高二数学优秀教案

时间:2023-11-13 07:19:16 教案 我要投稿

[必备]高二数学优秀教案4篇

  作为一无名无私奉献的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写呢?下面是小编精心整理的高二数学优秀教案,希望能够帮助到大家。

[必备]高二数学优秀教案4篇

高二数学优秀教案1

  教学准备

  教学目标

  熟练掌握三角函数式的求值

  教学重难点

  熟练掌握三角函数式的求值

  教学过程

  【知识点精讲】

  三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的`三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的影响,对角的范围要讨论

  【例题选讲】

  课堂小结】

  三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的影响,对角的范围要讨论

高二数学优秀教案2

  一、教材分析

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

  根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

  认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。

  能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

  情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

  二、教法

  根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的`推导,并逐步得到深化。

  三、学法

  指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

  四、教学过程

  (一)创设情境(3分钟)

  “兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题,(二)猜想—推理—证明(15分钟)

  激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想)

  在三角形中,角与所对的边满足关系

  注意:

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  (三)总结--应用(3分钟)

  1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  2.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

高二数学优秀教案3

  教学准备

  xxx

  教学目标

  1.掌握平面向量的数量积及其几何意义;

  2.掌握平面向量数量积的重要性质及运算律;

  3.了解用平面向量的数量积可以处理垂直的问题;

  4.掌握向量垂直的条件。

  教学重难点

  教学重点:平面向量的数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学过程

  1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的'夹角是θ,则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).

  并规定0向量与任何向量的数量积为0.

  ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

  2、两个向量的数量积与实数乘向量的积有什么区别?

  (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。

  (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替。

  (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.

高二数学优秀教案4

  一、教学目标

  【知识与技能】

  能正确概述“二面角”、“二面角的平面角”的概念,会做二面角的平面角。

  【过程与方法】

  利用类比的方法推理二面角的有关概念,提升知识迁移的能力。

  【情感态度与价值观】

  营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。

  二、教学重、难点

  【重点】

  “二面角”和“二面角的平面角”的概念。

  【难点】

  “二面角的平面角”概念的形成过程。

  三、教学过程

  (一)创设情境,导入新课

  请学生观察生活中的一些模型,多媒体展示以下一系列动画如:

  1.打开书本的过程;

  2.发射人造地球卫星,要根据需要使卫星的轨道平面与地球的赤道平面成一定的角度;

  3.修筑水坝时,为了使水坝坚固耐久,须使水坝坡面与水平面成适当的角度;

  引导学生说出书本的两个面、水坝面与底面,卫星轨道面与地球赤道面均是呈一定的角度关系,引出课题。

  (二)师生互动,探索新知

  学生阅读教材,同桌互相讨论,教师引导学生对比平面角得出二面角的概念

  平面角:平面角是从平面内一点出发的两条射线(半直线)所组成的图形。

  二面角定义:从一条直线出发的两个半面所组成的图形,叫作二面角。这条直线叫作二面角的棱,这两个半平面叫作二面角的面。(动画演示)

  (2)二面角的表示

  (3)二面角的画法

  (PPT演示)

  教师提问:一般地说,量角器只能测量“平面角”(指两条相交直线所成的`角。相应地,我们把异面直线所成的角,直线与平面所成的角和二面角,均称为空间角)那么,如何去度量二面角的大小呢?我们以往是如何度量某些角的?教师引导学生将空间角化为平面角。

  教师总结:

  (1)二面角的平面角的定义

  定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

  “二面角的平面角”的定义三个主要特征:点在棱上、线在面内、与棱垂直(动画演示)

  大小:二面角的大小可以用它的平面角的大小来表示。

  平面角是直角的二面角叫做直二面角。

  (2)二面角的平面角的作法

  ①点P在棱上—定义法

  ②点P在一个半平面上—三垂线定理法

  ③点P在二面角内—垂面法

  (三)生生互动,巩固提高

  (四)生生互动,巩固提高

  1.判断下列命题的真假:

  (1)两个相交平面组成的图形叫做二面角。( )

  (2)角的两边分别在二面角的两个面内,则这个角是二面角的平面角。( )

  (3)二面角的平面角所在平面垂直于二面角的棱。( )

  2.作出一下面PAC和面ABC的平面角。

  (五)课堂小结,布置作业

  小结:通过本节课的学习,你学到了什么?

  作业:以正方体为模型请找出一个所成角度为四十五度的二面角,并证明。

【高二数学优秀教案】相关文章:

高二数学优秀教案07-25

高二数学教案优秀08-18

高二数学教案优秀(精选)09-10

高二数学教案12-28

高二数学教学反思优秀01-31

关于高二数学教案12-30

数学优秀教案02-16

小学数学优秀教案09-15

初中数学优秀教案12-30