- 相关推荐
鸡兔同笼教案 教学设计
作为一位优秀的人民教师,有必要进行细致的教学设计准备工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么大家知道规范的教学设计是怎么写的吗?下面是小编收集整理的鸡兔同笼教案 教学设计,希望能够帮助到大家。
鸡兔同笼教案 教学设计1
教学设计说明
按照我对教材的理解,和学生心理特点学习潜力的把握,对教学设计进行简单说明:
一、我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮忙学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于"鸡兔同笼"问题在人教版中是第一次出现,只有小部分学生可能在数奥书上见过,会做。大部分学生都是第一次遇到,因此在备课时我充分思考到这个状况,所以在教学本课的重难点用假设法解答"鸡兔同笼"问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮忙学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。通过这两步的学习,大部分学生就应基本能利用假设法来解答"鸡兔同笼"问题。
三、在本课的设计上我灵活的安排了教材,把书上“26只脚”改为了“26条腿”意思差不多,但便于学生在后面分析叙述,好与“几只兔”“几只鸡”区分。不然都是“只”,让学生听不明白。在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的理解潜力和时间上的思考,本来这节课讲的方法就很多,个性是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
四、我认为本节课的重难点都就应是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡那里,用26-16=10条腿,那里就应说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时能够直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”那里是把兔假设成了鸡,肯定就应是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3、在解决问题的过程中,培养学生的思维潜力,并向学生渗透转化、函数等数学思想和方法。
教学重点:
用假设法解决“鸡兔同笼”问题。
教学具准备:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3、在解决问题的过程中,培养学生的思维潜力,并向学生渗透转化、函数等数学思想和方法。教学重点:
用假设法解决“鸡兔同笼”问题。教学具准备:
课件。
教学过程
一、历史激趣,导入新课
导语:老师听说我们班的同学十分喜欢读书,这天老师给同学们带来一部1500年前的数学名著《孙子算经》,里面记载着许多搞笑的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?,就是野鸡。)谁明白,这是一个什么问题?这节课我们就来研究中国历史上著名的数学趣题“鸡兔同笼”。
【设计意图】
这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
1、分析题意:这道题目是什么意思?
2、出示例题:贴出例题及插图:鸡兔同笼,上面看有35个头,下面看有94条腿,鸡兔各有多少只?
你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?同学们先来尝试猜测鸡、兔可能各有多少只?过渡:看来这么大的数据,同学们尝试猜测有必须的难度,那我们把它化难为易,从简单入手找出规律,再来尝试猜测解决这个问题。
二、化难为易,寻找规律
1.如果鸡兔共5只,共有18条腿,尝试猜测一下鸡、兔可能各有多少只?
2.鸡兔共5只不变,腿数变为16条,鸡兔各有多少只?你是怎样猜测出来的?
3.鸡兔共5只不变,鸡、兔的只数还有其他状况吗?腿数是多少?
4.请同学们观察分析这些数据,看看有什么规律?追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗
过渡:刚才我们运用列表的方法解决了这道简单的鸡兔同笼问题,并且在表格中发现了规律,那么你们能不能运用列表的方法以及刚才发现的规律来解决《孙子算经》中的鸡兔同笼问题?
【设计意图】
简单入手、化难为易发现规律,运用知识迁移,拓宽学生思路,留给学生思考的空间,在解决问题的过程中发现表格的用处,及其在表格中发现规律,为构建新知奠定基础。
三、交流强趣构建新知
1.学生独立完成,教师巡视
2.在小组里交流一下你尝试猜测的过程3.学生汇报:
请一个采用逐一列表法解决的同学汇报
汇报讲出理由,并且说一说调整过程中有什么发现?还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。你们认为这种方法有什么特点?3.回顾与交流
回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)
你最喜欢那种列表方法?理由呢?同学们还有其他的方法解决这道题吗?
直观画图法:大家明白了吗?你觉得这种解法怎样样?小结:画图的方法十分直观便于观察、十分容易理解。同学们还有具有独特个性的解法吗?能够用自己的名字命名汇报。
【设计意图】在问题情境中探究解决问题的方法,给学
生足够的.空间经历数学知识的构成过程,体验猜测―验证―调整―再验证―再调整的过程,从而得到解决鸡兔同笼问题的一般方法策略:列表法。
过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。四、方法应用,巩固新知
过渡语:抓住数学的本质,那里的鸡不仅仅仅代表鸡,那里的兔也不仅仅仅代表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,请看题:迎奥运学校开展乒乓球比赛,有12个球案在进行单打和双打比赛,共有30人正在比赛,单打、双打球案各有几张?
独立完成后学生汇报:你采用的是那种列表方法为什么要选用这种列表方法?谁有不同的列表方法?就这道题而言你认为用哪种方法解决最好?
【设计意图】学数学用数学,引领学生抓住数学的本质,学习鸡兔同笼问题并非单纯解决鸡兔同笼问题而是借助鸡兔同笼问题学习列表法。
五、实践应用解决问题
地震后要用大小卡车往灾区运29吨食品,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?尝试运用你喜欢的方法独立完成此题。学生汇报:你采用的是那种列表方法为什么要选用这种列表方法?谁有不同的列表方法?
1.(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生群众尝试逐一列表的方法。
就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?哪种方法解决最好?2.你认为谁的方法更好?
过渡语:老师相信同学们必须会耐心细致的做每一件事请。
【设计意图】此练习题的出示目的是使学生在发现问题,解决问题的学习过程中明确因题而异选取方法,认识到对于本题来讲选用逐一列表法最为适宜,进一步明确逐一列举法的优势好处。
六、生活拓展、谈谈收获
愿意告诉老师这节课你的学习收获吗?
结束语:数学自古以来是中国历史上的璀璨明珠,在我们的生活中无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。
鸡兔同笼教案 教学设计2
一、教学目标
知识与技能
了解“鸡兔同笼”问题的结构特点,渗透化繁为简的思
想,掌握用列表法、假设法、方程法解决问题,初步构成解决此类问题的一般性策略。
过程与方法
经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,引导学生有序思考,使学生体会解题策略的多样性。
情感态度和价值观
在解决问题的过程中,培养学生的迁移思维潜力,感受古代数学问题的趣味性。
二、教学重难点
教学重点:渗透化繁为简的思想,体会用假设法的逻辑性和一般性。
教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
三、教学准备
课件、实物投影。
四、教学过程
情境导入
教师:同学们,大约一千五百多年前,我国古代数学名著《孙子算经》中记载了一道数学趣题――“鸡兔同笼”问题。
出示主题图:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
教师:这道题是以文言文的方式表述的,雉就是野鸡,哪位同学看懂它的意思了?
学生:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只
教师:从题中获取信息,你明白了什么,要求什么问题?探究新知
1、尝试解决,交流想法。
既然“鸡兔同笼”问题能流传至今,就就应有它独特的思考方式和解题方法。
问题:同学们想一想,算一算鸡和兔各有多少只?
2、感受化繁为简的必要性。
大家在刚才猜了好几组数据,经过验证都不正确,为什么猜不对呢?
数据大了不好猜,我们就应怎样办?我们把数字改小些,先从简单的问题入手。
“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”
教师:从题中你们能获取哪些信息?和生活常识联系在一齐,你还能说出哪些信息?预设:
学生1:鸡和兔共8只,鸡和兔共有26只脚。学生2:鸡有2只脚,兔有4只脚。
【设计意图】
渗透化繁为简的思想,引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼”问题的结构特点。
3、猜想验证。
教师:有了这些信息,我们先来猜猜,笼子可能会有几只鸡?几只兔?猜测需要抓住哪个条件?学生:鸡和兔一共有8只。
教师:是不是抓住这个条件就必须能立刻猜准确呢?好,老师那里有一张表格,请大家来填一填,看看谁能又快又准确地找出答案来,开始。学生汇报。
小结:这个方法挺好,能帮我们解决鸡兔同笼的问题,我们把这种方法叫做列表法。
教师:老师刚才发现,很多同学都完成得十分快,很了不起!那么,同学们,你们觉得用列表法解决“鸡兔同笼”问题怎样样呢?
预设:
学生1:列表法能很清晰地解决这个问题。
学生2:因为数字比较简单,所以列表法还能够用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。教师:说得十分好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。
学生小组交流汇报。
预设:
学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。
学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。
【设计意图】
列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学资料之一。让学生以填表的方式初步体验鸡兔同笼状况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。
4、数形结合理解假设法。
教师:同学们的想法十分好,我们一齐继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。假设全是鸡。
教师:我们先看表格中左起的第一列,8和0是什么意思?
学生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡。
教师:那笼子里是不是全是鸡呢?这也就是把什么当什
么来算了?
学生:不是,我们是把一只4只脚的兔当成一只2只脚的鸡来算的。
教师:这样算会有什么结果呢?学生:每少算一只兔就会少算2只脚。
教师:假设全是鸡,一共是16只脚。实际有26只脚,这样笼子里就少了10只脚,这说明什么呢?
学生:每只鸡比兔少2只脚,少了10只脚说明笼子里有5只兔。
教师:你们能列出算式吗?学生尝试列算式。
教师以画图法进行演示:8×2=16。
26-16=10。
4-2=2。
10÷2=5兔。
8-5=3鸡。
假设全是兔。
教师:我们再回到表格中,看看右起第一列中的0和8是什么意思?
学生:就是有0只鸡和8只兔,也就是假设笼子里全是兔。
教师:笼子里是不是全是兔呢?这个时候是把什么当什么算的?
学生:把里面的鸡当成兔来计算的。
教师:那把一只2只脚的'鸡当成一只4只脚的兔来算,会有什么结果呢?
学生:就会多算2只脚。
教师:请同学们像老师那样画一画,算一算。学生汇报:
8×4=32。
32-26=6。
4-2=2。
6÷2=3鸡。
8-3=5兔。
提出假设法概念。
刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。
【设计意图】
此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,能够让学生更加直观地感受假设法的优越性。
知识运用
学生独立完成古代趣题。
【设计意图】
运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。
全课小结
这节课我们一齐用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?
【鸡兔同笼教案 教学设计】相关文章:
鸡兔同笼教案01-02
《鸡兔同笼》教案02-21
鸡兔同笼教学反思04-01
《鸡兔同笼》教学反思12-14
鸡兔同笼教案推荐01-02
教案教学设计12-16
鸡兔同笼教学反思优秀02-01
【精选】鸡兔同笼教案三篇08-11
《鸡兔同笼》教案15篇02-16
足球教学设计教案11-07