倒数的认识教案

时间:2023-10-18 15:26:37 教案 我要投稿

倒数的认识教案

  在教学工作者开展教学活动前,总归要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么什么样的教案才是好的呢?下面是小编整理的倒数的认识教案,仅供参考,欢迎大家阅读。

倒数的认识教案

倒数的认识教案1

  教学目标

  1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

  教学重难点

  教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

  教学难点:掌握求倒数的方法

  教学过程

  一、导入

  课件出示:

  1、找规律:指生回答。

  2、找规律,填空,指生回答。

  3、口算,开火车口算。

  4、你能找出乘积是1的两个数吗?指生说。

  今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

  二、新授

  1、教学倒数的意义。

  (1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

  (2)学生汇报研究的结果:什么是倒数?生生说,举例说明。

  乘积是1的两个数互为倒数。举例说明。课件出示。

  观察每一对数字,你发现了什么?

  像这样乘积是1的数字有多少对呢?

  (3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

  (4)互为倒数的两个数有什么特点?

  像这样的每组数都有什么特点呢?

  两个数的分子和分母交换了位置(两个数的分子、分母正好颠倒了位置)

  2、教学求倒数的方法。试着写出3/5 、7/2的倒数。

  (1)写出3/5的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  (2)写出7/52的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  想:写出6的'倒数。独立完成。

  先把整数看成分母是1的分数,再交换分子和分母的位置。 6= 6/1 1/6

  求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。

  3、教学特例,深入理解

  (1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

  (2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

  4、课件出示,巩固练习:这些数怎样求倒数呢?

  (1)学生独立解答,教师巡视。

  (2)汇报时有意识地让学有困难的学生说一说求倒数的方法。

  三、巩固应用

  课件出示:

  1、练习六第2题:填一填。

  2、找朋友。

  3、写出上面各数的倒数

  4、辨析练习:练习六第3题“判断题”。

  5、我的发现。

  6、马小虎日记,开放性训练。

  7、谜语:

  五四三二一

  (打一数学名词)

  四、总结

  你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?

倒数的认识教案2

  教学内容:

  教材P24页中的例1、例2,完成练习六中的部分练习题。

  教学目标:

  1、知识与技能:

  (1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数。

  (2)掌握求倒数的方法,并能正确熟练的求出倒数。

  2、过程与方法:

  引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:

  (1)通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  (2)通过亲身参与探究活动,获得积极成功的情感体验。

  教学重点:

  概括倒数的意义,掌握求倒数的方法。

  教学难点:

  理解“互为”、“倒数”的含义以及0、1的倒数。

  教学方法:

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  课型:新授课。

  教学过程:

  一、游戏激趣,揭示课题。

  1、理解“互为”的含义。

  朋友这个词对我们来说已经非常熟悉了,朋友,看到这个词你有什么想法说的?能告诉大家你最好的朋友是谁吗?指名说说自己的好朋友是谁?你能用一句话来表述你们之间的关系吗?(×××和我互为朋友,我是×××的朋友,×××也是我的朋友。板书:互为)另外找一名同学,你能再描述一下他

  们二人的关系吗?(略)那我们能说×××是朋友吗?(不能,因为朋友是相互的,互相是朋友,互为朋友)同学们,在我们生活中有没有像朋友一样必须是一起出现,相互依存的知识呢?请举例――

  (父子关系、母女关系等)

  2、简单理解“倒”。

  师:同学们,你们今天的精神面貌真是好极了,老师有点惊呆了,板书“呆”,呆是一个上下结构的字,你们喜欢文字游戏吗?板书:“呆”的上下颠倒就成了“杏”,语文中的文字有这样的构字规律,比如(杏――呆;吞――吴;音――昱;士――干……)那么数学中的数也有这种规律吗?先来计算几道题目,计算之后相信自然会找到答案。

  板书:

  3

  8× 8

  3= 1 7

  15×15

  7=15×= 151112 ×12= 1

  二、新课教学。

  (一)引导质疑。

  学生算完后,观察并思考:这些题有什么共同的地方?

  生1:得数是1生2:乘积是1

  除了乘积是一,因数还有什么特点(分子分母交换位置)

  师再举例如: 5/4×4/5 7/10×10/73×1/3

  进一步明确并(板书):乘积是1

  生3:都是两个数相乘. 〈板书〉:两个数

  1、你们还能写出两个数乘积是1的算式吗?

  那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家30秒的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的把你写的念出来,和大家共同分享?(生读,师有选择的.板书在黑板上。)

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)

  出示课题:乘积是1的两个数是什么关系呢?这就是我们这节课要学习的内容:倒数的认识师指着板书说:我们称“乘积是1的两个数互为倒数”。

  师:那么倒数的相互关系在具体算式中怎么说呢,谁和谁互为倒数呢?

  比如4/5和5/4的乘积是1,我们就说4/5和5/4互为倒数。(师板书4/5和5/4互为倒数)还可以说4/5的倒数是5/4;5/4的倒数是4/5。

  生:①模仿说②同桌互说

  2、理解意义:

  (1)在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?

  (互为”是指两个数的关系。 “互为”说明这两个数的关系是相互依存的。)

  倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  (2)以前我们学过这种两数间相互依存关系的知识吗?

  (3)2/5和5/2的积是1,我们就说??(生齐说)

  (4)7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同

  (5)辨析:下面的说法对吗?为什么?

  A:2/3是倒数。()

  B:得数为1的两个数互为倒数。()

  C、

  D、12712和×43712乘积是1,所以32127和32712互为倒数。()×=1,所以12、43、互为倒数。()

  3、小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。

  (二)探索求一个倒数的方法

  1、我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。 (分子和分母调换了位置。)

  根据这一特点你能写出一个数的倒数吗?试一试!

  2、写出下列各数的倒数:3/5 7/2 5 13

  (1)先写3/5的倒数。教师查看学生书写的情况。

  (2)教师板书学生错误书写方法:3/5=5/3这样写对吗?为什么错了?正确的写法应该是怎样的呢?出示

  3/5的倒数是()7/2的倒数是()

  5的倒数是()13的倒数是()

  师生一起小结:求一个分数的倒数,只要把分子分母调换位置。(板书)

  师:那5的倒数是什么你是怎样想的?(把5看成是分母是1的分数,再把分子分母调换位置。)师根据学生的回答及时板书。

  3、1和0的倒数

  师:那1的倒数是几呢?为什么?

  0的倒数呢?

  师:为什么?

  师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后????(生齐:分母就为0了,而分母不可以为0。)

  4、师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  求一个数(0除外)的倒数,只要把分子和分母调换位置就行了。

  三、练习巩固。

  1、判断题:

  ①互为倒数的两个数,乘积是1。()

  ②任何假分数的倒数是真分数。()

  ③因为3×1/3=1,所以3是倒数。()

  ④1的倒数是1。()

  2、思考题:

  3/8×()=()×=()×6=1

  3、找出马小虎的日记错误并改正。

  今天,我学习了一个新知识------倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3×1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。

  瞧!我学的怎么样!

  四、全课小结

  同学们,这节课大家通过自己的努力以及与别人的合作,认识了倒数,学会了求倒数的方法,大家的表现很精彩,老师由衷的祝贺你们。

  五、作业

  课本26页第4题。

  六、板书设计

  倒数的认识

  乘积是1的两个数互为倒数。

  求倒数的方法:分子分母交换位置,若是整数,先划成分母是1的分数。

  1的倒数还是1,0没有的倒数。

倒数的认识教案3

  教学目标:

  1. 通过自学、交流、错例讨论评析经历倒数的意义这一概念的形成过程,并理解倒数的意义。

  2.通过写一写、说一说的形式,引导学生观察并寻找求一个数的倒数的方法。

  3.培养学生推理和概括能力。

  教学重点:理解倒数的意义,会求一个数的倒数。

  教学难点:0为什么没有倒数。

  教学过程:

  设疑与探究:

  师:同学们,我们今天要来学习一个新知识,学好了这个新知识能为我们后面分数除法的学习打下坚实的基础。一起来看看是什么新知识呢?请同学们翻开课本24页。(板书:倒数)请同学们带着下面几个问题先自学,看看你能自学到多少有关倒数的知识呢?把你学到的知识画下来。

  ①什么是倒数?(倒数的意义是什么?)

  ②怎样求一个数的倒数?(倒数有什么特点?)

  ③1的倒数是什么?0有倒数吗?为什么?

  设计理念:这是一个新的概念,所以开课开门见山,强调概念的重要性,引起学生的重视,同时能直接进入新课的学习。另一方面,让学生带着问题自学文本。数学课程改革强调培养学生的自主学习能力,注重学生的自主发展,先学后教,在学生自学的基础上,教师再进行针对性教学。同时让学生带着问题去学,能够给自学作出一些指引。

  反思:三个问题暗示了这节课学习的主要内容,能让学生仅仅围绕这几个问题去展开后面的学习。但是另一方面也限制了学生的思维,也许学生在自学的过程中会提出很多问题,老师可以从你能提出什么问题?你能解决什么问题?你还有哪里不明白?去引导,进而培养学生提出问题、解决问题和发现新问题的能力。课堂上围绕学生提出的问题去开展探究学习,能有效的利用课堂生成的动态资源,也能更好的开展课堂评价,这样的课堂会更活力。

  (一)、揭示倒数的意义

  1、自学文本,初步形成概念

  学生自学文本,同桌交流。

  2、探讨错题,理解概念

  师:第一个问题,相信很多同学心里都已经有答案了。但是老师先要考一考你,请看下面的题。(判断,并说明理由)

  ①因为1/4+3/4=1,所以1/4和3/4互为倒数。( )

  生:因为乘积是1的两个数叫做互为倒数,而这里是和是1。(板书乘积是1)

  ②因为1/24/33/2=1,所以1/2、4/3、3/2互为倒数。( )

  生:因为倒数是两个数,而这里是三个数。(板书两个数)

  ③因为2/55/2=1,所以2/5是倒数。( )

  生:因为倒数是两个数相互依存的关系。(板书互为倒数)

  进一步形成概念,全班读一遍倒数的意义:乘积是1的两个数互为倒数。

  设计理念:概念教学要把握概念本身的基本特性。要掌握倒数这个概念需要抓住三个特性:乘积是1、两个数、互为。学生通过初步的自学很难去准确把握这三点,因此设计这三个错例,旨在让学生充分把握这三个特性,进而形成和理解概念。

  反思:对于什么是倒数?学生通过自学,肯定都没有问题,但是我没有(或者说不让)让他们回答这个问题,这样一下子抑制了他们想回答但是不能回答的情绪,转而先考一考你,吸引他们看问题,激发他们在判断的时候终于有话可说。这样很好的调动了学生的好胜心。但是在 互为的理解上,没有充分探讨,可以引导学生从下面两句话去理解:( )和( )互为倒数、( )是( )的倒数。

  评价与生成:

  3、多种练习,深化概念

  (1)口头回答

  3/4( )=1,( )6/5=1,7( )=1

  设计理念:学生初步理解概念,需要一个逐渐消化的过程。设计这题一是给学生提供模仿的过程,二是能直观的把概念具体化。

  (2)模仿创作

  师:我们已经知道了什么是倒数,你能不能写出乘积是1的任意两个数?( )( )=1(生:能)我们就进行一个小小的比赛。请大家拿出堂上练习本,我给大家一分钟的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。(根据学生写的,选择性的板书4个,例如真分数的2/33/2=1,假分数的7/44/7=1,整数的61/6=1,小数的0.110=1。)

  师:这么短的时间内就能写出这么多乘积是1的两个数,还是几种不同的类型,不错。 太厉害了!如果给你们充足的时间,你们还能写多少个这样的乘法算式?(生:无数个)

  设计理念:学生有了第一题的具体直观练习,再通过比赛的形式鼓励学生进行模仿创作。因为每个学生创作的都不一样,这时老师可以有效的利用这些资源,为下面的观察倒数的特点和求各种类型的数的倒数的学习提供平台。

  反思:在这一环节,学生都能写的是真分数的、假分数的和整数的,学生没有想到带分数的和小数的,这是我在课前就有思想准备的,于是我设计了下面师生互说互猜的环节,学生想不到的,可以由老师抛出问题让学生思考,这样有时候更能激发学生的思维。但是也有一个学生写的11=1是我没有想到的。其实学生能写出这个,就能为后面1的倒数是几找到答案。但是很可惜,我没有很好的处理这个式子的出现,也没有及时的对这位学生给出表扬,还是教学机智不够灵活。

  (3)师生互说互猜

  师:不过老师比你们更厉害。我不但能写出这么多算式,而且还能猜出你们写的是什么?只要你说出你写的第一个数,我就能猜出你写的第二个数是什么?生说师猜。反过来,师说生猜。(要求按照我说 ,我说 ,因为( )( )=1来回答,老师根据情况有选择的板书,例如板书小数的和倒数的。)

  师:同学们,其实我们在创作和互说互猜的过程中,就是在找一个数的倒数。那通过练习和我们刚刚的自学谁来说说怎样找一个数的倒数呢?倒数有什么特点?

  您现在正在阅读的小议“倒数的认识”教学概念课文章内容由收集!本站将为您提供更多的精品教学资源!小议“倒数的认识”教学概念课设计理念:师生互说互猜的环节在前两个题的基础上,又是一个提升,同时师说生猜,老师能够根据学生没有想到的问题提出来,及时进行补充提升,进一步激发学生的思维。同时要求按照我说 ,我说 ,因为( )( )=1来回答,既能进一步抓住概念的本质,又能培养学生的推理和表达能力。通过口头回答模仿创作互说互猜的多种形式练习,由易到难逐步深化概念,符合学生的认知规律。

  反思:在这一环节,出现了预想到的东西,也出现了很多散发性的东西。但是正是这些东西才构建了活力课堂的有效生成资源。同时一句老师比你们更厉害一下子触动了他们的.情绪,很多学生表示我们也能,进而很好的调动了课堂。

  (二)、探索求一个数的倒数的方法。

  1、观察式子,发现特点,归纳方法

  学生自己归纳方法:只要把分数的分子和分母交换位置。(板书)

  追问:为什么求一个数的倒数,只要把分子和分母交换位置呢?

  学生讨论得出:因为相乘时分子分母就可以完全约分,得到乘积是1。

  师:如果我们用a/b表示一个分数,那么它的倒数就是b/a。(板书:a/b的倒数是b/a)

  设计理念:概念首先是具体到抽象生成,进而是抽象到具体的上升。因此如果只是从概念本身出发去找特点很困难,于是让学生回到具体的式子,观察发现特点,归纳方法。同时追问为什么?引导学生抓住概念的本质乘积是1。充分体现方法都是以概念做基础,概念是构建理论大厦的基石。同时又把它具体到用字母表示,能更直观的体现倒数的特点。

  反思:从学生自己归纳方法,到老师在此基础上进一步提升到用字母表示,能让学生更直观的发现倒数的特点。但是也有一点是没有处理好,因为字母可以表示任何数,应该写明a、b,这样就更严谨了。

  2、解疑难点(求整数、带分数,小数的倒数)

  师:老师还有几个问题,你们能帮帮老师吗?怎么求下面这几个数的倒数?

  4?(生:把整数看作分母是1的分数)

  1又3/7呢?(生:先化成假分数)

  0.5呢?(生:化成分数)

  老师根据学生的回答,板书具体的例子。

  3、师:那1 的倒数是几呢? 0有倒数吗?为什么?

  生1:1的倒数是1,因为11=1;0没有倒数,因为0( )=0.

  4、师生共同小结方法:求一个数(0除外)的倒数,只要把分子和分母交换位置。

  生齐读求一遍数倒数的方法。

  设计理念:当学生不能提出新问题的时候,老师可以转变角色,提出问题,引导学生新的思考。

  反思:因为有了前面概念和方法较为抓实的掌握,学生在这一环节能很快的找到方法,接下来就是加强练习了。

  运用与分享:

  师:我们学习到了那么多倒数的知识,赶紧去做一些练习吧。

  1、课本24页做一做:写出下列各数的倒数。

  4/11,16/9,35,7/8,4/15

  (规范:( )的倒数是( )。)

  2、填空:

  ①7( )=15/2( )=()3又2/3=0.17( )=1

  ②一个数和它倒数的和是2,这个数是( )

  ③最小的质数的倒数是( )?

  设计理念:两个练习由易到难,既能检查学生对基础知识和方法的掌握程度,也能提高学生运用知识和方法的能力。

  反思:第1题的设计缺乏针对性,例如前面讲到的带分数和小数的没有。同时在规范书写上,好多学生出现问题,例如 4/11=11/4, 4/11 11/4,4/1111/4。说明了前面教学在书写规范上的疏忽,但是也正是由于这些暴露出来不规范的书写,通过师生之间的交流和纠正,更进一步加深了学生对书写规范的印象。

  小结:

  师:同学们通过今天的学习,你学到了什么?还有什么问题?

  设计理念:学生的分享过程是学生重整和提炼知识的过程,同时给学生质疑的机会,既能发现学生还存在的问题,也能更好的为后面的学习做好铺垫和研究。

  板书设计:

  倒数的认识

  乘积是1的两个数互为倒数 2/33/2=1

  分子和分母交换位置 7/44/7=1

  a/b的倒数是b/a 61/6=1

  1的倒数是1(11=1) 1又3/7=10/7, 10/77/10=1

  0的倒数是0(0( )=0) 0.1=1/10,1/1010=1

倒数的认识教案4

  分析

  《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  学情分析

  学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

  教学目标

  1、知道倒数的意义,会求一个数的倒数。

  2、经历倒数的意义这一概念的形式过程。

  3、培养学生观察、归纳、推理和概括的能力。

  4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

  教学重点和难点

  理解倒数的意义,会求一个数的倒数。

  教学过程

  教学环节

  教师活动

  预设学生行为

  设计意图

  一﹑创设活动情境

  倒,你对这个字怎么理解?

  那要是在这个字的后面加个数,就变成。。。倒数,你对这个词又是怎么理解?

  出示1/5×5,3/8×8/3,1/12×12,15/7×7/15这几组算式,开展小组活动,算一算,找一找,这几组算式有什么特点? 同学们发现了每组算式两个分数的分子与分母正好颠倒了位置, 并且它们的乘积是1.

  具有这种关系的数叫做互为倒数。谁来说一说什么样的两个数叫做互为倒数?出示倒数的意义:乘积是1的两个数叫做互为倒数。

  学生说,就是把它倒过来,还做了个手势颠倒位置。

  学生有可能会说,每组中都是一个是真分数一个是假分数。

  还有的可能会说第一个分数的分母是第二个分数的分子第一个分数的分子是第二个分数的'分母

  学生有可能只计算出结果。没发现这几组算式它们的分子,分母的位置是颠倒的。

  设疑,让学生产生求知的欲望。

  从两个数的关系入手研究,抓住了数学的本质,使学生体会到数学的研究是一脉相连的。

  让学生通过观察﹑计算发现这几组算式的乘积都是1.并且它们的分子分母的位置刚好颠倒。

  二 ﹑探究讨论,深入理解

  让学生说说对倒数意义的理解,在这个概念中你认为哪个词比较关键?

  学生有可能会说1/5是倒数。5/1也是倒数。并让学生知道这种说法是不正确的。

  乘积是1的两个数叫做互为倒数。只能说1/5和5/1互为倒数或1/5的倒数是5/1。但也有可能会说得很完整。

  让学生重点去理解“互为”是什么意思,加深对倒数的概念的理解。

  三﹑运用概念,探讨方法

  3/5的倒数是( ),

  8的倒数是( ),

  0.5的倒数是( )

  1. 3/5交换分子分母的位置,得5/3,所以3/5的倒数是5/3。

  2. 8可以写成8/1,所以8的倒数是1/8。

  3. 0.5也可以写成1/2,所以0.5的倒数是2.

  让学生归纳总结出找倒数的方法。

  四、补充概念,自我构建

  0和1 有没有倒数,如果有,它的倒数是几,如果没有,为什么?同学们试着研究。

  1的倒数是1 。

  0没有倒数。因为0不能做为分数的分母。

  加深对0没有倒数的理解;

  加深对倒数知识的理解;

  学生的思维逐步深刻,较好地实现了对于概念的建构,而且渗透了认真,严谨的学习态度。

  五、巩固练习,形成技能

  1.同桌互说倒数;

  2.判断。

  (1) 5/9是倒数,9/5也是倒数。( )

  (2)0的倒数还是0.( )

  (3)一个数的倒数一定比这个数小。( )。

  3.开放性训练。3/5 ×( )=( ) ×4/7=( ) ×( )

  学生会很活跃。

  加深对0没有倒数的理解;

  加深对倒数知识的理解;

  开放题让学生的思维得到更深层次的拓展。

  六、全课小结

  这节课你学会了什么?

  与教师一起总结

  培养学生的表达能力以及加深对倒数知识的理解。

  板书设计

  倒数的认识

  倒数的意义:乘积是1的两个数叫做互为倒数。

  求倒数的方法:1.分数——分子分母调换位置。

  2.整数或小数——先化成分数,再调换分子分母的位置。

  1的倒数是1, 0没有倒数。

倒数的认识教案5

  教学目标

  1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

  2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

  3.培养学生的观察能力和概括能力。

  教学重点和难点

  1.正确理解倒数的意义及“互为”的含义。

  2.正确地求出一个数的倒数。

  教学过程设计

  (一)激发兴趣,引出概念

  1.投影。哪个同学和老师比赛?谁说得快?

  师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

  2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

  板书:乘积是1两个数

  3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

  生:两个数分子、分母颠倒位置就可以了。

  师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

  4.举例说明,什么叫互为倒数?

  师:3是倒数这句话对吗?为什么?

  你们说得对,谁能说出几组倒数?

  同桌互相说,每人说两组。(指名说)

  问:怎样判断他们说得是否正确?

  生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。

  5.思考:1的倒数是几?为什么?0有倒数吗?为什么?

  板书:1的倒数是1.0没有倒数。

  (二)求一个数的倒数

  同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?

  1.出示前面的投影,找特点。

  观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。

  问:谁来说说你发现了什么?

  生:互为倒数的两个数,是分子、分母交换了位置。

  师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。

  学生说老师板书:

  3.同学们想一想,怎样求一个数的`倒数?前后、左右的同学互相说一说。

  谁来给同学们汇报一下?(2~3名)

  板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。

  问:老师为什么要空出一些地方?

  生:0除外。

  问:为什么要加上0除外?(板书:0除外。)

  问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。

  4.课堂练习。

  写出下面各数的倒数:

  35的倒数是怎么想的?

  问:2的倒数是几?10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?

  5.写出1.5的倒数,怎样做?

  (三)课堂总结

  我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?

  下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。

  (四)巩固练习

  1.投影。

  问:怎么填得这么快,你是根据什么填的?

  问:

  ①谁能回答?

  ②你根据什么填的?

  ③为什么根据倒数的意义填?

  看下一组题:

  问:怎么填?根据什么?与(2)有什么不同?

  师:所以做题时要认真审题,看清符号,千万不能出审题错误。

  2.下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)

  3.判断下面各题。对的举“√”,错的举“×”,并说明理由。

  投影出示:

  (1)乘积是1的两个数互为倒数。 (√)

  (2)2.5和0.4互为倒数。 (√)

  师:你们是怎么想的?

  生:2.5和0.4乘积是1,所以是对的。

  (3)因为1的倒数是1,所以0的倒数是0。(×)

  问:错在哪里?

  问:错在何处?

  问:这道题错在哪了?

  生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。

  4.游戏。

  每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。

  评比表扬优胜,找出谁给前面的同学改了错。

  (五)作业

  课本24页第3,5,6题。

  课堂教学设计说明

  1.这节课的设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。

  2.这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。

倒数的认识教案6

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:理解倒数的意义,求一个数的倒数。

  教学难点:从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0.25×4 2、

  计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?3/4×()=1()×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)你是怎样想的?

  如0.5、1.7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的分子分母调了一下位置;

  师:那么5×1/5 0.2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是(),()的'倒数是4/7,()和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1.2 0

  学生独立完成,然后交流。

倒数的认识教案7

  教学目的:

  使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。

  培养学生的观察能力、数学语言表达能力、发现规律的能力等。

  教学重点:求一个数的倒数的方法。

  教学难点:理解倒数的意义,掌握求一个数的倒数的方法。

  教学准备:教学光盘

  课前研究:自学课本P50:

  什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。

  观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?

  0有倒数吗?为什么?

  教学过程:

  一、作业错例分析。

  二、学习分数的倒数:

  出示例7

  学生在自备本上完成,指名核对。

  教师板书:×=1×=1×=1

  你能模仿着再举几个例子吗?

  学生回答,教师板书。

  观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)

  和互为倒数,也可以说的倒数是,的倒数是。

  让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?

  你能分别找出和的`倒数吗?

  学生同桌讨论找法,指名交流。

  观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?

  指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。

  合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。

  三、学习整数的倒数:

  电脑出示:5的倒数是多少?1的倒数呢?

  学生跟自己的同桌说一说,再指名交流。

  方法一:求5的倒数时,可以先把5看作,所以它的倒数是;

  方法二:想5×()=1,再得出结果。

倒数的认识教案8

  教学内容倒数的认识

  教学目标1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

  3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  教学重难点

  教学重点:理解倒数的意义,学会求倒数的方法。

  教学难点:发现倒数的一些特征。

  教具准备课件

  设计意图

  教学过程

  特色设计

  通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

  一、猜字游戏引入新课

  找找下面文字的构成规律

  呆―――杏土―――干吞―――吴

  按照上面的`规律填数

  ――()――()――()

  能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

  二、新知探究

  (一)探究讨论,理解倒数的意义。

  1.课件出示算式。

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。

  我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  2.出示倒数的意义:乘积是1的两个数互为倒数。

  3.你是怎样理解互为倒数的呢?能举例吗?

  (二)深化理解。

  1.乘积是1的两个数存在着怎样的倒数关系呢?

  2.互为倒数的两个数有什么特点?

  3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  (三)运用概念。

  1.讨论求一个数的倒数的方法。

  出示例2:写出其中3/5 、7/2两个分数的倒数。

  学生试做讨论后,教师将过程。

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

  2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  三、巩固练习

  (一)完成教材的“做一做”

  (二)完成教材练习六的第1-5题。

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?板书设计

倒数的认识教案9

  教学目标

  1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;

  2、通过互助活动,培养学生与人合作、与人交流的习惯;

  3、通过自行设计方案,培养学生自主探索和创新的意识。

  教学重难点

  理解倒数的含义,掌握求倒数的方法。

  教学工具

  课件

  教学过程

  一、导入新课

  谈话导入课题。

  二、教学实施

  关于倒数同学们想知道些什么呢?学习倒数的.含义

  1、观察教材24页的例1,归纳,总结倒数的含义。

  3.特殊数:0和1 (引导学生辩论0有没有倒数,1有没有倒数,是多少?)

  教师归纳板书:0没有倒数,1的倒数就是它本身。

  4.学习例2--求倒数的方法

  让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法

  5.反馈练习

  (1)完成教材24页的“做一做”,(2)完成练习六的第2、3题

  三、课堂练习

  找一找下列数中哪两个数互为倒数

  四、课堂小结

  学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。

  五、作业

  完成练习六的第1、4题

  课后习题

  完成练习六的第1、4题。

倒数的认识教案10

  教学目标:

  1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

  教学重点:

  理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。教学难点:掌握求倒数的方法

  教学过程:

  一、导入

  1、口算:

  (1)640

  (2)380

  2、今天我们一起来研究倒数,看看他们有什么秘密?出示课题:倒数的认识

  二、新授

  1、教学倒数的意义。

  (1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

  (2)学生汇报研究的结果:乘积是1的两个数互为倒数。

  (3)提示学生说清互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

  (3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

  2、教学求倒数的方法。

  (1)写出的倒数:

  求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  (2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

  6=

  3、教学特例,深入理解

  (1)1有没有倒数?怎么理解?(因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1。)

  (2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

  3、巩固练习:课本24页做一做

  (1)学生独立解答,教师巡视。

  (2)汇报时有意识地让学有困难的学生说一说求倒数的`方法。

  三、练习

  1、练习六第2题:同桌互说倒数。

  2、辨析练习:练习六第3题判断题。

  3、开放性训练。

  ()=()=()()

  四、总结

  你已经知道了关于倒数的哪些知识?你联想到什么?还想知道什么?

  教学追记:

  倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解倒数的意义,而在这其中,有一些概念点犹为关键,如互为,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于01的倒数这种特例,我并没有忽视它,而是充分发挥教师导的作用,帮助学生加强认识。

倒数的认识教案11

  教学目标

  1.理解和掌握倒数的意义.

  2.能正确的求出一个数的倒数.

  3.培养学生的观察能力和概括能力.

  教学重点

  认识倒数并掌握求倒数的方法

  教学难点

  小数与整数求倒数的方法

  教学过程

  一、基本训练

  (一)口算

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的`关系.

  (板书:倒数)

  三、新课教学

  (一)乘积是1的两个数存在着怎样的倒数关系呢?

  请看:,那么我们就说是的倒数,反过来(引导学生说)是的倒数,也就是说和互为倒数.

  和存在怎样的倒数关系呢?2和呢?

  (二)深化理解

  教师提问

  1.什么是互为倒数?

  2.怎样理解这句话?(举例说明)

  (的倒数是,的倒数是,……不能说是倒数,要说它是谁的倒数.)

  3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1).

  (三)求一个数的倒数

  1.例:写出、的倒数

  学生试做讨论后,教师将过程板书如下:

  所以的倒数是,的倒数是.

  (能不能写成,为什么?)

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.

  2.深化

  你会求小数的倒数吗?(学生试做)

  三、训练、深化

  (一)下面哪两个数互为倒数

  (演示课件:倒数的认识1)

  (二)求出下面各数的倒数

  (演示课件:倒数的认识2)

  (三)判断

  1.真分数的倒数都是假分数.()

  2.假分数的倒数都小于1.()

  3.0没有倒数.()

  (四)提高

  如果末尾加上=1怎么填?

  如果末尾加上=0怎么填?

  如果末尾加上=2怎么填?

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?

  五、课后作业

  (一)下面哪两个数互为倒数

  (二)写出下面各数的倒数

  六、板书设计

倒数的认识教案12

  一、教学内容:

  九年义务教育六年制第九册第二单元《倒数的认识》

  二、教材分析:

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的,数学教案-倒数的认识。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

  三、教学目标:

  1.理解倒数的意义,掌握求倒数的方法。

  2.能熟练地写出一个数的倒数。

  3.结合教学实际培养学生的抽象概括能力。

  四、教学重点:

  理解倒数的意义,掌握求倒数的方法。

  五、教学难点:

  熟练写出一个数的倒数。

  六、教学过程:

  (一)、谈话

  1.交流

  师:我们的黑板是什么颜色?

  生:黑色。

  师:教室的墙面又是什么颜色?

  生:黑色。

  师:黑与白在语文上是什么关系?

  生:黑是白的反义词。

  生:白是黑的反义词。

  师:能说黑是反义词或白是反义词吗?

  生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

  师:那么,数学上有没有相互依存关系的现象呢?

  生:约数和倍数。

  师:你能举例说明约数和倍数的相互依存关系吗?

  生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

  2.导入今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

  (二)、学习新知

  对数游戏

  1.学习倒数的意义

  我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数

  师:4是3的4/3,生:3是4的3/4

  师:7是15的7/15;生:15是7的15/7。

  提问;看我们做游戏的结果,你们有没有发现什么?

  生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

  生2:两个分数的分子、分母相互调换了位置。

  生2:两个分数的乘积是1。

  提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数)出示课题:倒数的`认识

  提问:那么怎样的两个数才是互为倒数呢?指导看书。

  思考:

  (1)什么是倒数?满足什么条件的两个数互为倒数?

  (2)你能找出互为倒数的两个数吗。请举例

  评析:回答问题

  理解“互为”的意义。怎样的两个数互为倒数。

  找朋友游戏(课前每位同学发一张数字卡片)

  练习

  (1)出示卡片(六位同学举着卡片依次站在黑板前)

  7/9 11/4 1/50 8 6/5 99

  (2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

  提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

  3教学求一个数倒数的方法

  出示例题:找出下列各数的倒数

  2/3 7/4 1/5 9 1/7/8 0.4

  小组讨论指名板演

  提问:1.你是怎么找出2/3的倒数的?

  生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

  生2:因为互为倒数的两个数的分子与分母正好调换位置,小学数学教案《数学教案-倒数的认识》。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

  2.你是怎么找出7/4的倒数的?

  提问:我们怎样才能很快地找到一个数的倒数?为什么?

  4.练习请剩下的没有找到朋友的同学继续找倒数

  5.讨论:1的倒数是谁?0的倒数呢?

  生:1的倒数是1

  师:能说明一下理由吗?

  生1:因为1与1的乘积还是1。

  生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

  师:0的倒数呢?

  生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

  生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

  生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

  生4:0可以写成0/1,0/1的倒数是1/0。

  生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

  6.完善求一个数的倒数的方法

  三、巩固练习

  (一)填空

  1.因为5/3*3/5=1,所以和()互为();

  2.因为15*1/15=1,所以()和()互为();

  3.4/7与()互为倒数;

  4.()的倒数是6/11

  5.()的倒数是2

  6.1/8的倒数是()

  7.1/2/7的倒数是()

  8.0.3的倒数是()

  (二)判断

  1.得数是1的两个数互为倒数。()

  2.互为倒数的两个数乘积一定是1。()

  3.1的倒数是1,所以0的倒数是0 。()

  4.分数的倒数都大于1。()

  (四)思考

  4/5*()=()*8

  四、总结

  今天我们学习了什么知识?你有什么收获?还有什么问题吗?

  五、布置作业

倒数的认识教案13

  一、探究体悟,学习新课

  1、学习倒数的意义

  (1)出示例7的一组分数,提问这些分数中,哪两个分数的乘积是1?

  (2)学生思考,并作回答;3/8×8/3=1 5/4×4/5=1 7/10×10/7=1

  (3)概括:像这样,乘积是1的两个数互为倒数。

  (4)揭题:这就是我们今天要学习的新内容:板书倒数的认识

  (5)追问:怎样的两个数互为倒数?师板书倒数的意义。学生思考:为什么这里要说“互为”倒数呢?

  (6)引导学生用不同的方式表述互为倒数的两个数的关系:3/8和互为倒数,3/8的倒数是;8/3的倒数是_________ 。

  (7)学生自己选择一个两个数相乘的等于1的例子,用倒数的.意义同桌说说。

  2、求一个数倒数的方法。

  (1)你能找出3/5和2/5的倒数。

  (2)学生用自己的方法完成后讨论:你是怎样找的?

  概括方法:

  一是根据倒数的意义来找倒数。

  二是把分数的分子和分母调换位置来求倒数。

  (3)引导学生对两种方法进行观察、比较:两种方法都正确吗?为什么?你会选择哪种方法?为什么?

  小结:两种方法都是正确的,求一个分数的倒数时,只要把它的分子分母调换位置就可以了。

  (4)让学生和同桌说两组互为倒数的数,再指名说说。

  3、研究整数的倒数

  (1)提问:5的倒数是几?你是怎样求的?

  全班交流,明确:方法一:想5×()=1,()就是5的倒数。

  方法二:5=5/1。所以5的倒数是1/5。

  (2)练习:分别说说7、16的倒数是多少?

  (3)讨论:1的倒数是多少?

  (4)0有倒数吗?为什么?

  (5)小结:因为0和任何数相乘都得0,没有一个数与0相乘的积是1,所以0没有倒数。除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  4、教学“练一练”

  学生在书上直接写,注意格式。然后请学生回答。

  指出:分子是1的分数,它的倒数就是分母,整数的倒数就是这个整数做分母,分子是1。

  二、巩固练习。

  1、做练习十第1题

  学生填书上后,集体订正。

  2、做练习十第2题

  指名口头回答。

  3、做练习十第3题

  学生填书上后,集体订正。

  4、做练习十第4题

  (1)读题,说说每组分数的特点

  (2)分别找出每组分数的倒数

  (3)仔细观察你发现了什么?

  通过交流使学生明确:第1组的分数都是真分数,真分数的倒数是大于1的假分数;第2组的分数都是大于1的假分数,大于1的假分数的倒数是真分数;第3组的分数都几分之一,它们的倒数都是整数;第4组都是非0的自然数,他们的倒数都是几分之一。

  5、拓展:0.5和2互为倒数吗?为什么?

  引导学生根据倒数的意义来判断。

  明确:非零的数都有倒数。

  6、做练习十第5题

  7、练习十第6题

  (1)学生读题,比较找出两题的不同之处

  明确:第1题中的2/5表示两个数量之间的倍比关系,求还剩多少吨,就是求3/4吨的2/5是多少,要用乘法计算。第2题中的2/5表示用去的吨数,求还剩多少吨,要从3/4吨里去掉2/5吨,用减法计算。

  (2)学生独立完成。

  8、解答思考题

  小组讨论交流

  全班交流,使学生明确:第二根钢管用去的长度是随着钢管全长的变化而变化的,因而是不确定的。要知道哪一根用去的长一些,要按三种情况进行分类讨论。

  三、全课总结

  这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

  四、作业

  1、练习:写出下列各数的倒数

  35 0.5 1又1/2 0.125 0.75

  2、拓展

  A×4/3=11/12×b=15/15×c ,并且a、b、c都不等于0,把a、b、c这三个数按从大到小的顺序排列,并说明为什么?

倒数的认识教案14

  教学目标

  1.理解和掌握倒数的意义.

  2.能正确的求出一个数的倒数.

  3.培养学生的观察能力和概括能力.

  教学重点

  认识倒数并掌握求倒数的方法

  教学难点

  小数与整数求倒数的方法

  教学过程

  一、基本训练

  (一)口算

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的`关系.

  (板书:倒数)

  三、新课教学

  (一)乘积是1的两个数存在着怎样的倒数关系呢?

  请看:,那么我们就说是的倒数,反过来(引导学生说)是的倒数,也就是说和互为倒数.

  和存在怎样的倒数关系呢?2和呢?

  (二)深化理解

  教师提问

  1.什么是互为倒数?

  2.怎样理解这句话?(举例说明)

  (的倒数是,的倒数是,……不能说是倒数,要说它是谁的倒数.)

  3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1).

  (三)求一个数的倒数

  1.例:写出、的倒数

  学生试做讨论后,教师将过程板书如下:

  所以的倒数是,的倒数是.

  (能不能写成,为什么?)

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.

  2.深化

  你会求小数的倒数吗?(学生试做)

  三、训练、深化

  (一)下面哪两个数互为倒数

  (演示课件:倒数的认识1)

  (二)求出下面各数的倒数

  (演示课件:倒数的认识2)

  (三)判断

  1.真分数的倒数都是假分数.()

  2.假分数的倒数都小于1.()

  3.0没有倒数.()

  (四)提高

  如果末尾加上=1怎么填?

  如果末尾加上=0怎么填?

  如果末尾加上=2怎么填?

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?

  五、课后作业

  (一)下面哪两个数互为倒数?

  (二)写出下面各数的倒数.

  六、板书设计

  倒数的认识

倒数的认识教案15

  教学内容 教科书第28~29页例1、“做一做”及相关内容。

  教学目标

  1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

  2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

  3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

  教学重点 理解倒数的意义;求一个数的倒数。

  教学难点 理解“互为倒数”的含义。

  教学准备 教学课件、写算式的卡片。

  教学过程 具体内容 修订

  基本训练,强化巩固。

  (3分钟) 1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

  2.学生独立完成上面几组题,小组内检查并订正。

  创设情境,激趣导入。

  (2分钟) 请个别学生说说分数乘法的'计算方法,突出分子与分母的约分。

  提示目标,明确重点。

  (1分钟) 通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

  学生自学,教师巡视。

  (6分钟) 1. 观察这些算式,如果将它们分成两类,怎样分?

  2.通过观察发现算式的特点。

  展示成果,体验成功。

  (4分钟) 让学生说说乘积为1的算式有什么特点。

  学生讨论,教师点拨。

  (8分钟) 1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

  2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

  3.引导学生思考:互为倒数的两个数有什么特点?

  4.探讨求倒数方法。

  (1)出示例题,让学生说说哪两个数互为倒数。

  (2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书

【倒数的认识教案】相关文章:

认识倒数教案11-14

《认识倒数》教案11-06

《倒数的认识》教案02-18

《倒数的认识》教学反思10-03

倒数的认识教学反思09-27

《倒数的认识》教学设计03-25

小学数学《倒数的认识》教案(通用12篇)05-30

倒数的认识教学反思(15篇)04-16

倒数的认识教学反思15篇03-03

六年级数学《倒数的认识》教案(精选16篇)05-29