有关平行四边形教案锦集8篇
作为一位优秀的人民教师,时常需要用到教案,教案是教学活动的依据,有着重要的地位。快来参考教案是怎么写的吧!以下是小编整理的平行四边形教案8篇,仅供参考,欢迎大家阅读。
平行四边形教案 篇1
【教学目标】
1、知识与技能:
探索与应用平行四边形的对角线互相平分的性质,理解平行线间的距离处处相等的结论,学会简单推理。
2、过程与方法:
经历探索平行四边形性质的过程,进一步发展学生的逻辑推理能力及有条理的表达能力。
3、情感态度与价值观:
在探索平行四边形性质的过程中,感受几何图形中呈现的数学美。让学生学会在独立思考的基础上积极参与对数学问题的讨论,享受运用知识解决问题的成功体验,增强学好数学的自信心。
【教学重点】:
探索并掌握平行四边形的对角线互相平分和平行线间的距离处处相等的性质。
【教学难点】:
发展合情推理及逻辑推理能力
【教学方法】:
启发诱导法,探索分析法
【教具准备】:多媒体课件
【教学过程设计】
第一环节回顾思考,引入新课
什么叫平行四边形?
平行四边形都有哪些性质?
利用平行四边形的性质,我们可以解决相关的计算问题。阿凡提是传说中很聪明的人。一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说:给你两块地,一块是平行四边形形状的(如下图,AB=10,OA=3,BC=8),还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?
[学生活动]此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到合适的解决办法.
[教学内容]教师乘机引出课题,明确学习任务.
第二环节探索发现,应用深化
1、做一做:(电脑显示P100“做一做”的内容)
如图4-2,□ABCD的两条对角线AC,BD相交于点O,
(1)图中有哪些三角形是全等的?有哪些线段是相等的?
(2)能设法验证你的猜想吗?
[教师活动]教师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具(刻度尺、剪刀、图钉),尝试在交流合作中动手探究平行四边形的对角线有何性质.
2、观察、讨论:(小组交流)
通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。
[教师活动]探究结束后,分组展示结果,教师利用课件展示“旋转法”的实验过程,增强教学的直观性.
结论:平行四边形的对角线互相平分。
[教师活动]“实验都是有误差的,我们能否对此进行理论证明?”
[学生活动]此问题难度不大.
[教师活动]教师让学生口述证明过程.最后师生共同归纳出“平行四边形的对角线互相平分”这条性质.
活动二
刚才财主巴依提出的问题你能解决吗?
学生口述过程,教师最后给出规范的'解题过程。
练一练:
财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中(点E与A、D不重合),你能知道这里有多少对全等三角形吗?
[教师活动]此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形.
活动三
电脑显示P101关于铁轨的图片
提出问题:“想一想”
已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,
(1)线段AC,BD所在直线有什么样的位置关系?
(2)比较线段AC,BD的长。
引出平行线间距离的概念,并引导学生对比点到直线的距离,两点间距离等概念。
(让学生进一步感知生活中处处有数学)
A.(学生思考、交流)
B.(师生归纳)
解(1)由AC⊥b,BD⊥b,得AC//BD。
(2)a//b,AC//BD,→四边形ACDB是平行四边形
→AC=BD
归纳:
若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。
即平行线间的距离相等。
[议一议]:
举你能举出反映“平行线之间的垂直段处处相等实例吗”?
活动目的:
通过生活中的实例的应用,深化对知识的理解。
第三环节巩固反馈,总结提高
1、说一说下列说法正确吗
①平行四边形是轴对称图形()
②平行四边形的边相等()
③平行线间的线段相等()
④平行四边形的对角线互相平分()
2、已知,平行四边形ABCD的周长是28,对角线AC,BD相交于点O,且△OBC的周长比△OBA的周长大4,则AB=
3、已知P为平行四边形ABCD的边CD上的任意点,则△APB与平行四边形ABCD的面积比为
4、平行四边形ABCD中,AC,DB交于点O,AC=10。DB=12,则AB的取值范围是什么?
5、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
第四环节评价反思,目标回顾
活动内容:
本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?
[布置作业]:
P102习题4.21,2,3
探究题已知如下图,在ABCD中,AC与BD相交于点O,点E,F在AC上,且BE∥DF.求证:BE=DF
平行四边形教案 篇2
第五册平行四边形、三角形面积公式
教学过程
师:小朋友们,今天刘老师带来一个信封,谁来猜猜里面藏着什么?
生1:卡片。
生2:奖品。
……
师:同学们的想象力真丰富!我请小朋友上来把它揪出来,但你每拿出一件物品得向小朋友们介绍,你打算用它干什么?
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 ……(停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的面积。
教学反思
这是一个展示学具的片段。它们都是为学生研究平形四边形、三角形的 面积公式服务的。分别有:剪刀一把、塑料透明方格一张、平行四边形、三角形模型各二张。何必如此耗费时间呢?直接出示学具,学生不也能知道呢?
不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。
……
教学过程
师:我们已研究出平行四边形的面积公式,成为了发现者。这可是一项了不起的.创举。让我们再接再厉,发现更多的数学奥秘。如果我只给你一把剪刀、一张平行四边形的学具,你还能发现其他图形的面积公式吗?
(学生动手操作,不久就纷纷举手)
生1:老师,我把对角一剪就变成了两个三角形。
生2:老师,我剪出的三角形两个一样的。
师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的
面积公式推导出三角形的面积公式吗?
(学生小组讨论)
生3:就是除以2。
师: 你能完整的说一说什么除以2吗?
生3:平行四边形的面积除以2。用字母表示:S=ab2。
生4:我能把它剪成两个梯形教后反思
教材编排中平形四边形、三角形的面积公式推导各安排了二个课时,三角形的面积公式又重新推导一次。而在本堂课上在平行四边形后学生仅用了5分钟就推导并掌握了三角形的面积公式。花最少的时间掌握一节课的内容,何乐而不为呢?
现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”
平行四边形教案 篇3
一、 教学目标:
1.掌握用一组对边平行且相等来判定平行四边形的方法.
2.会综合运用平行四边形的四种判定方法和性质来证明问题.
3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.
二、 重点、难点
1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.
2.难点:平行四边形的判定定理与性质定理的综合应用.
三、例题的意图分析
本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.
四、课堂引入
1. 平行四边形的性质;
2. 平行四边形的判定方法;
3. 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?
结论:一组对边平行且相等的四边形是平行四边形.
五、例习题分析
例1(补充)已知:如图, ABCD中,E、F分别是AD、BC的'中点,求证:BE=DF.
分析:证明BE=DF,可以证明两个三角形全等,也可以证明
四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.
证明:∵ 四边形ABCD是平行四边形,
AD∥CB,AD=CD.
∵ E、F分别是AD、BC的中点,
DE∥BF,且DE= AD,BF= BC.
DE=BF.
四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
BE=DF.
此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.
例2(补充)已知:如图, ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F.求证:四边形BEDF是平行四边形.
分析:因为BEAC于E,DFAC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.
证明:∵ 四边形ABCD是平行四边形,
AB=CD,且AB∥CD.
BAE=DCF.
平行四边形教案 篇4
【设计理念】
本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容
【教学内容】
《义务教育教科书》人教版数学课本五年级上册87——88页。
【教材、学情分析】
平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。
学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。
【教学目标】
1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。
2、在探究的过程中感悟“转化”的数学思想和方法。
3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。
4、引领学生回顾反思,获得基本的数学活动经验。
【教学重点】
推导平行四边形面积计算公式。应用公式解决实际问题。
【教学难点】
理解平行四边形的面积计算公式的推导过程。
【教学准备】
平行四边形纸片若干,直尺、剪刀、。
【教学过程】
一、创设情境,激发兴趣。
讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。
【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】
二、组织探究,推导公式。
1、联系旧知,做出猜想。
看到这个题目,你想到了我们学过哪些有关面积的知识?
大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?
【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】
2、初步验证,感悟方法。
根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。
引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)
学生数方格并来验证自己的猜想。
【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】
3、剪拼转化,发现规律。
除了数方格,我们还能用什么方法来验证呢?(学生思考)
能否将平行四边形转化成我们学过的图形再来进行计算呢?
(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。
(2)展示交流。(演示)
【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】
4、观察比较,推导公式。
剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?
小结: 长方形面积 = 长 × 宽
平行四边形面积 = 底 × 高
S = a × h
【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】
5、展开想象,再次验证。
是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?
学生先闭眼想象,再借助手中的工具加以验证。
6、回顾反思,总结经验。
回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。
把平行四边形转化成长方形面积。(剪拼—转化)
然后找到转化前、后图形之间的'联系。(寻找—联系)
根据长方形面积公式推导出平行四边形面积公式。(推导—公式)
【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】
三、实践应用,解决问题。
1、解决实际问题
平行四边形花坛底是6米,高是4米,它的面积是多少?
2、出示如下图
算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?
4、现在你明白阿凡提是怎么打败巴依的了吗?
引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。
思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?
【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】
四、总结全课,拓展延伸。
转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。
通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。
【设计意图:试图把学生带入更加广阔的学习空间。】
五、板书设计
平行四边形的面积
长 方 形面积 = 长 × 宽
平行四边形面积 = 底 × 高
S = a × h
平行四边形教案 篇5
(一)教学目标
1.使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。
2.使学生掌握平行四边形和梯形的特征。
3.通过多种活动,使学生逐步形成空间观念。
(二)教材说明和教学建议 教材说明
本单元是在学生学习了角的度量的基础上教学的,内容包括:同一平面内两条直线的特殊位置关系,即垂直与平行;平行四边形和梯形的认识。学生在前面已经学习了有关四边形的知识,对平行四边形也有了初步的认识,这里着重给出的是平行四边形的特征以及与正方形、长方形的关系。梯形在这里是第一次正式出现,教材除教学梯形的特征外,还注意说明与平行四边形的联系和区别。
例题
具体内容及要求
垂直与平行
例1
认识同一平面内两条直线的特殊位置关系:平行和垂直。
例2
学习画垂线,认识“点到直线的'距离”。
例3
学习画平行线,理解“平行线之间的距离处处相等”。
平行四边形和梯形
例1
把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。
例2
认识平行四边形的不稳定性,认识平行四边形的底和高,及梯形的的各部分名称。
学习画高。
教学建议
1.关注学生已有的生活经验和知识基础,把握教学的起点和难点。
教学的任务是解决学生现有的认识水平与教育要求之间的矛盾,为学习而设计教学,是教学设计的出发点,也是归宿。这一单元中涉及的知识点:平行与垂直,平行四边形与梯形等,一方面这些几何图形在日常生活中应用广泛,学生头脑中已经积累了许多表象;另一方面,经过三年的数学学习,也具备了一定的知识基础。这些都是影响学生学习新知最重要的因素。为此,教师必须关注学生已有的生活经验和知识基础,从学生出发,把握教学的起点和难点,根据学生的实际情况,增加或补充一些内容。
2.理清知识之间的内在联系,突出教学的重点。
由于数学知识的系统性和严密的逻辑性,决定了旧知识中孕育着新内容,新知识又是原有知识的扩展。教学时,要善于理清知识间的联系,根据教学目标来确定内容的容量、密度和教学的重点,有机地联系单元、全册,乃至整个年级、整个学段的教学内容加以研究。如果把“平行与垂直”这一内容放到整个教材体系中,就不难发现它的学习既需要直线及角的知识做基础,同时又是认识平行四边形和梯形的基础。
3.注重学用结合,就地取材,充实教材内容。
尽管教材在素材的选材上尽可能地提供一些现实背景,设计了一些学以致用的习题,如借助于运动场景里的一些活动器材引出垂直与平行的内容,要求学生思考和讨论怎样测定立定跳远的成绩、怎样修路最近等。但由于教材的容量有限,还需要教师在教学过程中做必要的充实和拓展,使学生理解和认识数学知识的发生和发展过程,进一步认识和体会数学知识的重要用途,增强应用意识。
4.加强作图的训练和指导,重视作图能力的培养。
这一单元涉及到许多作图的内容,如画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高等,对四年级学生来说,这些都有一定的难度,教学时要加强作图的训练和指导,重视作图能力的培养。
5.本单元可用6课时完成。
平行四边形教案 篇6
学习目标:
1、理解并掌握平行四边形的定义
2、掌握平行四边形的性质定理1及性质定理2
3、提高综合运用知识的能力
预习指导:
1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。
2、____________________________________是平行四边形。
3、平行四边形的性质是:_________________________________________.
学习过程:
一、学习新知
1、平行四边形的定义
(1)定义:________________ ________________________叫做平行四边形。
(2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形
(3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形,
反过来,平行四边形就一定具有性质。
(4)平行四边形的表示:平行四边形ABCD 记作_________,读作___________.
2、平行四边形的性质
平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?
已知:如图 ABCD,
求证:AB=CD,CB=AD.
分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.
证明:
总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。
在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。
证明:
通过上面的证明,我们得到了:
平行四边形的性质定理1是_______________________________________.
平行四边形的性质定理2是_______________________________________.
二、应用举例:
例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的' 度数。
例1、如图,在平行四边形ABC D中,AE=CF,求证:AF=CE.
例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。
三、随堂练习
1.平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。
2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。
四、课堂小结 :
1、平行四边形的概念。
2、平行四边形的性质定理及其应用。
五、当堂检测
1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ).
(A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是
2.(选择)如图,在 ABCD中,如果EF∥AD,GH∥CD,
EF与GH相交与点O,那么图中的平行四边形一共有( ).
(A)4个 (B)5个 (C)8个 (D)9个
3.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.
平行四边形教案 篇7
教学内容:国标苏教版数学第八册P43-45。
教学目标:
1、学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。
2、学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。
3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。
教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。
教学难点:引导学生发现平行四边形的特征。
教学准备:配套多媒体课件。
教学过程:
一、生活导入。
1、(课件出示学校大门关闭和打开的录象,最后定格成放大的图片)教师谈话:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?根据回答,教师板书:平行四边形。
2、你们还能找出我们生活中见过的一些平行四边形吗?学生回答后,教师课件出示一些生活中的平行四边形:如活动衣架、风筝、楼梯栏杆等。
3、今天这节课我们一起来进一步研究平行四边形,相信通过研究,我们将有新的收获。板书完整课题:认识平行四边形。
[评:《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”选择学生熟悉和感兴趣的素材,吸引学生的注意力,激发学生主动参与学习活动的热情,让学生初步感知平行四边形。]
二、探究特点。
1、刚才同学们已经能找出生活中的一些平行四边形了,那我们能不能利用身边的一些物品,自己来想办法来制作一个平行四边形呢?你们可以先看一看材料袋中有哪些材料,再独立思考一下准备怎么做;如果有困难的可以先看看学具袋中的平行四边形再操作。
2、大家已经完成了自己的创作,现在请你们和小组的同学交流一下,说说自己的做法和为什么这样做,然后派代表上来交流。
学生小组交流,教师巡视,并进行一定的'辅导。
3、哪个小组派代表上来交流?注意把你的方法展示在投影仪上,然后说说这么做的理由,其他小组等他们说完后可以进行补充。
(1)方法一:用小棒摆。请你说说你为什么这么做?要注意些什么呢?
(2)方法二:在钉子板上面围一个平行四边形。你介绍一下,在围的时候要注意些什么?怎样才能做一个平行四边形?
(3)方法三:在方格纸上画一个平行四边形。你能提醒一下大家吗?应该怎样才能得到一个平行四边形?
(4)用直尺画一个平行四边形。
……
(评:这个个环节的设计,本着学生为主体的思想,敢于放手,让学生的多种感官参与学习活动,让学生在操作中体验平行四边形的一些特点;既实现了探究过程开放性,也突出了师生之间、学生之间的多向交流,体现那了学生为本的理念。)
4、刚才我们已经能用多种方法来制作平行四边形,现在请大家在方格纸上独立在方格纸上画一个平行四边形,想想应该怎么画?注意些什么?
(评:本环节的设计,通过在方格纸上画,让学生再次感知平行四边形的一些特点,为下面的猜想、验证和画高作了铺垫。)
5、我们已经能够用不同的方法制作平行四边形,并且能够在方格纸上话一个平行四边形。那么这些大小不同的平行四边形到底有什么共同特点呢?下面我们一起来研究。
根据你们在制作平行四边形的时候的体会,你们可以猜想一下:平行四边形有哪些特点?(友情提示:课件中出示提示:我们可以从平行四边形的那些方面来猜想它的特征呢?边?角?)
6、学生小组讨论后提问并板书猜想:
对边可能平行;
对边可能相等;
对角相等;
……
7、你们真行,有了这么多的猜想,那我们能够自己想办法来证明这些猜想是否正确呢?请每个小组先认领一条,时间有多余可以再研究其他的猜想。
学生每小组上台认领一条猜想,学生分组验证猜想。
8、经过同学们的努力,我们已经自己验证了其中一条猜想,现在我们旧来交流一下,其他小组认真听好,他们的回答是否正确,你觉得怎样?
9、小组派代表上来交流自己小组的验证方法,其他小组在其完成后进行评价。
(1) 两组对边分别相等:学生介绍可以用对折或用直尺量的方法来验证对边相等后,教师用课件直观展示。
(2) 两组对边分别平行:学生汇报的时候如果不一定很完整,教师用课件展示:两条对边分别延伸,然后显示不相交。
(3) 对角相等:学生说出方法后,教师让学生再自己量一量。
……
最后,教师板书出经过验证特点:
两组对边分别平行并且相等;
对角相等;
内角和是360°
(评:这个环节的设计蕴涵了“猜想-验证-结论”这样一个科学的探究方法。给学生提供了充分的自制探索的空间,引导学生先猜测特点,再放手让学生自己去验证和交流,使学生在碰撞和交流中最后的出结论。在这个过程中,学生充分展示了自己的思维过程,在交流中与倾听中把自己的方法与别人的想法进行了比较。)
10、完成“想想做做1”。学生独立完成后说说理由。
三、认识高、底。
1、出示一张平行四边形的图,介绍:这是一个平行四边形,你能量出平行四边形两条红线间的距离吗?应该怎么量?把你量的线段画出来。
学生自己尝试后交流。
2、老师刚才发现,大家画的高位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)
说明:从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。
3、你能画出另一组对边上的高,并量一量吗?学生继续尝试。
完成后,让学生指一指:两次画的高分别垂直于哪一组对边。板书:高和一组对边对应。
4、完成“试一试”:(1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。
5、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角标记。如果有错误,让学生说说错在哪里。
(这个环节的设计,通过学生自己去量、去画,从而很方便得到了平行四边形的高和底的概念,在的出高和底对应的时候比较巧妙,学生学得轻松、明了。设计的练习也遵循循序渐进的原则,很好地让学生领悟了高的知识。)
四、练习提高。
1、想想做做1,哪些图形是平行四边形,为什么。
2、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。
3、想想做做3,用七巧板中的3块拼成一个平行四边形。
出示,你能移动其中的一块将它改拼成长方形吗?
4、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张平行四边形纸试一试。
5、想想做做6,用饮料管作成一个长方形,再拉成平行四边形,比一比长方形和平行四边形的相同点和不同点。
(评:在巩固练习中,注意通过学生动手、动脑来进一步掌握平行四边形的特点。来年系的层次清楚、逐步提高,学生容易接受,并且注意了引导学生去自主探索、合作交流。)
五、阅读调查
自主阅读“你知道吗?”,说说有什么收获,再到生活中去找找类似的例子。
六、全课小结
今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?
平行四边形教案 篇8
教学内容:
课本第73-74页练习十七第4-9题
教学要求:
1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。
2、养成良好的审题习惯,树立责任感。
教学重点:
能比较熟练地运用平行四边形的计算公式,解答有关的应用题。
教具准备:
口算卡片。
教学过程:
一、复习
1、平行四边形的面积计算公式是什么?
2、口算:
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
3、求平行四边形的面积。
(1)底12米,高是7米;(2)高13分米,底长6分米;
(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米
4、出示课题。
二、新授
1、补充例题
一块平行四边形的麦地底长125米,高24米,它的.面积是多少平方米?
(1)独立列式后,指名口述,教师板书。
(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?
让学生议一议,然后自己列式解答,最后评讲。
(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?
与上题比较,从数量关系上看,什么是相同的?什么是不同的?
让学生自己列式。
辨析:老师也列了三个算式,到底哪个对呢?帮个忙!
A900×(125×24÷10000)
B900÷(125×24)
C900÷(125×24÷10000)
2、(略)
三、巩固练习
练习十七第6、7题
四、课堂作业
练习十七第8、9题
⑧有一块平行四边形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?
⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?
板书设计:
平行四边形面积的计算
【平行四边形教案】相关文章:
平行四边形教案08-27
平行四边形的认识教案07-30
《平行四边形的面积》教案01-02
平行四边形面积教案02-09
《平行四边形的认识》教案03-15
《平行四边形的认识》教案07-09
《平行四边形的面积》教案06-23
平行四边形的面积教案01-17
精选平行四边形教案八篇08-01
精选平行四边形教案7篇09-27