实用的平行四边形教案模板合集10篇
作为一名为他人授业解惑的教育工作者,就有可能用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么你有了解过教案吗?下面是小编整理的平行四边形教案10篇,希望能够帮助到大家。
平行四边形教案 篇1
教学要求:
1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。
2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。
3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。
教学重点:
在制作中发现平行四边形的基本特征。
教学难点:
引导学生发现平行四边形的特征。
教学过程:
一、生活引入
1.出示校门口伸缩门照片,问:这张照片你熟悉吗?是哪里?请你观察我们校门口的电动门,你能在上面找到平行四边形吗?谁来指给大家看。对,在这个伸缩门上有许多平行四边形。
2.师:生活中,你还在哪些地方见过平行四边形呢?(指名说)
3.师:是的,平行四边形在咱们的生活中无处不在,漂亮的小篮子上,安全网上,花园的栅栏上,学校楼梯的扶手上,三菱汽车的标志上,足球门的网上,以及工人叔叔用的升降架上,各式各样的电动门上都有平行四边形的存在。今天这节课,老师就和大家一起来认识平行四边形。(板书课题)
二、操作探究
1.师:看了这么多的平行四边形,想不想自己动手做一个呢?老师为大家准备了一些材料,请你选择其中一种材料,制作一个平行四边形。先独立完成,在小组里说一说你的方法。
2.师:谁来汇报?你选了那种材料?是怎么制作的?(让学生依次在投影上演示,并介绍制作过程)
3.讨论:刚才同学们用不同的材料制作了平行四边形,大家制作的这些大小不同的平行四边形的边,有什么共同的特点呢?
4.下面,请每个小组的同学根据老师的提示进行讨论。
小组活动:
(1)仔细观察小组内每个平行四边形,猜想:它们的边有什么共同的.特点?组长记录在练习纸上。
(2)用什么方法去验证你们的猜想?怎样操作?
(3)通过观察,操作,验证,你们的结论是什么?
5.师:哪个小组来汇报?首先说你们的猜想是?怎样验证的?(让学生在投影上操作演示)你的结论是什么?(根据学生回答板书)
6.师:同学们刚才通过观察,操作,验证了平行四边形边的特征,我们可以用一句话概括它的特征是:两组对边分别平行且相等。(板书)对边是指?(课件演示)谁再来说说,平行四边形有什么特点呀?多指名几人说。
7.师:要看一个四边形是不是平行四边形,就要看?(多指名几人说)下面大家来判断,这里哪些图形是平行四边形?拿出练习纸,完成想想做做第一题,先独立完成,再说说理由,你是怎么判断的。
三、探索平行四边形与长方形的相同点与不同点。
1.师:这节课,我们认识了平行四边形,老师手上的这张纸片是什么形状的?现在我想让它变成一张长方形纸片,我该怎么办?请大家帮一帮我。小组操作。
2.指名汇报,你是怎样剪的?谁来说说它的特征是什么?
3.刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗?
四、小结,并认识平行四边形的不稳定性。
1.通过这节课的学习,你对平行四边形有哪些认识?
2.平行四边形对我们的生活有哪些帮助呢?它还有什么特征呢?请看。现在你知道为什么校门口的电动门要做成由许多个平行四边形组成的了吗?(观看电动门伸缩过程)你还能举出更多的例子吗?大家课后做个有心人,搜集相关的资料吧。
平行四边形教案 篇2
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的.中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 一、内容和内容解析 1.内容 平行四边形对角线的性质. 2.内容解析 这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据. 教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算. 基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用. 二、目标和目标解析 1.目标 (1)探究并掌握平行四边形对角线互相平分的性质. (2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题. 2.目标解析 达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想. 达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证. 三、教学问题诊断分析 本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决. 基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算. 四、教学过程设计 引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质. 1. 引入要素 探究性质 问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程? 师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答. 设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备. 问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗? 师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分. 你能证明上述猜想吗? 教师操作投影仪,提出下面问题: 图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证. 学生合作学习,交流自己的思路,并讨论不同的验证思路. 教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB, △ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明. 师生归纳整理: 定理:平行四边形的对角线互相平分. 我们证明了平行四边形具有以下性质: (1)平行四边形的`对边相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分. 设计意图:应用三角形全等的知识,猜想并验证所要学习的内容. 2.例题解析 应用所学 问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积. 师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程. 变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量? 设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值. 3.课堂练习,巩固深化 (1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________. (2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少? 设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力. 4.反思与小结 (1)我们学习了平行四边形的哪些性质? (2)结合本节的学习,谈谈研究平行四边形性质的思想方法. (3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题? 5.布置作业 教科书P49页习题18.1 第3题; 教科书第51页第14题. 【设计理念】 本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容 【教学内容】 《义务教育教科书》人教版数学课本五年级上册87——88页。 【教材、学情分析】 平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。 学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。 【教学目标】 1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。 2、在探究的过程中感悟“转化”的数学思想和方法。 3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。 4、引领学生回顾反思,获得基本的数学活动经验。 【教学重点】 推导平行四边形面积计算公式。应用公式解决实际问题。 【教学难点】 理解平行四边形的面积计算公式的推导过程。 【教学准备】 平行四边形纸片若干,直尺、剪刀、。 【教学过程】 一、创设情境,激发兴趣。 讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。 【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】 二、组织探究,推导公式。 1、联系旧知,做出猜想。 看到这个题目,你想到了我们学过哪些有关面积的知识? 大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算? 【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】 2、初步验证,感悟方法。 根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。 引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形) 学生数方格并来验证自己的猜想。 【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】 3、剪拼转化,发现规律。 除了数方格,我们还能用什么方法来验证呢?(学生思考) 能否将平行四边形转化成我们学过的图形再来进行计算呢? (1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。 (2)展示交流。(演示) 【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】 4、观察比较,推导公式。 剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示? 小结: 长方形面积 = 长 × 宽 平行四边形面积 = 底 × 高 S = a × h 【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】 5、展开想象,再次验证。 是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢? 学生先闭眼想象,再借助手中的工具加以验证。 6、回顾反思,总结经验。 回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的`,从中可以获得哪些经验。 把平行四边形转化成长方形面积。(剪拼—转化) 然后找到转化前、后图形之间的联系。(寻找—联系) 根据长方形面积公式推导出平行四边形面积公式。(推导—公式) 【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】 三、实践应用,解决问题。 1、解决实际问题 平行四边形花坛底是6米,高是4米,它的面积是多少? 2、出示如下图 算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。) 3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。) 王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错? 4、现在你明白阿凡提是怎么打败巴依的了吗? 引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。 思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗? 【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】 四、总结全课,拓展延伸。 转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。 通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。 【设计意图:试图把学生带入更加广阔的学习空间。】 五、板书设计 平行四边形的面积 长 方 形面积 = 长 × 宽 平行四边形面积 = 底 × 高 S = a × h 教学目标: 1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积. 2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力. 3.对学生进行辩诈唯物主义观点的启蒙教育. 教学重点:理解公式并正确计算平行四边形的面积. 教学难点:理解平行四边形面积公式的推导过程. 学具准备:每个学生准备一个平行四边形。 教学过程: 1、什么是面积? 2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢? 二、导入新课 根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。 三、讲授新课 (一)、数方格法 用展示台出示方格图 1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米) 2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。 2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么? :如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。 (二)引入割补法 以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。 (三)割补法 1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形? 2、然后指名到前边演示。 3、教师示范平行四边形转化成长方形的过程。 刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。 ①先沿着平行四边形的高剪下左边的直角三角形。 ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。 ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。 请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。) 4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。) ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么? ②这个长方形的.长与平行四边形的底有什么样的关系? ③这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。 5、引导学生平行四边形面积计算公式。 这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽) 那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。) 6、教学用字母表示平行四边形的面积公式。 板书:S=a×h,告知S和h的读音。 说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。 (6)完成第81页中间的“填空”。 7、验证公式 学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。 条件强化:求平行四边形的面积必须知道哪两个条件?(底和高) (四)应用 1、学生自学例1后,教师根据学生提出的问题讲解。 3、判断,并说明理由。 (1)两个平行四边形的高相等,它们的面积就相等() (2)平行四边形底越长,它的面积就越大() 4、做书上82页2题。 四、体验 今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的? 五、作业 练习十五第1题。 六、板书设计 平行四边形面积的计算 长方形的面积=长×宽 平行四边形的面积=底×高 S=a×hS=ah或S=ah 课后反思: 教学内容:教材第16-15页例2及“想想做做”1—5题。 教学目标: 1.使学生通过观察、比较、操作等实践活动,感知平行四边形的特点,初步认识平行四边形,能指出平行四边形和围出平行四边形。 2.使学生经历从直观、操作中抽象出平行四边形的过程,形成平行四边形的直观表象,并能操作再现平行四边形的形状,积累通过多种感官学习平面图形的经验,发展初步的空间观念。 3.使学生逐步形成参与数学活动的意识,培养独立思考、主动交流的学习习惯。 教学重点: 平行四边形的直观认识 教学难点: 平行四边形的直观表象 教具或学具准备: 三角尺、钉子板、小棒、长方形木框(教具) 教学过程: 一、直观认识 1.观察图形:三角形、四边形、五边形、六边形 你准备怎样把这些图形分类? 说明:有四条边的图形是四边形,四边形有各种各样的形状,今天我们认识一种特殊的四边形(出示例2) 2.学习例2 1.这是生活里常见的情境。你能在这些情境中找出四边形并用手沿四条边指一指吗?小朋友在课本例2的图上用笔描出这样的`四边形。 交流:生活里一定看到过这样的四边形,你还在哪里看到过? 2.操作 请同学们拿出两个完全一样的三角尺。你能拼出这样的四边形吗? 交流:把你的拼法介绍给大家。 说明:小朋友都拼出了生活里见到的这样的四边形,像这样的四边形是平行四边形(板书课题) 3.抽象出图形 引导:像这样的图形是平行四边形,你能在钉子板上围一个平行四边形吗? 学生操作,老师引导,让学生交流围法,老师适当引导(对边的方向、长短完全一样)。 二、练习巩固: 1.想想做做第1题 学生独立完成。交流:哪些是平行四边形?第一个为什么不是,说说你的理由。 2.想想做做第3题 学生画图,老师巡视指导。 交流所画的平行四边形,指出这些图形虽然大小不同,位置形状不一 样,但都是平行四边形。 3.想想做做第4题 同桌合作,动手操作,老师指导。 交流操作方法,想想平行四边形对边的要求。 4.想想做做第5题 演示,让学生注意观察,你有什么发现。 说明:一个长方形,不管怎样拉,虽然形状、大小会发生变化,但都是平行四边形。 三、回顾总结: 今天我们学习了什么?请你说说认识平行四边形的过程。 你有什么收获和体会。 四、布置作业 《补充习题》第 页。 教学目标 1、知识目标 (1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。 (2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算. 2、能力目标 (1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。 (2)验证猜想结论,培养学生的论证和逻辑思维能力。 (3)通过开放式教学,培养学生的创新意识和实践能力。 3、非智力目标 渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点. 教学重点、难点 重点:平行四边形的概念及其性质. 难点:正确理解两条平行线间的距离的概念和性质定理2的推论。 平行四边形的概念及性质的灵活运用 教学方法:讲解、分析、转化 教学过程设计 一、利用分类、特殊化的方法引出平行四边形的概念 1.复习四边形的知识. (1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究. (2)将四边形的边角按位置关系分为两类: 教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别. 2.教师提问:四边形中的两组对边按位置关系分为几种情况? 引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11. 3.对比引出平行四边形的概念. (1)引导学生根据图4-11,叙述平行四边形的概念,引出课题. (2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性). (3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质. (4)介绍平行四边形的符号表示及定义的使用方法:如图4-12. ①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义) ②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义) 练习1(投影) 如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__. 二、探索平行四边形的性质并证明 1.探索性质. 启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下: (3)对角线 ⑤对角线互相平分(性质定理3) 教师注意解释并强调对角线互相平分的含义及表示方法. 2.利用化归的方法对性质逐一进行证明. (1)由平行四边形的定义及平行线的性质很快证出性质①,④,③. (2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤. (3)写出证明过程. 3.关于“两条平行线间的平行线段和距离”的教学. (1)利用性质定理2 导出推论:夹在两条平行线间的平行线段相等. ①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明. ②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等. ③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习. 练习2 (投影)如图4-15,判断下列几组图形能否体现推论所代表的含义. (2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离. 练习3 在图4-15(d)中, ①点A与点C的距离是线段__的长; ②点A到直线l2的距离是线段__的长; ③两条平行线l1与l2的距离是线段__或__的长; ④由推论可得:两条平行线间的距离__. 三、平行四边形的定义及性质的应用 1.计算. 例1填空. (1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__; (2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__; (3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__; (4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___; (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__; 说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式. 2.证明. 例2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点. 分析: (1)尽量利用平行四边形的定义和性质,避免证三角形全等. (2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题. 例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点. 着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明. 例4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF. 分析: (1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF. (2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等. (3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的. 3.供选用例题. (1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢? (2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC. (3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD. 四、师生共同小结 1.平行四边形与四边形的关系. 2.学习了平行四边形哪些方面的性质? 3.两条平行线的距离是怎样定义的?有什么性质? 五、作业 课本第143页第2,3,4,5,6题. 课堂教学设计说明 本教学设计需2课时完成. 这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华. 平行四边形及其性质 教学目标 1、知识目标 (1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。 (2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算. 2、能力目标 (1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。 (2)验证猜想结论,培养学生的论证和逻辑思维能力。 (3)通过开放式教学,培养学生的创新意识和实践能力。 3、非智力目标 渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点. 教学重点、难点 重点:平行四边形的概念及其性质. 难点:正确理解两条平行线间的距离的概念和性质定理2的推论。 平行四边形的概念及性质的灵活运用 教学方法:讲解、分析、转化 教学过程设计 一、利用分类、特殊化的方法引出平行四边形的概念 1.复习四边形的知识. (1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究. (2)将四边形的边角按位置关系分为两类: 教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别. 2.教师提问:四边形中的'两组对边按位置关系分为几种情况? 引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11. 3.对比引出平行四边形的概念. (1)引导学生根据图4-11,叙述平行四边形的概念,引出课题. (2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性). (3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质. (4)介绍平行四边形的符号表示及定义的使用方法:如图4-12. ①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义) ②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义) 练习1(投影) 如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__. 二、探索平行四边形的性质并证明 1.探索性质. 启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下: (3)对角线 ⑤对角线互相平分(性质定理3) 教师注意解释并强调对角线互相平分的含义及表示方法. 2.利用化归的方法对性质逐一进行证明. (1)由平行四边形的定义及平行线的性质很快证出性质①,④,③. (2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤. (3)写出证明过程. 3.关于“两条平行线间的平行线段和距离”的教学. (1)利用性质定理2 导出推论:夹在两条平行线间的平行线段相等. ①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明. ②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等. ③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习. 练习2 (投影)如图4-15,判断下列几组图形能否体现推论所代表的含义. (2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离. 练习3 在图4-15(d)中, ①点A与点C的距离是线段__的长; ②点A到直线l2的距离是线段__的长; ③两条平行线l1与l2的距离是线段__或__的长; ④由推论可得:两条平行线间的距离__. 三、平行四边形的定义及性质的应用 1.计算. 例1填空. (1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__; (2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__; (3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__; (4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___; (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__; 说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式. 2.证明. 例2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点. 分析: (1)尽量利用平行四边形的定义和性质,避免证三角形全等. (2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题. 例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点. 着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明. 例4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF. 分析: (1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF. (2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等. (3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的. 3.供选用例题. (1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢? (2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC. (3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD. 四、师生共同小结 1.平行四边形与四边形的关系. 2.学习了平行四边形哪些方面的性质? 3.两条平行线的距离是怎样定义的?有什么性质? 五、作业 课本第143页第2,3,4,5,6题. 课堂教学设计说明 本教学设计需2课时完成. 这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华. 教学目标 1.进一步认识平行四边形是中心对称图形。 2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。 3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。 教学重点与难点 重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。 难点:发展学生的合情推理能力。 教学准备直尺、方格纸。 教学过程 一、提问。 1.平行四边形的特征:对边( ),对角( )。 2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。) 二、引导观察。 1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。 2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的`关系了吗? 通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。 (培养学生用自己的语言叙述性质。) 三、应用举例。 如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。 (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。) 例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少? (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。) 四、巩固练习。 1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。 2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。 3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。 4。试一试。 在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。 5.练习。 如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗? 五、看谁做得又快又正确? 课本第34页练习的第一题。 六、课堂小结 这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题? 七、作业 补充习题 教学目的 1.使学生掌握用平行四边形的定义判定一个四边形是 平行四边形; 2.理解并掌握用二组对边分别相等的四边形是平行四 边形 3.能运这两种方法来证明一个四边形是平行四边形。 教学重点和难点 重点:平行四边形的判定定理; 难点:掌握平行四边形的性 质和判定的`区别及熟练应用。 教学过程 (一)复习提问: 1. 什么 叫平行四边形 ?平行四边形有什么性质?(学生口答,教师板书) 2. 将 以上的性质定理,分别用命题形式 叙述出来。(如果……那么……) 根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平 行四边形性质定理的逆命题是否成立? (二)新课 一.平行四边形的判定: 方法一(定义法):两组对边分别平行的四边形的平边形。 几何语言表达定义法: ∵AB∥C D,AD∥BC,∴四边形ABCD是平行四边形 解析:一个四边形只要其两组对边 分别互相平行, 则可判定这个四边形是一个平行四边形。 活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。 方法二:两组对边分别相等的四边形是平行四边形。 设问:这个命题的前提和结论是什么? 已知:四边形ABCD中,AB=CD,AD=BC 求 证:四边ABCD是平行四边形。 分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易 证三角形全等。(见图1) 板书证明过程。 小结:用几何语言 表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为: 判定一:二组对边分别相等的四边形是平行四边形 ∵AB=CD,AD=BC, ∴四边形A BCD是平行四边形 练习:课本P103练习题第1题。 例题讲解: 例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。 求证: 分析:由我们学过平行四边形的性质中,对角相 等,得若证明四边形EBFD为平行四边形,便可得到 ,哪么如何证明该四边形为平行边形呢?可通过证 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分别为AD和BC的中点得ED=FB。 练习:2. 已知如 图7, E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。 求证:四边 形EFGH是平行四边形。 教学内容:人教版第九册 64 – 67页 说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。 教学重点:平行四边形面积的推导过程。 本课采用的教法:自学法 、 转化方法、小组合作法、实验法。 学法:1、自主学习法 2、小组合作探究学习法。 教学程序: 一、创设问题情景, 为新课作铺垫。 请同学们帮李师傅的一个忙, 求出下面的面积,你是怎样想的?3厘米 5厘米 二、突出学生主体地位,发展学生的创新思维。 首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么? 有的同学说:长方形面积与平行四边形面积相等(数出来的)。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想 三、小组合作,培养学生的.合作精神。 小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高 学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间) 学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。 四例题独立完成,体现学生自己解决问题的能力。 例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。 板书设计: 长方形面积==长乘宽 平行四边形面积=底乘高 s= a h 【平行四边形教案】相关文章: 《平行四边形的认识》教案03-15 平行四边形面积教案02-09 平行四边形的面积教案11-08 《平行四边形的面积》教案01-02 《平行四边形面积的计算》教案09-14 平行四边形教案四篇05-14 平行四边形教案4篇05-17 【精选】平行四边形教案四篇05-12 平行四边形教案三篇05-12 精选平行四边形教案3篇05-19平行四边形教案 篇3
平行四边形教案 篇4
平行四边形教案 篇5
平行四边形教案 篇6
平行四边形教案 篇7
平行四边形教案 篇8
平行四边形教案 篇9
平行四边形教案 篇10