平行四边形教案(通用10篇)
作为一名教师,编写教案是必不可少的,教案有利于教学水平的提高,有助于教研活动的开展。如何把教案做到重点突出呢?以下是小编为大家收集的平行四边形教案,希望对大家有所帮助。
平行四边形教案 1
教学目标:
1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;
2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;
能力目标:
培养学生动手操作能力和概括能力,发展空间思维能力。
情感目标:
在小组合作中,培养学生团结合作互助精神,在拼图的过程中感受图形的美。教学重点:掌握平行四边形和梯形的特征。
教学难点:
理解平行四边形、长方形、正方形的关系。教学准备:
教具:
课件,四边形关系图,长方形、正方形、平行四边形、梯形模具各一个。
学具:
三角尺,直尺,量角器。
教学过程:
一、创设情景感知图形
1、出示校园图(70页)(课件展示)
师:在我们美丽的校园中,你能找到那些四边形?
生:黑板的表面、窗户的表面—长方形,楼梯的栏杆、活动门上面有平行四边形,梯子的侧面—梯形
2、师:画出你喜欢的一个四边形。
(生画四边形)
师:说一说什么样的图形是四边形?生:(有四条边围成的图形是四边形。)
展示学生画出的四边形,请学生标出它们的名称。
长方形
平行四边形
梯形
正方形
3、小组交流:
从四边形的特点来看,四边形可以分成几类?学生讨论交流。(生:按边的特点:对边平行的;只有一组对边平行,另一组不平行的;对边不平行的按角的特点:4个角都是直角的,不是直角的。)师:今天我们一起来研究平行四边形和梯形。(板书课题:平行四边形和梯形)
[设计意图:创设情境,激发学生学习的兴趣,为学习新知识作准备,并且通过分类,使学生进一步认识所学的四边形]
二、合作学习,探究新知
(一)动手操作初步感知平行四边形和梯形的特点。师:平行四边形和梯形又有什么特点呢?现在我们用学具分别量一量它们的边、角各有什么特点,把你的发现像这样写下来。并相互说说你是怎样发现的?四人小组活动开始。生:学生活动,教师巡视。
[设计意图:通过分小组动手操作,初步感知平行四边形和梯形的特点,同时培养学生的合作意识和观察能力、]
(二)教学平行四边形的特点。
1、汇报发现。
师:谁来大胆汇报自己的发现?你是怎样知道的?(指名说说平行四边形的特点)师:谁还有其它的发现吗?
2、验证结论
师:刚才有的同学找到平行四边形的两组对边是互想平行的,我们一起来验证吧,请看大屏幕!(大屏幕展示方法:用直尺、三角尺平移验证)
3、总结概念。师:(边操作边说)这组对边平行,这组对边也平行,两组对边都平行。
师:你们能用自己的话说说怎样的四边形叫“平行四边形”吗?(指名回答)师:请打开课本71页,找找课本是怎么说的',画起来齐读一遍。揭示概念:[课件展示]两组对边分别平行的四边形叫做平行四边形。(并板书)
4、引导学生找出关键词。
师:在这定义中,你认为哪些词语比较重点?生:两组,
平行,
四边形。
师:你真会找。我们把重点词读重音,齐读一遍。生:学生读。
师:下面我们男女同学比赛,看谁读得好。(男女分别读)
师反问:要想判断一个图形是不是平行四边形,必须符合什么条件?
5、穿插练习。
请判断下面图形是平行四边形的打“√”,不是打“×”。
[设计意图:通过实践、分析、验证、总结、运用,让学生对平行四边形的定义有充分的理解,并且渗透一种学习方法,让学生逐步的懂得如何去发现,验证,运用数学概念。]
(三)认识梯形
1、汇报发现师:(课件展示)观察图片,它们像什么图形?生:梯形
师:梯形的边又有哪些特点呢?生:只有一组对边平行。
师:你们都有同样的发现吗?(板书)生:有。
2、?验证结论
师:我们一起来验证一下。师:(边操作边说)这组对边不平行,这组对边平行,只有一组对边平行。
3、总结概念。
师:你们能用自己的话说说怎样的四边形叫“梯形”吗?
师:请打开课本71页,找找课本是怎么说的,画起来齐读一遍。揭示概念:[课件展示]只有一组对边平行的四边形叫做梯形。(并板书)
4、引导学生找出关键词。
师:在这定义中,你又认为哪些词语比较重点?生:只有一组,平行四边形。
师:你找得真准确,我们把重点词读重音,再读一遍。师:下面我们来小组比赛,看哪个小组读得好。
师反问:要想判断一个图形是不是梯形,必须要符合什么条件?
5、穿插练习。
请判断下面图形是梯形的打“√”,不是打“×”。
6、比较平行四边形与梯形有什么不同。师:(指练习中的平行四边形)问:它为什么不是梯形?它其实是个平行四边形,那平行四边形与梯形有什么不同?
[设计意图:通过进一步运用实践,分析,验证,总结,使学生更好地概括出梯形的概念及特点,并对梯形有了更深的理解。]
三、教学四边形之间的关系。
师:我们已经认识了这么多的图形了,这些图形都是四边形。(课件出示四边形的集合图)师:我们先看长方形,正方形和平行四边形的边都有什么共同的特点?生:两组对边都平行。
师:那长方形,正方形是特殊的平行四边形吗?(四人小组讨论)师:指名汇报。
师总结:长方形,正方形是特殊的平行四边形。它们特殊在哪里?生:四个角都是直角。
师:梯形有没有两组对边平行?生:没有。
师:所以梯形自己为一类。教师总结:所以在四边形这个大家族中,有平行四边形、梯形、一般四边形这几个家庭组成,在平行四边形这个家庭中,包含有长方形这个特殊的小家庭,长方形这个小家庭中又包含正方形这个特殊的成员师:现在我们看投影,同桌互相说说这些四边形之间的关系。生:学生活动。
师:谁来说说它们的关系。(指名说)质疑。
师:请打开课本70——71页,看书有没有要问老师的呢?
[设计意图:通过集合图形的展示与分析,让学生对四边形之间的关系有了明确地认识。]
五、巩固练习。
1、在梯形里画两条线段,把它分割成三个三角形。你有几种画法?学生展示
2、七巧板拼一拼用两块拼一个梯形用三块拼一个梯形③用一套七巧板拼一个平行四边形学生动手拼图形,集体展示。
3、用两个完全一样的梯形,能拼成一个平行四边形吗?
把1张梯形纸剪一次,再拼成一个平行四边形。
拿一张长方行纸,不对折,剪一次,再拼出一个梯形。
学生动手拼图形
全班展示交流
4、拼图游戏。
师:拼图要求:用学过的图形,拼出你们喜欢的图画。
(1)找图形
(2)小组拼图画。
(3)展示作品。生:学生动手拼。
师:同学们真能干,能利用我们学过的图形拼出这么漂亮的图画,你们的手真巧。在这些美丽的图画中,你最喜欢哪一幅?它是由哪些图形拼成的?
[设计意图:通过练习,使学生进一步理解平行四边形和梯形的特征,培养学生动手操作和认真思考的能力。]
六、总结:谈收获。
师:同学们,你觉得这节课里你表现怎样?你有什么收获和体会?
平行四边形教案 2
学习目标:
1、理解并掌握平行四边形的定义
2、掌握平行四边形的性质定理1及性质定理2
3、提高综合运用知识的能力
预习指导:
1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如___________________________________________________等,都是平行四边形。
2、____________________________________是平行四边形。
3、平行四边形的性质是:_________________________________________.
学习过程:
一、学习新知
1、平行四边形的定义
(1)定义:________________________________________叫做平行四边形。
(2)几何语言表述:∵AB∥CDAD∥BC∴四边形ABCD是平行四边形
(3)定义的双重性:具备__________________的四边形,才是平行四边形,
反过来,平行四边形就一定具有性质。
(4)平行四边形的表示:平行四边形ABCD记作_________,读作___________.
2、平行四边形的性质
平行四边形是一种特殊的四边形,它除具有四边形的'性质和两组对边分别平行外,还有什么特殊的性质呢?
已知:如图ABCD,
求证:AB=CD,CB=AD.
分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线__________________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.
证明:
总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。
在上题中你能证明∠B=∠D,∠BAD=∠BCD吗?利用我们学过的方法试一试。
证明:
通过上面的证明,我们得到了:
平行四边形的性质定理1是_______________________________________.
平行四边形的性质定理2是_______________________________________.
二、应用举例:
例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。
例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。
三、随堂练习
1.平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。
2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。
四、课堂小结:
1、平行四边形的概念。
2、平行四边形的性质定理及其应用。
五、当堂检测
1.(选择)在下列图形的性质中,平行四边形不一定具有的是().
(A)对角相等(B)对角互补(C)邻角互补(D)内角和是
2.(选择)如图,在ABCD中,如果EF∥AD,GH∥CD,
EF与GH相交与点O,那么图中的平行四边形一共有().
(A)4个(B)5个(C)8个(D)9个
3.如图,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.
平行四边形教案 3
[教学目标]
1、知识与技能
直观地认识平行四边形
学会从各种平面图或实物中辨认平行四边形
培养初步的观察能力,空间观念和动手能力。
2、过程与方法
让学生在观察、操作、合作交流中探索新知
3、情感态度与价值观
渗透事物之间相互联系及转化的辩证唯物主义思想。
[教学重点]
引导学生直观的认识平行四边形
[教学难点]
引导学生通过直观感知抽象出平行四边形。
[教学关键]
在教学过程中,尽可能为学生提供观察、操作的机会,丰富学生的感性认识,使学生的感性认识升华为理性认识。
[教学方法]
演示法、观察法、操作法等。
[教具准备]
多媒体课件、可拉动的长方形框架、钉子板,方格纸
[学具准备]
可拉动的长方形框架,一张长方形的纸。
[教学过程]
一、复习引入
游戏引入(出示课件)
以“七个小矮人”中的开心果讲游戏规则,老师先发一些基本图形给学生,有三角形、圆形、长方形、正方形、平行四边形等,叫到什么图形的时候,大一部分同学就起立把图形举高让大家看,最后,只剩下平行四边形没有叫着,揭示课题:今天我们就来认识这一种新的四边形。
板书课题:平行四边形
二、探索新知
1、观察感知(课件展示)
教学例1:课件出示生活中的实物图形,引导学生观察在观察的`基础上进行小组交流讨论,这些图形都有什么共同点?
交流抽象:在小组讨论的基础上进行全班交流,教师引导学生观察发现:以上的图形都含有,指出这种图形就是我们今天要认识的平行四边形,课件出示平行四边形的图和文字。
2、操作感知
教学例2
拉一拉:
⑴你能把长方形变成平行四边形吗?你是怎样变的?捏住长方形的两个对角,向相反的方向拉动,这样就变成了一个平行四边形。在学生独立操作、感知的基础上进行小组合作、交流:长方形有什么变化?
全班交流时引导学生发现:通过拉动长方形框架使它变成了平行四边形,在拉动的过程中,四条边的长短不变,所以平行四边形的对边相等;四个角变了,原来是四个直角,拉成平行四边形后,四个角分别变成了两个锐角和两个钝角。
⑵说一说,长方形和平行四边形有什么区别?(长方形的四个角都是直角,平行四边形的角不是。初步理解长方形是一种特殊的平行四边形)
⑶说一说平行四边形有什么特点?
平行四边形有四条边,对边相等,有四个角,对角相等。
三、动手实践
1、围一围:
你能根据平行四边形的特点,在钉子板上围一个平行四边形吗?试试看
2、涂一涂:
把下面的图形是平行四边形的涂上自己喜欢的颜色(106页课堂活动的第2题)
3、剪一剪
⑴请在长方形纸上剪出一个平行四边形。(注意先要照着书上的方法,对折,再对折,然后把其中的两个长方形再对折,剪去其中的一个三角形。教师要引导学生怎样折纸)
四、知识拓展
让学生用七巧板拼摆出自己喜欢的各种图形,发展他们的创新思维和求异思维,同时也培养学生的空间观念。
五、全课小结
通过我们的观察、动手操作、小组合作等,我们已经知道了平行四边形的奥秘,你有什么收获?还有什么不懂得地方?
其实生活中无处不有我们的数学问题,只要我们做生活的有心人,你就会真正成为数学和生活的主人?
[板书设计]
平行四边形
有四条边,对边相等
有四个角,对角相等
平行四边形教案 4
教学目标:
(一)教学知识点
1、能进一步理解掌握矩形、菱形、正方形的性质定理、判定定理。
2、进一步体会证明的必要性以及计算与证明在解决问题中的作用。
(二)能力训练要求
1、经历探索、猜想、证明的过程,进一步发展推理论证能力。
2、进一步体会证明的必要性以及计算与证明在解决问题中的作用。
3、体会证明过程中所运用的`归纳概括以及转化等数学思想方法。
(三)情感与价值观要求
1、通过知识的迁移、类比、转化,激发学生探索新知识的积极性和主动性。
2、体会数学与生活的联系。
教学重点:
特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用。
教学难点:
特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用。
教学方法:
启问——交流式教学法。
教学过程:
1、巧设现实情境,引入新课
[师]通过前几节内容的学习,我们进一步理解了平行四边形及特殊平行四边形的性质定理和判定定理。
这节课我们来应用它们证明和计算一些题。
2、讲授新课
[师]下面大家来猜一猜,想一想
依次连接任意四边形各边的中点可以得到一个平行四边形。那么,依次连接正方形各边的中点。(如图)能得到—个怎样的图形呢?先猜一猜,再证明。
平行四边形教案 5
教学目标:
1、知识与技能:
(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能应用公式正确计算平行四边形的面积。
(2)以应用平行四边形的面积计算公式解决相应的实际问题。
2、过程与方法:
使学生经历观察、操作、测量、填表、讨论、分析、比较、归纳等数学活动过程、体会“等积变形”的思想方法,培养空间观念,发展初步的推理能力。
3、情感态度与价值观:
(1)渗透转化的数学思想方法。
(2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
教学重点、难点和关键:
重点:探索并掌握平行四边行面积的计算公式。
难点:理解平行四边形面积计算公式的推导过程,并能正确应用平行四边形的面积计算公式解决相应的实际问题。
关键:让学生在动手实践与合作交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。
教学准备:
多媒体课件、实物投影仪、小剪刀、平行四边行纸片。
教学过程:
一、创设情境,引入课题。
1、设问:
(1)多媒体课件出示主题图。
(2)学生观察主题图,从中找出学过的图形。(随着学生的回答,电脑逐一显示图形)。翻书79页。
(3)引导学生说出长方形式正方形的计算公式:s=ab。s=a2
(4)引导学生再次观察图中校门前的两个花坛。
(5)设问:这两个花坛分别是什么形状?如果我要比一比它们的大小怎么办呢?引起知识的冲突,长方形的面积会算了,平行四边形的面积不会算。
2、导入:
长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。(板书课题:平行四边形的面积)
二、合作交流、推导公式。
1、猜想:
同桌答作,用数方格的方法计算面积。
(1)电脑课件出示教材P80方格图。师:我们已经知道,用数方格的方法可以知道一个图形的面积,下面请同学们用数方格的方法算出这个长方形和这个平行四边形的面积。
(2)说明要求:一个方格表示1m2,不满一格的当半格计算。数完后把结果填入P80下面的表中。
(3)同桌合作完成并汇报。实物投影展示学生填好的表格。
(4)观察表格上的数据,你发现了什么?把你的发现告诉你的同伴。
(5)学生汇报讨论结果:平行四边形的底与长方形的长相等;
平行四边形的高与长方形的宽相等;
平行四边形的`面积与长方形的面积相等;
(6)引导猜想平行四边形的计算公式;
师:这个长方形的面积等于什么?
生:这个长方形的面积等于长乘宽。
师:试想一下,这个平行四边形的面积怎么计算?
生1:等于6×4=24。
生2:也就是底乘高。
师:也就是说这个平行四边形的面积可以怎样计算?
生:这个平行四边形的面积等于底乘高。
2、验证:
(1)师:刚才我们通过数方格的方法数出了这个平行四边形的面积,发现了这个平行四边形的面积等于底乘高,是不是所有的平行四边形都能用这个方法来计算呢?我们一起来验证一下好吗?
(2)学生动手操作,用课前准备好的平行四边形和剪刀进行剪拼,教师巡视。把平行四边形剪拼成一个长方形。
(3)学生在实物投影上演示剪拼的方法。
(4)电脑课件演示剪——平移——拼的过程。
(5)学生四人小组讨论:
①拼出来的长方形与原来的平行四边形比,面积变了吗?
②拼出长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形的面和计算公式推导出平行四边形的面积计算公式吗?
(6)汇报:
①拼出来的长方形与原来的平行四边形面积相等。
②这个长方形的长与这个平行四边形的底相等。
③这个长方形的宽与平行四边形的高相等。
3、归纳
(1)师生共同归纳得出平行四边行的面积计算公式。
刚才我们通过剪拼把一个平行四边形转化成为一个长方形,它们的面积相等。
长方形的长等于平行四边形的底。
长方形的宽等于平行四边形的高。
长方形的面积=长×宽可得平行四边行的面积=底×高。
(2)用字母表示平行四边形的面积计算公式。
在数学中一般用S来代表图形的面积,用a表示图形的底,h表示图形的高,请同学们用字母把平行四边形的面积公式表示出来。(s=ah)
4、应用
(1)出示教材81页例题1:平行四边形花坛的底是6m,高是4m,它的面积是多少?
(2)指导学生理解题意。
(3)学生独立解决问题。
(4)交流汇报作法和结果。
5、质疑
学生看书80~81页,质疑
三、联系实际,应用新知。
1、完成课本82页练习十五第2题。
学生读题,理解题意,独立完成后汇报结果,鼓励多种方法。
2、小小判官。
(1)一个平行四边形的面积是8m2,它的高是4m,它的面积是8×4=32(m)。
(2)一个平行四边形的底长3cm,高7cm,它的面积是3×7=21(cm2)。
(3)一个平行四边形菜地的面积是40m2,它的高是5m,它的底长40×5=200(m)
4、完成课本83页练习十五第5题。
分析题意,学生试做,汇报讨论方法,说明:等底等高的两个平行四边形面积相等。
四、全课总结,知识升华。
1、这节课你有什么收获?学会了什么?
2、有何感想?
平行四边形教案 6
教学目标:通过练习,使学生进一步理解和掌握平行四边形的面积计算的公式,能够熟练地进行有关的平行四边形的面积计算。此外,还要使学生明白:平行四边形的面积是一条底和这条底边上的高的乘积;等底等高的平行四边形面积相等。
教学重点:理解等底等高的平行四边形面积相等。
教学过程:
一、复习基础知识
1、请你说一说平行四边形的面积推导过程。(先同桌说,再指名说)
得到:S=AH
2、计算下面平行四边形的面积。(单位:厘米)
7.59.2
14
(1)让生独立做。
(2)检查,可能有两种情况:
14×7.5=105(平方厘米)14×9.2=128.8(平方厘米)
(3)讨论:你认为哪种正确?请说出理由。
(4)得到:平行四边形的面积,是一条底和这条底上的高的乘积。
3、先量出下面两个平行四边形的底和高,再算出它们的面积。
1.5厘米1.5厘米
2厘米2厘米
(1)让学生量一量,算一算。
(2)检查:两个图形的面积都是2×1.5=3(平方厘米)
(3)讨论:通过计算这两个平行四边形的面积,你得到什么结论?
(4)得到:等底等高的平行四边形面积相等。(强调“等底等高”的`意思,帮助学生理解。)
二、练习
1、选择适当的底和高,计算下面各个平行四边形的面积。(单位:厘米)
10
5624
12
18
20
2、量出下面两个平行四边形的底和高,分别计算它们的面积。
3、有一块平行四边形的铁皮,底是8.5厘米,高是7.2厘米,面积是多少平方厘米?
4、一块平行四边形的土地,底是27米,是高的3倍。这块地的面积是多少平方米?
5、有一块平行四边形的钢板,底是4.6米,高是5米,求它的面积。这种钢板1平方米重59千克,这块平行四边形钢板重多少千克?
6、下面两个平行四边形的面积有什么关系?
8厘米
12厘米
7、填空。
(1)平行四边形的底不变,高扩大2倍,面积()。
(2)平行四边形的底和高都扩大2倍,面积()。
(3)平行四边形的底扩大6倍,高缩小2倍,面积()。
三、总结。
平行四边形教案 7
教学目标:
1、通过直观演示,个体操作,集体交流,帮助学生掌握平行边形的特性:易变形。
2、使学生初步认识平行四边形,初步体会平行四边形的对边相等的特征。
3、积极引导学生参与学习,帮助学生建立初步的空间观念和逻辑观念。
教学重点:
理解平行四边形的特点和特性。
教学难点:
运用平行四边形对边相等的特点解决画图、改图等问题。
一、导入
1、问学生是否到齐?你们忘了小狮子,它说也要来。想得到它吗?今天做出你最好的表现吧。
2、数学大王出考题:复习各种已学过的立体图形和平面图形。
3、教师出示教具:三角形框架,长方形框架,让学生说出名称,再把长方形框架拉成——平行四边形
引入新课,揭题,贴平行四边形框架
一、新课教学
1、找平行四边形
在主题图上找
在学校里找
在身边生活中找平行四边形
2、认识平行四边形的'特性——易变形。
会听口令的平行四边形(初步感知)
学生说口令,老师把平行四边形框架移动,向左——向右——变大——缩小。
设疑:三角形也会听口令吗?摆弄框架。
通过对比,让学生说说自己的感受。
分组让学生推拉学具:三角形、平行四边形框架
发现两图形特性:易变性和稳定性平行四边形:易变性
三角形:稳定性
介绍三角形稳定性在生活中的应用——建筑排山,木工修櫈
介绍平行四边形易变形特性在生活中的应用。
3、认识平行四边形的特点——对边相等。
提问:平行四边形由几条边围成?演示。板出上、下、左、右四边。
解释对边的定义。
设疑:是否随意四条边就可以围成平行四边形?
演示围不出平行四边形的情况。
把上下左右对边放在一起,比较两边的长度。让学生发现它们两边相等。
?小结:平行四边形对边相等。
根据对边相等这个特征,判断钉子板上哪个是平行四边形。
三、动手实践,深化认识平行四边形。
1、2人小组,合作,在钉子板上围出一个平行四边形,并互相判断。
2、画平行四边形。
课件演示在方格纸上画平行四边形的方法。
教师边示范,边让学生动手,尝试画投影所示相同的平行四边形。
让学生自由画一个平行四边形。
3、剪平行四边形。
示范把一张长方形纸剪成一个平行四边形。强调加重折痕(对折2次)
分四人小组,按要求各剪一个平行四边形。
组长评选出每组一个剪得最好的平行四边形,由该同学贴在黑板相应位置展示。
设疑:为什么同样的一张纸,有些平行四边形大一些?有些小一些?
小组讨论,交流探究。
小结:浪费的越少,可用的越多。
行为教育:合理利用,减少浪费——包括:纸张、原料、介玻璃、建筑、时间。
四、课堂练习。
1.书本39第1题。
2.数出图中共有几个平行四边形。(小组共探)
五、总结全课。
六、布置作业。
机动题:(2)心灵手巧的小裁缝——把不规则图形剪成最大的平行四边形。(小组共探,分工合作)
平行四边形教案 8
教学目标
1.使学生掌握的意义及特征,了解其特性,能够正确画出底所对应的高。
2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念。
教学重点
掌握平行四边形的意义及特征。
教学难点
理解平行四边形的底和高。
教学过程
一、复习准备。
我们已经学过一些几何图形,观察一下这些图形有什么共同特点?
在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形。
教师提问:我们学过哪些四边形呢?
学生举例。
说说哪些物体表面是平行四边形?
教师出示下图,让学生初步感知平行四边形。
二、学习新课。
1.理解平行四边形的意义。
首先出示一组图形。
教师提问:这些图形是什么形?它们有什么特征?
(1)看到这个名称你能想到什么?(板书:平行、四边形)
教师提问:你认为什么是四边形?你学过的什么图形是四边形的?
(2)动手测量。
指名到黑板上用三角板检验一下,每个图形的对边怎样。
(3)抽象概括。
根据你测量的结果,能说说什么叫平行四边形吗?
小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义。(板书:两组对边分别平行的四边形叫做平行四边形。)
教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的`四边形”。
(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】
2.平行四边形的特征和特性。
(1)教师演示。
教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉。引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?
学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角。
(2)动手操作。
学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行。
(3)归纳平行四边形特性。
(4)对比。
三角形具有稳定性,不容易变形。平行四边形与三角形不同,容易变形,也就是具有不稳定性。
3.学习平行四形的底和高。
(1)认识平行四边形的底和高。
教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。这条对边叫做平行四边形的底。
(2)找出相应的底和高。【继续演示课件“平行四边形”】
引导学生观察:图中有几条高?它位相对应的底各是哪条线段?
使学生明确:从b点画高,它的底是cd;从d点画高,它的底是bc.
(3)画平行四边形的高。【继续演示课件“平行四边形”】
教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法。从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高。这里高要画在平行四边形内,不要求把高画在底边的延长线上。
①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形。(还可以把平行四边形变成长方形)
引导学生比较长方形和平行四边形的异同点,使学生明确:
相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形。不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形。
②引导学生比较正方形和平行四边形的相同点和不同点。
使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形。因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形。
③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】
三、巩固练习。【继续演示课件】
1.判断下列图形哪些是平行四边形?
2.指出平行四边形的底,并画出相应的高。
3.在钉子板上围出不同的平行四边形。
4.数一数下图中有()个平行四边形。
四、教师小结。
1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)
2.组织学生对所学知识提出质疑,并解疑。
3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)
五、布置作业。
平行四边形教案 9
教学目标
1.通过操作活动,经历推导平行四边形的面积计算公式的过程。
2.能运用平行四边形的面积计算公式计算相关图形的面积并解决一些实际问题。
教学重点
学会平行四边形的面积的计算方法。
教学难点
平行四边形面积公式的推导过程。
教具、学具
学生准备几个平行四边形的纸片、剪刀、胶带等。
教师指导与教学过程
学生学习活动过程
设计意图
一、创设情境
公园准备在一块平行四边形的空地上铺上草坪,这块空地的面积是多少?
二、合作探究
1.怎样把平行四边形转化成长方形。
引导学生通过剪、拼把平行四边形转化成长方形。并让学生说说是沿那条线剪的。
用数格子方法的老师不要反对,而是引导他们知道当出现不满1格时,都当作半格数。
学生看书上的图。思考:书上的问题。
学生分小组进行讨论或动手用带来的纸片等进行操作得出这个平行四边形的面积。可以用数格子的方法,也可以用剪、拼等方法
学生做完后老师让学生说说怎么想的,与其他组进行交流。重点说说用剪拼方法的学生,怎样把平行四边形转化成长方形的。
逐步将问题转到平行四边形的面积,从而使学生感到学习新知识的必要性。
让学生通过自己的探索理解解决问题的方法和平行四边形面积的推导过程。
教师指导与教学过程
学生学习活动过程
设计意图
2.归纳
以多种探索方法为基础,归纳计算平行四边形面积的基本方法。
3.解决问题
根据总结出来的公式求出上面的草坪的面积。并用数格子的结果验证。
三、知识应用
完成课后练习
试一试
学生在剪拼中,会出现多种剪法,根据学生的多种剪法,教师组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的`关系,从而推导出计算平行四边形面积的公式。
平行四边形面积=底×高
S=a×h
4×3=12m2
学生独立完成课后试一试中的题目
培养学生解决完问题后要主动总结方法和规律。
板书设计:平行四边形的面积
平行四边形的面积=底×高
S=ah
教学反思:
课题
平行四边形的面积
课型
练习课
教学目标
1.进一步理解推导平行四边形的面积计算公式的过程。
2.能比较熟练地运用平行四边形的面积公式,解答有关的实际问题。
教学重点
学会平行四边形的面积的计算方法。
教学难点
平行四边形面积公式的推导过程。
教具、学具
学生准备三角板,平行四边形纸片。
教师指导与教学过程
学生学习活动过程
设计意图
一、试一试
求下面平行四边形的面积,与同学说说你的方法。
学生小组讨论用不同的方法解决这两个平行四边形的面积问题。
说说,长方形的长是平行四边形的什么?长方形的宽是平行四边形的什么?
试试用代入字母公式的方法解平行四边形的面积。
复习平行四边形的面积计算方法,引导学生自己总结计算方法。
教师指导与教学过程
学生学习活动过程
设计意图
二、练一练
第2小题分别计算图中每个平行四边形的面积。说说发现。
三、布置作业
练一练的P1、3、4题。
通过计算每个平行四边形的面积,让学生逐步发现平行四边形的变形特点,从而使学生能形象地认识“等积变形”。理解等底等高的平行四边形的面积相等。
发现平行四边形的底和高相等时,其面积也相等
板书设计:平行四边形的面积
平行四边形教案 10
【教学内容】:
教材第64~65页例1、例2。
【教学目标】:
1.理解并掌握平行四边形的概念和特性。
2.认识平行四边形各部分的名称,会画平行四边形的高。
【重点难点】:
重点:理解和掌握平行四边形的特性。
难点:画平行四边形的高。
【教学过程】:
一、创设情境,引入新课
1.我们认识过平行四边形,你能说出在哪些地方见过平行四边形吗?
2.点名回答后出示例1图。同学们说的都对,这三幅图中也都有平行四边形。今天我们继续学习平行四边形。
(板书课题:平行四边形)
二、自主探究
1.教学例1。
(1)平行四边形的边有什么特点?
用两把三角尺研究一下。
以小组为单位,利用三角尺、直尺等学具,展开讨论、交流和验证活动。
请小组代表汇报,教师归纳说明。
(板书:两组对边分别互相平行的四边形,叫做平行四边形)
(2)认识平行四边形各部分的名称。
教师对照画图所示,分别讲解各部分的名称,并标出各名称。从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
(板书:)
(3)教材第64页“做一做”。
学生独立完成,指名板演,再集体订正。
2.教学例2。
(1)用四根吸管串成一个长方形,然后用两手捏住长方形的两个对角,向相反方向拉。组织学生用吸管和图钉动手做一做。
(2)互相交流自己的发现并归纳结论。
引导学生归纳认识:平行四边形容易变形。(板书)
(3)介绍平行四边形特征在日常生活中的应用。
课件演示:伸缩门的.开、关过程。
(4)教材第65页“做一做”第1题。
拿出准备好的四根小棒,摆一个平行四边形。
想一想:平行四边形的四条边确定了,它的形状能确定吗?
小组议一议,摆一摆。
三、实践应用
1.教材第65页“做一做”第2题。
在点子图上画出两个不同的平行四边形,再分别画出它们的高并量出来。
教师先示范画图,学生再独自练习。
2.教材“练习十一”第1题。
图中那样画出来的图形是平行四边形吗?为什么?
小组内议一议,交流自己的看法,小组代表汇报。
你想这样画平行四边形吗?试一试。
3.教材“练习十一”第2题。
你能用完全相同的两套三角尺拼出平行四边形吗?
拼一拼,小组内合作完成。
4.教材“练习十一”第3题。
(1)动手量出平行四边形的各个角,你能发现什么?
(2)指名几个学生回答后,教师归纳。
(3)平行四边形的对角相等。
四、课堂小结
这节课我们学习了哪些知识?
【平行四边形教案】相关文章:
平行四边形的面积教案11-08
平行四边形的面积教案01-17
《平行四边形的面积》教案01-02
《平行四边形的认识》教案07-09
平行四边形面积教案02-09
《平行四边形的认识》教案03-15
《平行四边形的面积》教案06-23
《平行四边形面积的计算》教案09-14
平行四边形教案四篇05-14