平行四边形教案集锦10篇
作为一位不辞辛劳的人民教师,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。教案应该怎么写才好呢?下面是小编为大家收集的平行四边形教案10篇,希望能够帮助到大家。
平行四边形教案 篇1
教学目标:
(1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。
(2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学重点:通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。
教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学准备:教具、投影。
教学过程:
一、复习准备:
1.平行四边形、三角形、梯形的`概念。
2.平行四边形、三角形的性质。
3.各图形的对称情况。
4.图形的大小用面积来表示。 (引人新课)
二、新授
1.投影,并观察,填书本P1的空格
2.操作:用割补法把平行四边形拼成长方形。
3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?
4.得出:
长方形的面积= 长 × 宽
平行四边形的面积=( )×( )
5.怎样计算下面图形的面积?
平行四边形教案 篇2
教学目的:
1、深入了解平行四边形的不稳定性;
2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。
教学重点:
平行四边形的性质和判定。
教学难点:
性质、判定定理的运用。
教学程序:
一、复习创情导入
平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:
2、自学质疑:自学课本P79-82页,并提出疑难问题。
3、分组讨论:讨论自学中不能解决的问题及学生提出问题。
4、反馈归纳:根据预习和讨论的效果,进行点拨指导。
5、尝试练习:完成习题,解答疑难。
6、深化创新:平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的'平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
7、推荐作业
1、熟记“归纳整理的内容”;
2、完成《练习卷》;
3、预习:(1)矩形的定义?
(2)矩形的性质定理1、2及其推论的内容是什么?
(3)怎样证明?
(4)例1的解答过程中,运用哪些性质?
思考题
1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?
跟踪练习
1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )
2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。
3、下列条件中,能够判断一个四边形是平行四边形的是( )
(A)一组对角相等; (B)对角线相等;
(C)两条邻边相等; (D)对角线互相平分。
创新练习
已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)
达标练习
1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。
2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。
综合应用练习
1、下列条件中,能做出平行四边形的是( )
(A)两边分别是4和5,一对角线为10;
(B)一边为4,两条对角线分别为2和5;
(C)一角为600,过此角的对角线为3,一边为4;
(D)两条对角线分别为3和5,他们所夹的锐角为450。
推荐作业
1、熟记“判定定理3”;
2、完成《练习卷》;
3、预习:
(1)“平行四边形的判定定理4”的内容 是什么?
(2)怎样证明?还有没有其它证明方法?
(3)例4、例5还有哪些证明方法?
平行四边形教案 篇3
【教学目标】
1、知识与技能:
探索与应用平行四边形的对角线互相平分的性质,理解平行线间的距离处处相等的结论,学会简单推理。
2、过程与方法:
经历探索平行四边形性质的过程,进一步发展学生的逻辑推理能力及有条理的表达能力。
3、情感态度与价值观:
在探索平行四边形性质的过程中,感受几何图形中呈现的数学美。让学生学会在独立思考的基础上积极参与对数学问题的讨论,享受运用知识解决问题的成功体验,增强学好数学的自信心。
【教学重点】:
探索并掌握平行四边形的对角线互相平分和平行线间的距离处处相等的性质。
【教学难点】:
发展合情推理及逻辑推理能力
【教学方法】:
启发诱导法,探索分析法
【教具准备】:多媒体课件
【教学过程设计】
第一环节回顾思考,引入新课
什么叫平行四边形?
平行四边形都有哪些性质?
利用平行四边形的性质,我们可以解决相关的计算问题。阿凡提是传说中很聪明的人。一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说:给你两块地,一块是平行四边形形状的(如下图,AB=10,OA=3,BC=8),还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?
[学生活动]此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到合适的解决办法.
[教学内容]教师乘机引出课题,明确学习任务.
第二环节探索发现,应用深化
1、做一做:(电脑显示P100“做一做”的内容)
如图4-2,□ABCD的两条对角线AC,BD相交于点O,
(1)图中有哪些三角形是全等的?有哪些线段是相等的?
(2)能设法验证你的猜想吗?
[教师活动]教师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具(刻度尺、剪刀、图钉),尝试在交流合作中动手探究平行四边形的对角线有何性质.
2、观察、讨论:(小组交流)
通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。
[教师活动]探究结束后,分组展示结果,教师利用课件展示“旋转法”的实验过程,增强教学的直观性.
结论:平行四边形的对角线互相平分。
[教师活动]“实验都是有误差的,我们能否对此进行理论证明?”
[学生活动]此问题难度不大.
[教师活动]教师让学生口述证明过程.最后师生共同归纳出“平行四边形的对角线互相平分”这条性质.
活动二
刚才财主巴依提出的问题你能解决吗?
学生口述过程,教师最后给出规范的解题过程。
练一练:
财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中(点E与A、D不重合),你能知道这里有多少对全等三角形吗?
[教师活动]此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形.
活动三
电脑显示P101关于铁轨的`图片
提出问题:“想一想”
已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,
(1)线段AC,BD所在直线有什么样的位置关系?
(2)比较线段AC,BD的长。
引出平行线间距离的概念,并引导学生对比点到直线的距离,两点间距离等概念。
(让学生进一步感知生活中处处有数学)
A.(学生思考、交流)
B.(师生归纳)
解(1)由AC⊥b,BD⊥b,得AC//BD。
(2)a//b,AC//BD,→四边形ACDB是平行四边形
→AC=BD
归纳:
若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。
即平行线间的距离相等。
[议一议]:
举你能举出反映“平行线之间的垂直段处处相等实例吗”?
活动目的:
通过生活中的实例的应用,深化对知识的理解。
第三环节巩固反馈,总结提高
1、说一说下列说法正确吗
①平行四边形是轴对称图形()
②平行四边形的边相等()
③平行线间的线段相等()
④平行四边形的对角线互相平分()
2、已知,平行四边形ABCD的周长是28,对角线AC,BD相交于点O,且△OBC的周长比△OBA的周长大4,则AB=
3、已知P为平行四边形ABCD的边CD上的任意点,则△APB与平行四边形ABCD的面积比为
4、平行四边形ABCD中,AC,DB交于点O,AC=10。DB=12,则AB的取值范围是什么?
5、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
第四环节评价反思,目标回顾
活动内容:
本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?
[布置作业]:
P102习题4.21,2,3
探究题已知如下图,在ABCD中,AC与BD相交于点O,点E,F在AC上,且BE∥DF.求证:BE=DF
平行四边形教案 篇4
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教学过程:
一、基本练习
1.口算。(练习十六第4题)
4.90.75.4+2.640.250.87-0.49
530+2703.50.2542-98612
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:25078010000=1.95公顷,
再求共收小麦多少千克:70001.95=13650千克
⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500(250781000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
1.6厘米
2.5厘米
⑴你能找出图中的两个平行四边形吗?
⑵他们的面积相等吗?为什么?
⑶生计算每个平行四边形的`面积。
⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。
28平方米
7米
分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十六第7题。
四、作业
练习十六第5、8、9、11题。
平行四边形教案 篇5
课型:
新授课。
教学分析:
本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。
教学目标:
(一)知识与技能:
引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。
(二)过程与方法:
学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。
(三)情感态度价值观:
培养学生积极参与的学习品质,使学生获得成功的体验,感受教学与日常生活的密切联系,树立学好数学的信心。
教学策略:
创设情景、动手实践、交流合作。
教具学具:
多媒体课件、长方形、正方形、格子纸、三角板。
教学流程:
一、创设情景,提出问题。
今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的'图形吗?(抽出长方形、正方形。引出课题)
二、协作探索,研究问题。
1、教学长方形、正方形。
(1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?
(2)教学对边的概念:
在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示)
(3)小组合作研究长方形、正方形的特点。
下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。
长方形的对边和正方形的边有什么特点,角有什么特点?
(4)指名汇报,并演示自己发现的过程。
共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。
(5)在方格纸上画出长方形、正方形
2、教学平行四边形。
(1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?
我们把这样的四边形叫做平行四边形。
(2)平行四边形的特点:
出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点?
(3)总结:平行四边形有四条边,四个角,对边相等。
(4)动手操作:拿出活动的四边形:拉动之后你发现了什么?
动手操作
三、运用知识,解决问题。
1、猜一猜。(多媒体演示)
2、找一找。(多媒体演示)
3、说一说。
四、总结。
你今天从智慧星那里学到了什么?
板书设计:
长方形正方形和平行四边形
边:4条
4条4条
对边相等全都相等对边相等
角:4个直角4个直角4个
平行四边形教案 篇6
教学目标
知识技能目标
1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.
2.理解平行四 边形的这两种判定方法,并学会简单运用.
过程与方法目标
1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.
2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.
情感态度价值观目标
通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.
教学重点:
平行四边形判定方法的探究、运用.
教学难点:
对平行四边形判定方法的探究以及平行四边形的'性质和判定的综合运用.
教学过程
第一环节 复习引入:
( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)
问题1(多媒体展 示问题)
1.平行四边形的定义是什么?它有什么作用?
2.平 行四边形还有哪些性质?
问题2
有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?
第二环节 探索活动(12分钟,学生动手探究,小组合作)
活动1:
工具:两根长度相等的笔,
两条平行线(可利用横格线).
动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?
思考1.1:你能说明你所摆出的四边形是平行四边形吗?
思考1.2:以上活动事实,能用字语言表达吗?
目的:
得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形.
活动2
工具:两根不同长度的细纸条.
动手:能否用这两根细纸条在平面上
摆出平行四边形?
思考2.1:你能说明你们摆出的四边形是平行四边形吗?
思考2.2:以上活动事实,能用字语言表达吗?
目的:
得出平行四边形的性质:对角线互相平分的四边形是平行四边形
第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)
随堂练习:
1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.
(1)OA与OC,OB与OD相等吗?
(2)四边形BFDE是平行四边形吗?
(3)若点E,F在OA,OC的中点上,你能解决上述问题吗?
2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?
(让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)
学生想到的画法有:
(1)分别过A,C作BC,BA的平行线,两平行线相交于D;
(2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;
(3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.
第四环节 小结:(4分钟,学生回答问题)
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.
第五环节 布置 作业:
B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题
A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?
② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?
平行四边形教案 篇7
【实验目的】
验证互成角度的两个力合成时的平行四边形定则。
【实验原理】
等效法:使一个力F的作用效果和两个力F1、F2的作用效果都是让同一条一端固定的橡皮条伸长到某点,所以这一个力F就是两个力F1和F2的合力,作出F的图示,再根据平行四边形定则作出F1和F2的合力F的图示,比较F和F的大小和方向是否都相同。
【实验器材】
方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔。
【实验步骤】
⑴用图钉把白纸钉在水平桌面上的方木板上,并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。
⑵用两只弹簧测力计分别钩住细绳套,互成角度地拉像皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向。
⑶只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向。
⑷用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示。
⑸用刻度尺从O点按同样的标度沿记录的方向作出只用一只弹簧测力计的拉力F的图示。
⑹比较一下,力F与用平行四边形定则求出的合力F的大小和方向是否相同。
锦囊妙诀:白纸钉在木板处,两秤同拉有角度,读数画线选标度,再用一秤拉同处,作出力的矢量图。
交流与思考:每次实验都必须保证结点的位置保持不变,这体现了怎样的物理思想方法?若两次橡皮条的伸长长度相同,能否验证平行四边形定则?
提示:每次实验保证结点位置保持不变,是为了使合力的作用效果与两个分力共同作用的效果相同,这是物理学中等效替换的思想方法。由于力不仅有大小,还有方向,若两次橡皮条的'伸长长度相同但结点位置不同,说明两次效果不同,不满足合力与分力的关系,不能验证平行四边形定则。
【误差分析】
⑴用两个测力计拉橡皮条时,橡皮条、细绳和测力计不在同一个平面内,这样两个测力计的水平分力的实际合力比由作图法得到的合力小。
⑵结点O的位置和两个测力计的方向画得不准,造成作图的误差。
⑶两个分力的起始夹角太大,如大于120,再重做两次实验,为保证结点O位置不变(即保证合力不变),则变化范围不大,因而测力计示数变化不显着,读数误差大。
⑷作图比例不恰当造成作图误差。
交流与思考:实验时由作图法得到的合力F和单个测力计测量的实际合力F忘记标注而造成错乱,你如何加以区分?
提示:由弹簧测力计测量合力时必须使橡皮筋伸直,所以与AO共线的合力表示由单个测力计测量得到的实际合力F,不共线的合力表示由作图法得到的合力F。
【注意事项】
⑴不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的位置。
⑵使用弹簧秤前,应先调节零刻度,使用时不超量程,拉弹簧秤时,应使弹簧秤与木板平行。
⑶在同一次实验中,橡皮条伸长时的结点位置要相同。
⑷被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。
⑸读数时应正对、平视刻度。
⑹两拉力F1和F2夹角不宜过小,作力的图示,标度要一致。
交流与思考:如何设计实验探究两力合力随角度的变化规律?如何观察合力的变化规律?
提示:保持两力的大小不变,改变两力之间的夹角,使两力的合力发生变化,可以通过观察结点的位置变化,判断合力大小的变化情况,结点离固定点越远,说明两力的合力越大。
【正确使用弹簧秤】
⑴弹簧秤的选取方法是:将两只弹簧秤调零后互钩水平对拉,若两只弹簧在对拉过程中,读数相同,则可选;若读数不同,应另换弹簧,直至相同为止。
⑵弹簧秤不能在超出它的测量范围的情况下使用。
⑶使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差)。
⑷被测力的方向应与弹簧秤轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。
⑸读数时应正对、平视刻度。
平行四边形教案 篇8
教学目标
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的.实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
平行四边形教案 篇9
一、教材分析
1.教材的地位与作用
平行四边形是最基本的几何图形,也是 “空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.
本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.
另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.
2.教学目标:
知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.
数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.
解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.
情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.
3.教学重点、难点:
重点:理解并掌握平行四边形的概念及其性质.
难点:运用平移、旋转的图形变换思想探究平行四边形的性质.
4.教材处理:
基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.
首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.
然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的.探索者、知识的构建者、愉快的收获者.
最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.
总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.
二.教学方法与手段
本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.
平行四边形教案 篇10
【教学内容】
人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。
【教学目标】
1、通过操作和讨论掌握平行四边形和梯形的特征。
2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。
3、注意培养学生的空间观念和想像力。
【教学重点】
通过操作和讨论掌握平行四边形和梯形的特征。
【教学难点】
了解平行四边形与长方形和正方形的关系。
【教学准备】
教师准备:直尺,三角板,课件。
学生准备:直尺,三角板,白纸,铅笔。
【教学过程】
一、通过观察,加深学生对四边形特点的了解。
1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。
(1) (2) (3)
(4) (5) (6)
师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?
生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。
师:你知识三角形和四边形有什么特点吗?
生1:三角形有三条边,三个角。
生2:四边形有四条边,四个角。
师:对,今天我们来学习两种特殊的四边形。
[设计说明:通过这部分的教学活动,加深学生对三角形和四边形的理解,为下一步学习平行四边形和梯形作准备。]
二、通过观察讨论,让学生发现平行四边形和梯形的特点。
1、通过让学生观察讨论,认识平行四边形和长方形的定义。
出示课件:在电脑上出示一组四边形。
(1) (2) (3)
(4) (5) (6)
师:电脑上的这组图形都是什么图形?
生:四边形。(有前面的知识作铺垫,学生很容易回答出来)
师:你能把它们分类吗?
生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)
生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。
师:你能说说把图(1)、(3)、(6)分为一组道理吗?
生1:因为图(1)、(3)、(6)有两组平行线。
师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)
生:确实有两组平行线。
师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的定义,并板书)
师:谁能说说把图(2)、(4)、(5)分为一组的道理?
生2:它们只有一组平行线。
师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的定义,并板书)
2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。
师:同学们,我们已学习了平行四边形的定义,请问长方形和正方形是不是平行四边形呢?
生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。
生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。
生3:我觉得长方形和正方形是平行四边形,根据平行四边形的定义,只要有两组对边平行的四边形就是平行四边形,
师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。
师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。
师:你们能说说长方形和正方形特殊的地方吗?
生:它的四个角都是直角。
师:对,这说是平行四边形特殊的地方。
(通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的定义。)
3、进一步认识平行四边形和梯形的特点。
师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)
生1:我发现平行四边形对边是相等的。
师:请同学们用尺子量一量。
生2:我发现平行四边形的对角相等。
师:请同学们用量角器量一量。
师:这两位同学的发现正确吗?
生:完全正确。
师:梯形有这些特点吗?请同学们量一量。
生:没有,梯形的对边不相等,对角也不相等。
(通过学生的操作,进一点了解平行四边形和梯形的特点)
师:下面我们可以用图表表示平行四边形和梯形的特点。
图形对边平行对边对角
平行四边形有两组对边平行相等相等
梯形只有一组对边平行不相等不相等
(用图表表示平行四边形的特点,使学生更好地理解平行四边形和梯形的区别和联系。)
三、认识四边形之间的关系。
师:同学们,平行四边形和梯形是不是四边形?
生:是。
师:我们可以用这个图来表示:
平行四边形
梯形
四边形
师:长方形和正方形应怎样表示呢?
生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。
师:对,应这样表示:
平行四边形
长方形 梯形
正方形
四边形
四、巩固练习。
1判断下面那些图形的平行四边形,那些图形的梯形。
(1) (2) (3)
(4) (5) (6)
(7) (8) (7)
(使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的'理解)
2填空。
1、两组对边( )的四边形叫做平行四边形。
2、( )的四边形叫做梯形。
3、长方形和正方形都有两组对边分别( )且( ),所以它们是特别的( )。
4、平行四边形和梯形都是( )形,它们都有( ),( )个角。
(通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)
五、全课小结。
师:今天你们学到了什么?
生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。
[设计说明:本设计通过学生对平行四边形和梯形的观察和探索,发现平行四边形和梯形的特点,并动手验证所发现的观点,从而了解平行四边形和梯形的定义。再通过学生的讨论,得出长方形和正方形是特殊的平行四边形的结论。本设计体现了探索-发现-验证的学习过程,使学生在动手、动脑和动口的过程中掌握本节课的重点和难点。]
【平行四边形教案】相关文章:
平行四边形教案08-27
平行四边形面积教案02-09
平行四边形的面积教案01-17
《平行四边形的面积》教案01-02
《平行四边形的认识》教案03-15
《平行四边形的面积》教案06-23
《平行四边形的认识》教案07-09
平行四边形的认识教案07-30
精选平行四边形教案八篇05-22
精选平行四边形教案20篇10-19