二次函数教案
作为一名教职工,编写教案是必不可少的,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。快来参考教案是怎么写的吧!下面是小编帮大家整理的二次函数教案,欢迎大家分享。
二次函数教案1
I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的.三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a
III.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
二次函数教案2
二次函数的教学设计
教学内容:人教版九年义务教育初中第三册第108页
教学目标:
1。 1。 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2。 2。 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3。 3。 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程设计:
一 创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1。写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2。 ①
2。写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2 ②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二 归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,
那么,y叫做x的二次函数。
注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。
练习:1。举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2。出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:;;; 的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三 尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1。 1。 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
2。 2。 模仿巩固:教师将了解到的.各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。
解:一、列表:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=x2 | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
二、描点、连线: 按照表格,描出各点。然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来。
对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。
练习:画出函数;的图象(请两个同学板演)
X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=0。5X2 | 4。5 | 2 | 0。5 | 0 | 0。5 | 02 | 4。5 |
Y=-X2 | -9 | -4 | -1 | 0 | -1 | -4 | -9 |
画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。
(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)
三 运用新知、变式探究
画出函数 y=5x2图象
学生在画图象的过程当中遇到函数值较大的困难,不知如何是好。
x | -0。5 | -0。4 | -0。3 | -0。2 | -0。1 | 0 | 0。1 | 0。2 | 0。3 | 0。4 | 0。5 |
Y=5x2 | 1。25 | 0。8 | 0。45 | 0。2 | 0。05 | 0 | 0。05 | 0。2 | 0。45 | 0。8 | 1。25 |
教师出示已画好的图象让学生观察
注意:1。 画图象应描7个左右的点,描的点越多图象越准确。
2。 自变量X的取值应注意关于Y轴对称。
3。 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。
四。 四。 归纳小结、延续探究
教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:
一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。
五 回顾反思、总结收获
在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。
(在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)
二次函数教案3
教学目标
【知识与技能】
使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.
【过程与方法】
使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.
【情感、态度与价值观】
使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.
重点难点
【重点】
使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.
【难点】
用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.
教学过程
一、问题引入
1.一次函数的图象是什么?反比例函数的图象是什么?
(一次函数的图象是一条直线,反比例函数的图象是双曲线.)
2.画函数图象的一般步骤是什么?
一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).
3.二次函数的图象是什么形状?二次函数有哪些性质?
(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)
二、新课教授
【例1】 画出二次函数y=x2的图象.
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值.
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.
思考:观察二次函数y=x2的图象,思考下列问题:
(1)二次函数y=x2的图象是什么形状?
(2)图象是轴对称图形吗?如果是,它的对称轴是什么?
(3)图象有最低点吗?如果有,最低点的坐标是什么?
师生活动:
教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.
学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.
函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.
由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.
【例2】 在同一直角坐标系中,画出函数y=x2及y=2x2的图象.
解:分别填表,再画出它们的图象.
思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?
师生活动:
教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.
学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.
抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.
探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。
师生活动:
学生在平面直角坐标系中画出函数y=-x2、y=-x2、y=-2x2的图象,观察、讨论并归纳.教师巡视学生的探究情况,若发现问题,及时点拨.
学生汇报探究的思路和结果,教师评价,给出图形.
抛物线y=-x2、y=-x2、y=-2x2开口均向下,顶点坐标都是(0,0),函数y=-2x2的图象开口最窄,y=-x2的图象开口最大.
探究2:对比抛物线y=x2和y=-x2,它们关于x轴对称吗?抛物线y=ax2和y=-ax2呢?
师生活动:
学生在平面直角坐标系中画出函数y=x2和y=-x2的图象,观察、讨论并归纳.
教师巡视学生的探究情况,发现问题,及时点拨.
学生汇报探究思路和结果,教师评价,给出图形.
抛物线y=x2、y=-x2的`图象关于x轴对称.一般地,抛物线y=ax2和y=-ax2的图象也关于x轴对称.
教师引导学生小结(知识点、规律和方法).
一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2的开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.
从二次函数y=ax2的图象可以看出:如果a0,当x0时,y随x的增大而减小,当x0时,y随x的增大而增大;如果a0,当x0时,y随x的增大而增大,当x0时,y随x的增大而减小.
三、巩固练习
1.抛物线y=-4x2-4的开口向,顶点坐标是,对称轴是,当x=时,y有最值,是.
【答案】下 (0,-4) x=0 0 大 -4
2.当m≠时,y=(m-1)x2-3m是关于x的二次函数.
【答案】1
3.已知抛物线y=-3x2上两点A(x,-27),B(2,y),则x=,y=.
【答案】-3或3 -12
4.抛物线y=3x2与直线y=kx+3的交点坐标为(2,b),则k=,b=.
【答案】 12
5.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为.
【答案】y=-2x2
6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()
A.y=x2B.y=x2
C.y=-2x2 D.y=-x2
【答案】C
7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是()
A.y=x2 B.y=4x2
C.y=-2x2 D.无法确定
【答案】A
8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,下列说法错误的是()
A.两条抛物线关于x轴对称
B.两条抛物线关于原点对称
C.两条抛物线关于y轴对称
D.两条抛物线的交点为原点
【答案】C
四、课堂小结
1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数.
2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.
3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来.
教学反思
本节课的内容主要研究二次函数y=ax2在a取不同值时的图象,并引出抛物线的有关概念,再根据图象总结抛物线的有关性质.整个内容分成:(1)例1是基础;(2)在例1的基础之上引入例2,让学生体会a的大小对抛物线开口宽阔程度的影响;(3)例2及后面的练习探究让学生领会a的正负对抛物线开口方向的影响;(4)最后让学生比较例1和例2,练习归纳总结.
二次函数教案4
教学目标:
利用数形结合的数学思想分析问题解决问题。
利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。
在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。
教学重点和难点:
运用数形结合的思想方法进行解二次函数,这是重点也是难点。
教学过程:
(一)引入:
分组复习旧知。
探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?
可引导学生从几个方面进行讨论:
(1)如何画图
(2)顶点、图象与坐标轴的交点
(3)所形成的三角形以及四边形的面积
(4)对称轴
从上面的问题导入今天的课题二次函数中的图象与性质。
(二)新授:
1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。
再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。
再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。
2、让同学讨论:从已知条件如何求二次函数的解析式。
例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。
(三)提高练习
根据我们学校人人皆知的船模特色项目设计了这样一个情境:
让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。
让学生在练习中体会二次函数的图象与性质在解题中的作用。
(四)让学生讨论小结(略)
(五)作业布置
1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函数的解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。
2、如图,一个二次函数的'图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。
3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。
(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)
二次函数教案5
【知识与技能】
1、会用描点法画二次函数=ax2+bx+c的图象。
2、会用配方法求抛物线=ax2+bx+c的顶点坐标、开口方向、对称轴、随x的增减性。
3、能通过配方求出二次函数=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值。
【过程与方法】
1、经历探索二次函数=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性。
2、在学习=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想。
【情感态度】
进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识。
【教学重点】
①用配方法求=ax2+bx+c的顶点坐标;②会用描点法画=ax2+bx+c的图象并能说出图象的性质。
【教学难点】
能利用二次函数=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数=ax2+bx+c(a≠0)的图象。
一、情境导入,初步认识
请同学们完成下列问题。
1、把二次函数=-2x2+6x-1化成=a(x-h)2+的'形式。
2、写出二次函数=-2x2+6x-1的开口方向,对称轴及顶点坐标。
3、画=-2x2+6x-1的图象。
4、抛物线=-2x2如何平移得到=-2x2+6x-1的图象。
5、二次函数=-2x2+6x-1的随x的增减性如何?
【教学说明】上述问题教师应放手引导学生逐一完成,从而领会=ax2+bx+c与=a(x-h)2+的转化过程。
二、思考探究,获取新知
探究1 如何画=ax2+bx+c图象,你可以归纳为哪几步?
学生回答、教师点评:
一般分为三步:
1、先用配方法求出=ax2+bx+c的对称轴和顶点坐标。
2、列表,描点,连线画出对称轴右边的部分图象。
3、利用对称点,画出对称轴左边的部分图象。
探究2 二次函数=ax2+bx+c图象的性质有哪些?你能试着归纳吗?
二次函数教案6
本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.
在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思[
等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.
2.4二次函数y=ax2+bx+c的图象(一)
教学目标
(一)教学知识点[
1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.
2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
(二)能力训练要求
1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.
(三)情感与价值观要求
1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.
2.让学生学会与人合作,并能与他人交流思维的过程和结果.
教学重点
1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.
2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
教学难点
能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
教学方法
探索比较总结法.
教具准备
投影片四张
第一张:(记作2.4.1 A)
第二张:(记作2.4.1 B)
第三张:(记作2.4.1 C)
第四张:(记作2.4.1 D)
教学过程
Ⅰ.创设问题情境、引入新课
[师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.
Ⅱ.新课讲解
一、比较函数y=3x2与y=3(X-1)2的图象的性质.
投影片:(2.4 A)
(1)完成下表,并比较3x2和3(x-1)2的值,
它们之间有什么关系?
X -3 -2 -1 0 1 2 3 4
3x2
3(x-1)2
(2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?
(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?
[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.
[生](1)第二行从左到右依次填:27.12,3,0,3, 12,27,48;第三行从左到右依次填48,27,12,3,0,3, 12,27.
(2)用描点法作出y=3(x-1)2的图象,如上图.
(3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).
(4)当x1时,函数y=3(x-1)2的值随x值的增大而增大,x1时,y=3(x-1)2的值随x值的增大而减小.
[师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?
[生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.
[师]能像上节课那样比较它们图象的性质吗?
[生]相同点:
a.图象都中抛物线,且形状相同,开口方向相同.
b. 都是轴对称图形.
c.都有最小值,最小值都为0.
d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.
不同点:
a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.
b. 它们的位置不问.[来源:Www.zk5u.com]
c. 它们的顶点坐标不同. y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),
联系:
把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.
二、做一做
投影片:(2.4.1 B)
在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.
[生]图象如下
它们的图象的性质比较如下:
相同点:
a.图象都是抛物线,且形状相同,开口方向相同.
b. 都足轴对称图形,对称轴都为x=1.
c. 在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.
不同点:
a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.
b. 它们的位置不同.
联系:
把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.
三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.
[师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?
[生]可以.
二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?
[生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.
[师]你能系统总结一下吗?
[生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]下面我们就一般形式来进行总结.
投影片:(2.4.1 C)
一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.
(1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c0时,向上移动,当c0时,向下移动.
(2)将函数y=ax2的.图象左右移动便可得到函数y=a(x-h)2的图象,当h0时,向右移动,当h0时,向左移动.
(3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象.
因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.
下面大家经过讨论之后,填写下表:
y=a(x-h)2+k 开口方向 对称轴 顶点坐标
a0
a0
四、议一议
投影片:(2,4.1 D)
(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?
[师]在不画图象的情况下,你能回答上面的问题吗?
[生](1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.
(2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).
(3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,y的值随x值的增大而减小;当x-1时,y的值随x值的增大而增大.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.
Ⅴ.课后作业
习题2.4
Ⅵ.活动与探究
二次函数y= (x+2)2-1与y= (x-1)2+2的图象是由函数y= x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?
解:y= (x+2)2-1的图象是由y= x2的图象向左平移2个单位,再向下平移1个单位得到的,y= (x-1)2+2的图象是由y= x2的图象向右平移1个单位,再向上平移2个单位得到的.
y= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y= (x-1)2+2的图象.
y= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y= (x+2)2-1的图象.
板书设计
4.2.1 二次函数y=ax2+bx+c的图象(一) 一、1. 比较函数y=3x2与y=3(x-1)2的
图象和性质(投影片2.4.1 A)
2.做一做(投影片2.4.1 B)
3.总结函数y=3x2,y=3(x-1)2y= 3(x-1)2+2的图象之间的关系(投影片2.4.1 C)
4.议一议(投影片2.4.1 D)
二、课堂练习
1.随堂练习
2.补充练习
三、课时小结
四、课后作业
备课资料
参考练习
在同一直角坐标系内作出函数y=- x2,y=- x2-1,y=- (x+1)2-1的图象,并讨论它们的性质与位置关系.
解:图象略
它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).
y=- x2的图象向下移动1个单位得到y=- x2-1 的图象;y=- x2的图象向左移动1个单位,向下移动1个单位,得到y=- (x+1)2-1的图象.
二次函数教案7
一、教材分析
1、教材的地位和作用
二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。
2、教学的重点和难点
教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。
教学难点:掌握从函数的性质推断图象的方法。
二、目标分析
按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:
1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。
2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。
3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。
三、教法学法分析
遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体现出教学过程中教师与学生的双主体作用。
四、教学过程分析
根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题
师生互动、探究新知
独立探究,巩固方法
强化训练,加深理解
小结归纳,拓展深化
布置作业,提高升华
环节1本节课一开始我就让学生直接总结出二次函数的性质与图象形状,在学生回答后,以有必要再重复吗?编者的失误?还是另有用意呢?的设问来激发学生的求知欲,在学生感觉很疑惑的时候马上进入环节2:试作出二次函数
的图象。目的是充分暴露学生在作图时不能很好的结合函数的性质而出现的错误或偏差问题,突出本节课的.重要性。在学生总结交流的基础上教师指出学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。
在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系.当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性.
在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去.最终寻求到解决问题的方法。
教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固.
通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。
第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。
最后一个阶段是布置作业,提高升华,作业的设置是分层落实.巩固题让学生复习解题思路,准确应用,以便举一反三.探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力.
以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。
二次函数教案8
教学目标
1.知识与技能
了解函数的概念,弄清自变量与函数之间的关系.
2.过程与方法
经历探索函数概念的过程,感受函数的模型思想.
3.情感、态度与价值观
培养观察、交流、分析的思想意识,体会函数的实际应用价值.
重、难点与关键
1.重点:认识函数的概念.
2.难点:对函数中自变量取值范围的确定.
3.关键:从实际出发,由具体到抽象,建立函数的模型.
教学方法
采用“情境──探究”的方法,让学生从具体的情境中提升函数的思想方法.
教学过程
一、回顾交流,聚焦问题
1.变量(P94)中5个思考题.
【教师提问】
同学们通过学习“变量”这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量.
【学生活动】思考问题,踊跃发言.(先归纳出5个思考题的关系式,再举例)
【教师活动】激发兴趣,鼓励学生联想,2.在地球某地,温度T(℃)与高度d(m)的关系可以挖地用T=10-来表示(如图),请你根据这个关系式回答下列问题:
(1)指出这个关系式中的变量和常量.
(2)填写下表.
高度d/m 0,200,400,600,800,1000
温度T/℃
(3)观察两个变量之间的联系,当其中一个变量取定一个值时,另一个变量就______.
3.课本P7“观察”.
【学生活动】四人小组互动交流,踊跃发言
二、讨论交流,形成概念
【函数定义】
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
【教师活动】归纳出函数的定义.强调在上述活动中的关系式是函数关系式.提问学生,两个变量中哪个是自变量呢?哪个是这个自变量的函数?
【学生活动】辨析理解,如:T=10-这个函数关系式中,d是自变量,T是d的函数等.弄清函数定义中的问题。
三、继续探究,感知轻重
课本P8探究题.
【学生活动】使用计算器进行探索活动,回答问题,理解函数概念.(1)y=2x+5,y是x的函数;(2)y=2x+1,y是x的函数.
四、范例点击,提高认知
【例1】一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的`油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为/km.
(1)写出表示y与x的函数关系的式子.
(2)指出自变量x的取值范围.
(3)汽车行驶200km时,油箱中还有多少汽油?
【教师活动】讲例,启发引导学生共同解决上述例1.
五、随堂练习,巩固深化
课本P99练习.
六、课堂总结,发展潜能
1.用数学式子表示函数的方法叫做表达式法(解析式法),它只是函数表示法的一种.
2.求函数的自变量取值范围的方法.
(1)要使函数的表达式有意义;
(2)对实际问题中的函数关系,要使实际问题有意义.
3.把所给自变量的值代入函数表达式中,就可以求出相应的函数值.
七、布置作业,专题突破
课本P106习题14.1第1,2,3,4题.
板书设计
函数
1、函数的概念例:
2、函数中自变量取值范围的确定
二次函数教案9
学习目标:
1、能解释二次函数 的图像的位置关系;
2、体会本节中图形的变化与 图形上的点的坐标变化之间的关系(转化),感受形数 结合的数学思想等。
学习重点与难点:
对二次函数 的图像的位置关系解释和研究问题的数学方法的感受是学习重点;难点是对数学问题研究问题方法的感受和领悟。
学习过程:
一、知识准备
本节课的学习的内容是课本P12-P14的内容,内容较长,课本上问题较多,需要你操作、观察、思考和概括,请你注意:学习时要圈、点、勾、画,随时记录甚至批注课本,想想那个人是如何研究出来的。你有何新的发现呢?
二、学习内容
1.思考:二次函数 的图象是个什么图形?是抛物线吗?为什么?(请你仔细看课本P12-P13,作出合理的解释)
x -3 -2 -1
0 1 2 3
类似的:二次函数 的图象与函数 的图象有什么关系?
它的对称轴、顶点、最值、增减性如何?
2.想一想:二次函数 的图象是抛物线吗?如果结合下表和看课本P13-P14你的解释是什么?
x
-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6
类似的:二次函数 的图象与二次函数 的图象有什么关系 ?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢
三、知识梳理
1、二次函数 图像的形状,位置的关系是:
2、它们的性质是:
四、达标测试
⒈将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是 。
将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是 。
将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;
将y=2x2-7的图象向 平移 个单位得到可由 y=2x2的图象。
将y=x2-7的图象向 平移 个单位 可得到 y=x2+2的图象。
2.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x 轴 平移了 个单位;
抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴 平移了 个单位.
抛物线y=-3(x-1)2的顶点是 ;对称轴 是 ;
抛物线y=-3(x+1)2的顶点是 ;对称轴是 .
3.抛物线y=-3(x-1)2在对称轴(x=1)的.左侧,即当x 时, y随着x的增大而 ; 在对称轴(x=1)右侧,即当x 时, y随着x的增大而 .当x= 时,函数y有最 值,最 值是 ;
二次 函数y=2x2+5的图像是 ,开口 ,对称轴是 ,当x= 时,y有最 值,是 。
4.将函数y=3 (x-4)2的图象沿x轴对折后得到的函数解析式是 ;
将函数y=3(x-4)2的 图象沿y轴对折后得到的函数解析式是 ;
5.把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=- 3(x-h)2的图象,则a= ,h= .
函数y=(3x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y随x的增大而增大,当x= 时,y有最 值是 .
6.已知二次函数y=ax2+c ,当x取x1,x2(x1x2), x1,x2分别是A,B两点的横坐标)时,函数值相等,
则当x取x1+x2时,函数值为 ( )
A. a+c B. a-c C. c D. c
7.已知二次函数y=a(x-h)2, 当x=2时有最大值,且此函数的图象经过点(1,-3),求此函数的解析式,并指出当x为何值时,y随x的增大而增大?
二次函数教案10
一. 教材分析
1、教材的地位及作用
函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。
2.教学目标
(1) 掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。[知识与技能目标]
(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。[过程与方法目标]
(3) 让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦,[情感、态度、价值观目标]
3、教学的重、难点
重点:二次函数的概念和解析式
难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力
4、 学情分析
①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。 ②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与 能力。
③初三学生程度参差不齐,两极分化已形成。
二、教法学法分析
1` 教法(关键词:情境、探究、分层)
基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法 为主进行教学。让学生在开放的情境中,在教师的 引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。
2、学法(关键词:类比、自主、合作)
根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的主动性和积极性,使学生由“学会”变“会学”和“乐学”。
3、教学手段
采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习 兴趣,参与热情,增大教学容量,提高教学效率。
三、教学过程
完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据“以人为本,以学定教”的教学理念,结合学生实际,制订以下教学流程:
(一).创设情境 温故引新
以提问的形式复习一元二次方程的一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:
(1)你们喜欢打篮球吗?
(2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?
从而引出课题〈〈二次函数〉〉,导入新课
(二).合作学习,探索新知
为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。
学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数
(三)当堂训练 巩固提高
由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的学习需求,实现有“差异的.”发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。
(四).小结归纳 拓展转化
让学生用自己的语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。
(五)布置作业 学以致用
作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系.
四.评价分析
本节课的教学从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课注重学生能力的培养和习惯的养成。由于学生的层次不一,我全程关注每一个学生的学习状态,进行分层施教,因势利导,随机应变,适时调整教学环节,,实现评价主体和形式的多样化,把握评价的时机与尺度,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。
五.教学反思
1.本节课通过学生合作交流,自己列出不同问题中的解析式,并通过观察他们的共同特征,成功得出了二次函数的概念。
2.本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生的语言表达能力。同时不断激发学生的探索精神,提高了学生分析和解决问题的能力。使学生有成功体验。
二次函数教案11
教学目标
掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:
二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:
一、情境创设
一次函数y=x+2的图象与x轴的交点坐标
问题1.任意一次函数的图象与x轴有几个交点?
问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?
二、探索活动
活动一观察
在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索
如图1,观察二次函数y=x2-x-6的图象,回答问题:
(1)图象与x轴的交点的`坐标为A(,),B(,)
(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?
活动三猜想和归纳
(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?
这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析
例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25
(2)y=3x2-4x+2
(3)y=-2x2+3x-1
例2.已知二次函数y=mx2+x-1
(1)当m为何值时,图象与x轴有两个交点
(2)当m为何值时,图象与x轴有一个交点?
(3)当m为何值时,图象与x轴无交点?
四、拓展练习
1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
(1)请写出方程ax2+bx+c=0的根
(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。
2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)
五、小结
这节课我们有哪些收获?
六、作业
求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。
二次函数教案12
教学目标
熟练地掌握二次函数的最值及其求法。
重 点
二次函数的的最值及其求法。
难 点
二次函数的最值及其求法。
一、引入
二次函数的最值:
二、例题分析:
例1:求二次函数 的最大值以及取得最大值时 的值。
变题1:⑴、 ⑵、 ⑶、
变题2:求函数 ( )的最大值。
变题3:求函数 ( )的最大值。
例2:已知 ( )的最大值为3,最小值为2,求 的取值范围。
例3:若 , 是二次方程 的两个实数根,求 的最小值。
三、随堂练习:
1、若函数 在 上有最小值 ,最大值2,若 ,
则 =________, =________。
2、已知 , 是关于 的一元二次方程 的两实数根,则 的.最小值是( )
A、0 B、1 C、-1 D、2
3、求函数 在区间 上的最大值。
四、回顾小结
本节课了以下内容:
1、二次函数的的最值及其求法。
课后作业
班级:( )班 姓名__________
一、基础题:
1、函数 ( )
A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2
2、函数 的最大值是4,且当 =2时, =5,则 =______, =_______。
二、提高题:
3、试求关于 的函数 在 上的最大值 ,高三。
4、已知函数 当 时,取最大值为2,求实数 的值。
5、已知 是方程 的两实根,求 的最大值和最小值。
三、题:
6、已知函数 , ,其中 ,求该函数的最大值与最小值,
并求出函数取最大值和最小值时所对应的自变量 的值。
二次函数教案13
教学目标:
1、使学生进一步理解二次函数的基本性质;
2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力.
3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力.
教学重点:初步理解数形结合的数学思想
教学难点:初步理解数形结合的数学思想
教学用具:微机
教学方法:探究式、小组合作学习
教学过程:
例1、已知:抛物线y=x2-(m2-1)x-2m2-2
⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点
⑵m取什么实数时,两交点间距离最短?是多少?
解:
△ =(m2-1)2+4(2m2+2)
=m4-2m2+1+8m2+8
=m4+6m2+9
=(m2+3)2
m2≥0
∴m2+3>0
∴△>0
∴抛物线与x轴有两个交点
问题:为什么说当△>0时,抛物线y =ax2+bx+c与x轴有两个交点.(能否从数和形两方面说明)
设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高.②学会合作,消除个人中心.③发现自我,提高参与度.④弘扬个体的主体性,形成健康,丰富的个性.
数:点在曲线上,点的坐标满足曲线的方程.反之,曲线方程的每一个实数解对应的点都在曲线上.抛物线与x轴的交点,既在抛物线上,又在x轴上.所以交点的坐标既满足抛物线的解析式,也满足x轴的'解析式.设交点坐标为(x,y)
∴
这样交点问题就转化成求这个二元二次方程组的解.代入y =0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题.根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根.∴y =ax2+bx+c
y =0
有两个不等的实数解
∴抛物线与x轴交于两个不同的点.
形:顶点在x轴上方,且开口向下.或者顶点在x轴下方,且开口向上.
设计意图:渗透解析几何的基本思想
使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性.掌握数形结合,分类讨论的思想方法.逐步学会数学的思维.
转化成代数语言为:
小结:第一种方法,根据解析几何的基本思想.将求曲线的交点问题,转化成求方程组的解的问题.
第二种方法,借助于图象思考问题,比较直观.发现规律后,再用数学的符号语言将其形式化.这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法.
思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系.
设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程.使主体积极地参与到学习中去.以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念.
⑵m取什么实数时,两交点间距离最短?是多少?
解:设二次函数与x轴的两交点为(x1,0),(x2,0)
解法㈠ 由⑴可知m为任何实数时, 都有△>0
解①
∴ x1+x2=m2-1
x1·x2=-2(m2+1)
∴│x2-x1│=
=
=
=
=m2+3
∴当m =0时,两交点最小距离为3
这里两交点间距离是m的函数
设计意图:培养学生的问题意识.在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法.培养学生独立地获取数学知识的能力.渗透函数思想
问题: 观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明.
设x1、x2 为ax2+bx+c =0的两根
可以推出:
还可以理解为顶点到x轴距离最短.
设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构.
小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法.
解法㈡:用十字相乘法或求根公式法求根.
思考:一元二次方程与二次函数的关系.
思考:求m取什么实数时,y =x2-(m2-1)x -2 m2-2被直线y =2所截得的线段最短?是多少?
练习:
观察函数 的图象,回答:
(1)y>0时,x的取值范围如何?
(2)y=0时,x取什么值?
(1)y<0时,x的取值范围如何?
小结:数与形是数学中相互依赖的两个方面.图形比较直观,可以启发思路;而数学的严格证明也是必不可少的.直观性和形式化是数学的两重性.
探究活动
探究问题:
欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c 的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c 的图象》。如果零售单价每降价0.1元 , 月销售量就要增加5把.
(1) 欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?
(2) 欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?
(3) 欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?
(4) 现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)
解:(1)(14—8) (元)
(2)638元、728元、748元、792元、792元、750元。
(3)设降价 元时利润最大,最大利润为 元
=
=
=
∴ 当 时, 有最大值
元
(4)设降价 元时利润最大,利润为 元
(其中 )。
化简,得 。
,
∴ 当 时, 有最大值。
∴ 。
数学教案-二次函数y=ax2+bx+c 的图象
二次函数教案14
教学目标:
让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。
重点:二次函数表达式的形式的选择
难点:各种隐含条件的挖掘
教法:引导发现法
教学过程:
(一)诊断补偿,情景引入:
1、二次函数的一般式是什么
2、二次函数的图象及性质
(先让学生复习,然后提问,并做进一步诊断)
(二)问题导航,探究释疑:
一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式。例如:我们在确定一次函数的关系式时,通常需要两个立的条件:确定反比例函数的关系式时,通常只需要一个条件:如果要确定二次函数的关系式,又需要几个条件呢?
(三)精讲提炼,揭示本质:
例1。某涵洞是抛物线形,它的截面如图26。2。9所示,现测得水面宽1。6m,涵洞顶点O到水面的距离为2。4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?
分析如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。
解由题意,得点B的坐标为(0。8,-2。4),
又因为点B在抛物线上,将它的坐标代入,得所以因此,函数关系式是。
例2、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2);
(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);
(3)已知抛物线与x轴交于点M(-3,0)(5,0)且与y轴交于点(0,-3);
(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。
分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。
解(1)设二次函数关系式为,由已知,这个函数的图象过(0,-1),可以得到c= -1。又由于其图象过点(1,0)、(-1,2)两点,可以得到
解这个方程组,得a=2,b= -1。
所以,所求二次函数的关系式是。
(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。
所以,所求二次函数的关系式是。
(3)因为抛物线与x轴交于点M(-3,0)、(5,0),
所以设二此函数的关系式为。
又由于抛物线与y轴交于点(0,3),可以得到解得。
所以,所求二次函数的'关系式是。
(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。
(四)题组训练,拓展迁移:
1、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);
(2)已知抛物线的顶点为(-1,2),且过点(2,1);
(3)已知抛物线与x轴交于点M(-1,0)、(2,0),且经过点(1,2)。
2、二次函数图象的对称轴是x= -1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。
(五)交流评价,深化知识:
确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。
(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。
(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。
本课课外作业1。已知二次函数的图象经过点A(-1,12)、B(2,-3),
(1)求该二次函数的关系式;
(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。
2、已知二次函数的图象与一次函数的图象有两个公共点P(2,m)、Q(n,-8),如果抛物线的对称轴是x= -1,求该二次函数的关系式
二次函数教案15
教学目标:
(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;
(2)培养学生的归纳、总结能力;
(3)通过两圆外公切线长的求法向学生渗透“转化”思想。
教学重点:
理解两圆相切长等有关概念,两圆外公切线的求法。
教学难点:
两圆外公切线和两圆外公切线长学生理解的不透,容易混淆。
教学活动设计
(一)实际问题(引入)
很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象。(这里是一种简单的数学建模,了解数学产生与实践)
两圆的公切线概念
1、概念:
教师引导学生自学。给出两圆的外公切线、内公切线以及公切线长的定义:
和两圆都相切的直线,叫做两圆的公切线。
(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线。
(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线。
(3)公切线的长:公切线上两个切点的距离叫做公切线的长。
2、理解概念:
(1)公切线的长与切线的长有何区别与联系?
(2)公切线的长与公切线又有何区别与联系?
(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长。但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点。
(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量。
(三)两圆的位置与公切线条数的关系
组织学生观察、概念、概括,培养学生的学习能力。添写教材P143练习第2题表。
(四)应用、反思、总结
例1 、已知:⊙O 1 、⊙O 2的半径分别为2cm和7cm,圆心距O 1 O 2 =13cm,AB是⊙O 1 、⊙O 2的外公切线,切点分别是A、B。求:公切线的长AB。
分析:首先想到切线性质,故连结O 1 A、O 2 B,得直角梯形AO 1 O 2 B。一般要把它分解成一个直角三角形和一个矩形,再用其性质。(组织学生分析,教师点拨,规范步骤)
解:连结O 1 A、O 2 B,作O 1 A⊥AB,O 2 B⊥AB。
过O 1作O 1 C⊥O 2 B,垂足为C,则四边形O 1 ABC为矩形,
于是有
O 1 C⊥C O 2,O 1 C= AB,O 1 A=CB。
在Rt△O 2 CO 1和。
O 1 O 2 =13,O 2 C= O 2 B- O 1 A=5
AB= O 1 C= (cm)。
反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法。
例2* 、如图,已知⊙O 1 、⊙O 2外切于P,直线AB为两圆的公切线,A、B为切点,若PA=8cm,PB=6cm,求切线AB的'长。
分析:因为线段AB是△APB的一条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直角三角形,然后再根据勾股定理,使问题得解。证△PAB是直角三角形,只需证△APB中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过P作两圆的公切线CD如图,因为AB是两圆的公切线,所以∠CPB=∠ABP,∠CPA=∠BAP。因为∠BAP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直角三角形,此题得解。
解:过点P作两圆的公切线CD
∵ AB是⊙O 1和⊙O 2的切线,A、B为切点
∴∠CPA=∠BAP ∠CPB=∠ABP
又∵∠BAP+∠CPA+∠CPB+∠ABP=180°
∴ 2∠CPA+2∠CPB=180°
∴∠CPA+∠CPB=90°即∠APB=90°
在Rt△APB中,AB 2 =AP 2 +BP 2
说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系。
(五)巩固练习
1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( )
(A)直角三角形(B)等腰三角形(C)等边三角形(D)以上答案都不对。
此题考察外公切线与外公切线长之间的差别,答案(D)
2、外公切线是指
(A)和两圆都祖切的直线(B)两切点间的距离
(C)两圆在公切线两旁时的公切线(D)两圆在公切线同旁时的公切线
直接运用外公切线的定义判断。答案:(D)
3、教材P141练习(略)
(六)小结(组织学生进行)
知识:两圆的公切线、外公切线、内公切线及公切线的长概念;
能力:归纳、概括能力和求外公切线长的能力;
思想:“转化”思想。
(七)作业:P151习题10,11。
【二次函数教案】相关文章:
《二次函数》教案03-02
二次函数教案07-28
初中二次函数教案01-10
二次函数教学反思04-16
二次函数的教学反思04-22
《二次函数》教学反思范文05-15
数学二次函数教学反思04-27
二次函数教学反思15篇04-17
《二次函数》教学反思范文(常用6篇)08-11
《二次函数与一元二次方程》教学反思04-01