
[学生活动]此问题难度不大.
[教师活动]教师让学生口述证明过程.最后师生共同归纳出“平行四边形的对角线互相平分”这条性质.
活动二
刚才财主巴依提出的.问题你能解决吗?
学生口述过程,教师最后给出规范的解题过程。
练一练:
财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中(点E与A、D不重合),你能知道这里有多少对全等三角形吗?
[教师活动]此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形.
活动三
电脑显示P101关于铁轨的图片
提出问题:“想一想”
已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,
(1)线段AC,BD所在直线有什么样的位置关系?
(2)比较线段AC,BD的长。
引出平行线间距离的概念,并引导学生对比点到直线的距离,两点间距离等概念。
(让学生进一步感知生活中处处有数学)
A.(学生思考、交流)
B.(师生归纳)
解(1)由AC⊥b,BD⊥b,得AC//BD。
(2)a//b,AC//BD,→四边形ACDB是平行四边形
→AC=BD
归纳:
若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。
即平行线间的距离相等。
[议一议]:
举你能举出反映“平行线之间的垂直段处处相等实例吗”?
活动目的:
通过生活中的实例的应用,深化对知识的理解。
第三环节巩固反馈,总结提高
1、说一说下列说法正确吗
①平行四边形是轴对称图形()
②平行四边形的边相等()
③平行线间的线段相等()
④平行四边形的对角线互相平分()
2、已知,平行四边形ABCD的周长是28,对角线AC,BD相交于点O,且△OBC的周长比△OBA的周长大4,则AB=
3、已知P为平行四边形ABCD的边CD上的任意点,则△APB与平行四边形ABCD的面积比为
4、平行四边形ABCD中,AC,DB交于点O,AC=10。DB=12,则AB的取值范围是什么?
5、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
第四环节评价反思,目标回顾
活动内容:
本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?
[布置作业]:
P102习题4.21,2,3
探究题已知如下图,在ABCD中,AC与BD相交于点O,点E,F在AC上,且BE∥DF.求证:BE=DF
【平行四边形教案】相关文章:
平行四边形面积教案02-09
《平行四边形的认识》教案03-15
《平行四边形的面积》教案01-02
平行四边形的面积教案11-08
《平行四边形面积的计算》教案09-14
【精选】平行四边形教案四篇05-12
平行四边形教案三篇05-12
平行四边形教案四篇05-14
精选平行四边形教案3篇05-19
【精选】平行四边形教案三篇05-19