高一数学教案

时间:2023-11-11 08:25:37 教案 我要投稿

高一数学教案范文

  作为一无名无私奉献的教育工作者,时常需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。怎样写教案才更能起到其作用呢?以下是小编整理的高一数学教案范文,仅供参考,希望能够帮助到大家。

高一数学教案范文

高一数学教案范文1

  一、教材分析

  1、教学内容

  本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

  2、教材的地位和作用

  函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

  3、教材的重点﹑难点﹑关键

  教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念。

  教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。

  教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程。

  4、学情分析

  高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强。

  二、目标分析

  (一)知识目标:

  1、知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。

  2、能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。

  3、情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知—。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。

  (二)过程与方法

  培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。

  三、教法与学法

  1、教学方法

  在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。

  2、学习方法

  自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。

  四、过程分析

  本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。

  (一)问题情景:

  为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知—,为学习函数的单调性做好铺垫。(祥见课件)

  新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

  (二)函数单调性的定义引入

  1、几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。进行比较,分析其变化趋势。并探讨、回答以下问题:

  问题1、观察下列函数图象,从左向右看图象的变化趋势?

  问题2:你能明确说出“图象呈上升趋势”的意思吗?

  通过学生的交流、探讨、总结,得到单调性的“通俗定义”:

  从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?

  通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。

  设计意图:通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。通过学生已学过的一次y=2x+4,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。

  (三)增函数、减函数的定义

  在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。

  定义中的“当x1x2时,都有f(x1)

  注意:(1)函数的单调性也叫函数的增减性;

  (2)注意区间上所取两点x1,x2的任意性;

  (3)函数的.单调性是对某个区间而言的,它是一个局部概念。

  让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。

  设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。

  (四)例题分析

  在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。

  2、例2、证明函数在区间(—∞,+∞)上是减函数。

  在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。

  变式一:函数f(x)=—3x+b在R上是减函数吗?为什么?

  变式二:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。

  变式三:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。

  错误:实质上并没有证明,而是使用了所要证明的结论

  例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。

  (五)巩固与探究

  1、教材p36练习2,3

  2、探究:二次函数的单调性有什么规律?

  (几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。

  设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。

  通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。

  (六)回顾总结

  通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。

  设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。

  (七)课外作业

  1、教材p43习题1.3A组1(单调区间),2(证明单调性);

  2、判断并证明函数在上的单调性。

  3、数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。

  设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。

  (七)板书设计(见ppt)

  五、评价分析

  有效的概念教学是建立在学生已有知识结构基础上,因此在教学设计过程中注意了:第一。教要按照学的法子来教;第二在学生已有知识结构和新概念间寻找“最近发展区”;第三。强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

  本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,—引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。

高一数学教案范文2

  一、教学目标

  (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

  (2)理解逻辑联结词“或”“且”“非”的含义;

  (3)能用逻辑联结词和简单命题构成不同形式的复合命题;

  (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

  (5)会用真值表判断相应的复合命题的真假;

  (6)在知识学习的基础上,培养学生简单推理的技能.

  二、教学重点难点:

  重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

  三、教学过程

  1.新课导入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

  初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

  (从初中接触过的“命题”入手,提出问题,进而学习逻辑的.有关知识.)

  学生举例:平行四边形的对角线互相平. ……(1)

  两直线平行,同位角相等.…………(2)

  教师提问:“……相等的角是对顶角”是不是命题?……(3)

  (同学议论结果,答案是肯定的.)

  教师提问:什么是命题?

  (学生进行回忆、思考.)

  概念总结:对一件事情作出了判断的语句叫做命题.

  (教师肯定了同学的回答,并作板书.)

  由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

  (教师利用投影片,和学生讨论以下问题.)

  例1 判断以下各语句是不是命题,若是,判断其真假:

  命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

  初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

  2.讲授新课

  大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

  (片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

  (1)什么叫做命题?

  可以判断真假的语句叫做命题.

  判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0

  中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

  (2)介绍逻辑联结词“或”、“且”、“非”.

  “或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

  命题可分为简单命题和复合命题.

  不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

  由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

  (4)命题的表示:用p ,q ,r ,s ,……来表示.

  (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

  我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.

  给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

  对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .

  在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

  3.巩固新课

  例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

  (1)5 ;

  (2)0.5非整数;

  (3)内错角相等,两直线平行;

  (4)菱形的对角线互相垂直且平分;

  (5)平行线不相交;

  (6)若ab=0 ,则a=0 .

  (让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

高一数学教案范文3

  教学目标:①掌握对数函数的性质。

  ②应用对数函数的性质可以解决:对数的大小比较,求复

  合函数的定义域、值 域及单调性。

  ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高

  解题能力。

  教学重点与难点:对数函数的性质的应用。

  教学过程设计:

  ⒈复习提问:对数函数的概念及性质。

  ⒉开始正课

  1 比较数的大小

  例 1 比较下列各组数的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

  ⑵log0.50.6 ,logЛ0.5 ,lnЛ

  师:请同学们观察一下⑴中这两个对数有何特征?

  生:这两个对数底相等。

  师:那么对于两个底相等的对数如何比大小?

  生:可构造一个以a为底的对数函数,用对数函数的.单调性比大小。

  师:对,请叙述一下这道题的解题过程。

  生:对数函数的单调性取决于底的大小:当0

  调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递

  增,所以loga5.1

  板书:

  解:Ⅰ)当0

  ∵5.1<5.9 loga5.1="">loga5.9

  Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

  ∵5.1<5.9 ∴loga5.1

  师:请同学们观察一下⑵中这三个对数有何特征?

  生:这三个对数底、真数都不相等。

  师:那么对于这三个对数如何比大小?

  生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板书:略。

  师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

  数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

  函数图象的位置关系来比大小。

  2 函数的定义域, 值 域及单调性。

【高一数学教案】相关文章:

高一数学教案06-20

高一数学教案11-08

高一数学教案《函数概念》12-17

高一数学教案15篇12-08

高一数学教案(15篇)12-09

高一数学教案(精选15篇)12-26

高一数学教案(合集15篇)12-13

高一数学教案汇编15篇12-19

高一数学教案通用15篇12-21