小学分数教案

时间:2024-01-08 13:51:07 教案 我要投稿

小学分数教案

  作为一名专为他人授业解惑的人民教师,时常需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。如何把教案做到重点突出呢?下面是小编帮大家整理的小学分数教案,仅供参考,欢迎大家阅读。

小学分数教案

小学分数教案1

  教学目标:

  1.通过多种途径查找资料,经历走进生活、收集整理、交流表达等过程,让学生

  了解有关储蓄的知识的同时培养学生搜集处理信息的能力。

  2.结合百分率的知识,运用调查、观察、讨论、分析数量关系等方式,学习利息的计算方法,并运用所学的数学知识、技能和思想来解决实际问题。

  3.通过策划理财活动,让学生感受数学知识服务于生活的价值,培养科学理财的意识。

  教学重点:利息的计算方法

  教学难点:税后利息的计算。

  设计理念:本课除了要让学生掌握利息的计算方法,更重要的是要让学生结合百分率的知识,通过策划理财活动,让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。

  教学步骤:

  一、情境导入

  1. 提问:你家中暂时用不到的钱怎么处理的?(课前布置同学们向自己的爸爸妈妈了解家中暂时用不到的钱怎么处理的)

  你们知道为什么要把积余下来的钱存到银行里吗?(明确:人们把钱存入银行或信用社,这叫做存款或者储蓄。这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。)

  2. 关于储蓄方面地知识你还了解多少?(全班交流自己收集到信息)

  根据学生交流地情况摘其要点板书:

  利息 本金 利率

  多媒体出示告诉你:存入银行的钱叫做本金,取款时银行除了还给本金外,另外付给的钱叫做利息。利息占本金的百分率叫做利率。按年计算的叫做年利率,按月计算的叫做月利率。

  出示利率表。(略,同书上第5页利率表)

  师:你从这张利率表上能获得哪些信息?说说年利率2.52%的含义。你认为利息与什么有关?怎样求利息?(学生讨论)

  根据学生的回答板书:利息=本金利率时间

  二、教学例3

  1.出示例3。读题后明确,二年期的利率应该就是表格中对应的'二年存期的利率,不是一年期的利率2。

  师:要求利息,需要知道哪些条件?你会列式求利息吗?(试着做一做,集体订正)

  2.教学试一试

  (1)亮亮实际能拿到这么多利息吗?为什么?(请了解利息税的同学解释)

  教师再说明:这里求得的利息是税前利息,也叫应得利息。但是根据国家税法规定,从1999年11月开始,储蓄所得的利息应缴纳20%的利息税,由储蓄机构代扣。税前利息中扣掉利息税后余下的部分即是自己实际得到的利息,即税后利息,也叫实得利息。购买国家债券、教育储蓄不缴纳利息税。

  这里的20%是什么?

  你觉得应该怎样计算税后利息呢?可以先算什么?用计算器计算亮亮实得利息是多少元?(学生用计算器计算)

  (2)小结:一般我们从银行取出来的都是税后利息,所以在多数计算中最后要将利息税减掉。

  (3)引申:如果问题问亮亮到期一共可取出多少元?这里的一共是什么意思,包含哪些内容。(明确可取出多少元:本金+税后利息)

  这个问题由你来解答。

  三、巩固练习

  1.完成练一练。

  应得利息怎样求?实得利息怎样求?(学生列式解答)

  二者的区别是什么?实得利息是应得利息的百分之几?(组织学生讨论)

  2.做练习二的第5题。

  提醒学生教育储蓄不需缴纳营业税。这里的本金和利息一共多少元是什么意思?(指名学生回答,集体订正)

  3.理财我能行

  谈话:你们对家中的存款情况了解多少?能说给大家听听吗?当然该保密的就不要说了。(学生交流)

  学生交流后出示下面题目(同时出示利率表)

  (1)张明家有5000元计划存入银行三年,张明的妈妈想请我们班的同学帮助算一算,是存定期三年合算?还是存定期一年,然后连本带息再转存合算呢?(学生说出自己的想法)

  (2)如果你有1000元,根据你家的实际情况,你打算怎样投资?请你设计一个理财方案。

  四、全课小结

  这节课我们学习了什么知识?通过本节课的学习,你学会了什么?

  师:通过今天的学习,希望同学们有意识地养成勤俭节约,计划消费的习惯,并能把所学知识应用到实际生活中,发挥其价值。

  五、布置作业(两道实践题让学生在家长的陪同下到银行去储蓄,从实践中认识储蓄)

  1.到银行存压岁钱;

  2.找一份存折或存单,看懂上面的每一栏,并从上面找到本金、利率、时间,能计算到期后这份存折(存单)一共可取出多少元?

小学分数教案2

  教案中对每个课题或每个课时的教学内容,教学步骤的安排,教学方法的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等。小学生分数乘法的数学教案,我们来看看。

  教具、学具准备

  1. 根据例题制作的挂图、投影片或多媒体课件。

  2. 每个学生准备一张长15 cm、宽10 cm的长方形纸。

  教学过程

  一、创设情境引入新课

  教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

  出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

  师:能提出什么问题?

  学生提问题,教师板书。

  以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的'几分之几?”

  师:怎样列式?(板书1/5×4)

  师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

  让学生计算,并说说怎样计算。

  师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

  学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

  师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

  板书课题:分数乘分数

  二、操作探究计算算理

  1?笔合旅嫖颐抢刺教址质?乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

  学生操作。

  学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

  师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

  小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

  学生自己涂色。

  师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

  师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

  学生讨论交流汇报。

  教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。

  三、迁移延伸,归纳法则

  提出问题:3/4小时粉刷这面墙的几分之几?

  师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)

  小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?

  交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)

  根据板书的两个计算算式讨论归纳计算方法。

  通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。

  四、反馈提高,巩固计算

  出示例4,读题。

  师:怎样列式?依据什么列式?

  由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。

  让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

  课堂总结:今天我们学习了什么?分数乘分数怎样计算?

  学生独立完成“做一做”。

  教学目标

  1. 通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。

  2. 发展学生的观察推理能力。

小学分数教案3

  学习目标

  1.了解分式、有理式的概念.

  2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

  教学重点重点:理解分式有意义的条件,分式的`值为零的条件.

  教学难点难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

  教学方法自主学习合作探究

  学生自主活动材料

  一、前置自学(自学课本2-4页内容,并完成下列问题)

  1、观察你所得的式子,有什么共同点?它们与分数有什么相同点和不同点?

  2、你能总结出分式的定义吗?

  3、“两个整式相除叫做分式”这句话对吗?

  4、你能举出举几个分式的例子吗?

  5、小结分式的概念中应注意的问题.

  (1)分母中含有字母.

  (2)如同分数一样,分式的分母不能为零.

  6、何时分式的值为零?

  二、合作探究

  例1:(1)当a=1,2时,求分式的值;(2)当a取何值时,分式有意义?

  例2:当x取何值时,下列分式的值为零?

  三、拓展提升

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4,,,,,2.当x取何值时,下列分式有意义?

  3.当x为何值时,分式的值为0?

  0  四、当堂反馈

  1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

  (1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.

  (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.

  (3)x与y的差于4的商是.

  2.当x取何值时,分式无意义?

  3.当x为何值时,分式的值为0?

  五、课堂小结

  本节课你学到了哪些知识和方法?

  1.分式与分数的区别:

  2.分式何时有意义?

  3.分式何时值为零?

小学分数教案4

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的.关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

小学分数教案5

  求一个数比另一个数多或少百分之几的应用题是求一个数是另一个数的百分之几问题的发展,是在求一个数比另一个数多(或少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据题里的条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。

  教学内容

  教科书第116页例3,完成“做一做”中的题目及练习三十的第1~4题。

  教学目的

  在解答求一个数是另一数的百分之几的应用题及分数应用题的基础上,通过迁移类推,使学生掌握求一个数比另一个数多(或少)百分之几的应用题,提高学生分析解答应用题的能力。

  教学过程

  一、复习

  1、把下面各数化成百分数。

  0.63,1.08,7,0.044

  2、解答下面的应用题,并导入新课。

  “一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?”

  学生独立在练习本上列式解答,订正时教师板书下面的线段图和算式:

  14÷12=116.7%

  提问:为什么这样列式?

  要求学生分析出从问题“实际造林是原计划的百分之几”可以看出是求实际造林数与计划造林数的比,要以原计划造林的公顷数(12公顷)作为单位“1”,求14是12的百分之几,用除法计算。

  提问:从题目看,原计划造林多还是实际造林多?如果把这道题的问题改为“实际造林比原计划多百分之几”该怎样解答呢?

  教师将复习题问题改变后成为例3。

  二、新课

  1。帮助学生理解题意。

  (1)指名学生读题。

  (2)提问:例3的问题与复习题有什么不同?

  你怎样理解“实际造林比原计划多百分之几”这句话?

  (引导学生利用黑板上的线段图说明,求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数占原计划的百分之几。)

  (3)在学生回答的同时,教师完成下面线段图。

  (4)启发学生想,“实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较?谁是单位“1”?

  2、讨论算法并列出算式。

  提问:根据以上分析,要求出“实际造林比原计划多的`公顷数”占“原计划的百分之几”必须先算什么?再算什么?

  列式:(14-12)÷12

  让学生计算出结果,教师板书并写出答案。

  3、想一想,这道题还有其他解法吗?

  引导学生思考,把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数。

  学生列式,教师板书:

  14÷12×100%-100%

  4、将例3中的问题改成“原计划造林比实际造林少百分之几”该怎样解答呢?

  (1)提问:从问题看,哪两个量在比较?把谁看作单位“1”?解答时,先求什么?再求什么?

  (引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要以实际造林作为单位“1”。必须先求出原计划造林比实际造林少的公顷数,才能求出原计划造林比实际少的百分之几。)

  (2)学生列式,教师板书:

  (14-12)÷14

  如果有学生列出14÷14-12÷14也是允许的。

  (3)观察比较:

  将例3的第一种列式及改变问题后的第一种列式进行比较。不同点在什么地方?为什么除数不一样?

  通过学生的讨论,再次强调两题中和谁比的标准不同,单位“1”就会发生变化。解答这种题时,仍然要注意找准单位“1”。

  5、引导学生观察例3的问题及变化后的问题,提问:“谁能概括说明今天我们学习的是什么新知识?”

  学生回答后,教师板书课题:求一个数比另一个数多(或少)百分之几的应用题。

  三、巩固练习

  1、提问:

  求一个数比另一个数多(或少)百分之几的应用题的解题方法是什么?(即先求什么,再求什么。)

  解答此类应用题必须注意什么?(找准单位“1”、)

  2、独立解答第30页“做一做”的题目。

  订正时要求学生说出:先求十月份比九月份节约用水的吨数,再求节约的吨数占九月份的百分之几。九月份用水吨数为单位“1”,作除数。学生口述算式,教师板书:(800-700)÷800。

  教师提出,如果求九月份用水比十月份多百分之几,该怎样列式?学生列式,教师板书:(800-700)÷700。然后教师再次强调问题不同,单位“1”有所变化,必须要仔细审题,弄清数量关系。

  四、课堂练习

  1、学生做练习三十的第1题。集体订正时要提问算法。

  2、学生在书上做练习三十的第3题,要求先在练习本上列式计算,再将结果填在表中。教师要注意行间巡视,看看学生是否掌握了今天所学的解题方法,发现问题,及时纠正。

  五、作业

  练习三十的第2、4题。

小学分数教案6

  本课题教时数:本教时为第2教时备课日期9月9日

  教学目标

  1、使学生理解整数除法分数的计算方法,并能正确地进行计算。

  2、培养学生分析、推理和概括等思维能力。

  教学重难点

  整数除以分数的计算方法。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、复习旧知

  二、教学新课

  一、 巩固练习

  四、小结。

  五、作业

  1、口算

  3/431/542/766/112

  分数除以整数通常是怎样计算的?

  2、复习第(1)题

  学生口答算式与结果。

  这一题已知什么数量,要求什么数量?按怎样的数量关系求?

  出示数量关系式:速度=路程时间

  3、口答填空

  3/10小时是()个1/10小时。

  1小时是()个1/10小时。

  4、引入新课

  1、教学例2

  这一题已知什么数量?要求什么数量/根据数量关系式怎样列式?

  (183/10)

  画出一条线段,并提问:如果把这条线段看做1小时行的千米数,怎样来表示3/10小时行的千米数?

  根据学生的'回答把这条线段平均分成10份,其中的3份用颜色线画出。

  师边述说边画线段。

  问:从图伤看,3/10小时行驶18千米,就是几个1/10小时行18千米?求1小时行多少千米。就是求几个1/10小时行多少千米?

  要求10个1/10小时行多少千米。先要求出什么?图上哪一段表示1/10小时行的路程?

  根据回答把线段图补充完整。

  讨论:按这样来想,你认为第一步求什么?怎样求?

  (1)1/10小时行的千米数是:183

  为什么要用183?183能不能转化成用乘法来计算?

  讨论:1/10小时行的千米数已经用式子表示出来了,你觉得第二步可以求什么?怎样求?

  (2)1小时行的千米数是:181/310

  (3)为什么要用181/3的积再乘10?根据乘法结合律,181/310还可以怎样乘?

  问:183/10求出的是1小时行的千米数,1810/3也表示1小时行的千米数,那么183/10之间有怎样的关系?

  从上面的推想过程看出,183/10转化成什么样的计算了?

  比较这个等式里的算式,在等式两边,什么没有变?什么变了?是怎样变的?

  2、小结。

  1、练一练1

  2、练一练2整数除以分数是怎样计算的?

  3、练习八2整数除以分数和整数乘分数在计算时有什么不同?

  4、练习八3

  分组练习

  做完后问:每一组的两道题有什么不同地方?计算时有什么共同的地方?

  说一说在整数除以分数时,要乘哪个数的倒数,在分数除以整数时,要乘哪个数的倒数。

  练习八、1、4、5

  181/310

  =18(1/310)

  =1810/3

  课后感受

  此节课的教法与前一节类似,更多的在于在学生昨天学会分析方法的前提下更多的放手让学生自己去探索规律、寻求解题方法。

小学分数教案7

  教学目标

  1.了解分式、有理式的概念.

  2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

  重点、难点

  重点:理解分式有意义的条件,分式的值为零的条件.

  难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

  情感态度与价值观

  熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的'联系与区别.

  教学过程

  教学设计与师生互动

  备注

  第一步:复习提问

  1.什么是整式?什么是单项式?什么是多项式?

  2.判断下列各式中,哪些是整式?哪些不是整式?

  ①+m2②1+x+y2-③④

  ⑤⑥⑦

  第二步:创设情景,P4[思考]让学生自己依次填出:,为下面的[观察]提供具体的式

  子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点?

  可以发现,这些式子都像分数一样都是(即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

  1.让学生填写P4[思考],学生自己依次填出:,.

  2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  请同学们跟着教师一起设未知数,列方程.

  设江水的流速为x千米/时.

  轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

  3.以上的式子,有什么共同点?它们与分数有什么相同点和不同点?

  第三步:新课讲解:

  小结:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。

  练习:下列各式中,哪些是分式哪些不是?

  (1)、、(2)、(3)、(4)、(5)x2、(6)+4

  强调:(6)+4带有是无理式,不是整式,故不是分式。

  2.小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。

  第四步:例题讲解

  P5例1.当x为何值时,分式有意义.

  [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

  出字母x的取值范围.

  [提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

  (补充)例2.当m为何值时,分式的值为0

  [分析]分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

  [答案](1)m=0(2)m=2(3)m=1

  第五步:随堂练习

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4,,,,,2.当x取何值时,下列分式有意义?

  3.当x为何值时,分式的值为0?

  第六步:课后练习

  1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

  (1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.

  (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.

  (3)x与y的差于4的商是.

  2.当x取何值时,分式无意义?

  3.当x为何值时,分式的值为0?

  答案:

  六、1.整式:9x+4,,分式:,,2.(1)x≠-2(2)x≠(3)x≠±2

  3.(1)x=-7(2)x=0(3)x=-1

  第七步:小结

  一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。当分式的分子是零而分母不等于零时,分式的值等于零。

小学分数教案8

  教学内容:概括分数可以化成小数的规律。

  教学目标:

  使学生掌握最简分数能否化成有限小数的特征,并能正确的进行判断。

  教学过程:

  一、复习

  1、怎样把小数化成分数?

  2、怎样把分数化成小数?

  二、教学新课

  1、让学生把下面的.分数化成小数,(除不尽的保留两位小数)

  1/21/3.3/42/55/68/153/22

  5/82/97/101/129/144/253/40

  能化成有限小数的分数不能化成有限小数的分数

  三、引导观察

  (1)观察两个框内的分数,各有什么特征?(他们是最简份数)

  (2)把这些份数的分母分别分解质因数。

  (3)再次观察这些份数的分母有什么特点。

  (4)师生共同归纳

  (5)议一议

  (6)请每个同学举出两个例子,验证一下刚才概括的这个特征是否正确。

  四、应用这些特征判断哪些分数能化成有限小数,哪些不能。

  五、巩固练习

  六、布置作业

小学分数教案9

  教学目标

  1.理解小数比大小的方法,会比较两个小数的大小。

  2.让学生经历从具体—表象—抽象的学习过程,获得小数比大小的方法,并发展迁移能力。

  3、让学生感受小数比大小的方法是有价值的。

  教学重点:会比较两个小数的大小。

  教学难点:让学生经历从具体—表象—抽象的学习过程,获得小数比大小的方法,并发展迁移能力。

  教学过程:

  全免费中小学课件、教案、试题尽在“八佰教育网”

  一.复习导入:

  1、在数射线上放一放下面各数,并选两个数比一比大小。

  502510055

  2、在○里填上“><=”

  ○○○

  3、揭题:小数的大小比较

  二.自主探究新知。

  (一)、数射线上比大小。

  1、出示情景

  这是四(3)班同学在进行跳远比赛呢?

  徐夏豪的成绩是:2.90米。

  沈珺的成绩是:3.60米。

  夏陈的成绩是:3.45米。

  你能给他们排出名次吗?

  2、学生操作交流并排出名次

  3、练一练:

  用数射线上的点表示下面各小数,并比较每组数中两个数的大小。

  (二)、脑子里比大小。

  1、出示

  沈佳妮的成绩是:2.98米。

  徐璐婕的成绩是:2.89米。

  顾雨菲的成绩是:3.05米。

  (2)、离开数射线,把三张卡片在桌上排一排。

  (3)、交流说出她们排列的名次。

  (三)、归纳比较小数大小的一般方法

  1、还有其他的方法排出名次吗?

  2、小组讨论

  3、交流并出示:比较两个小数的大小,先比较整数部分,整数部分大的那个数就大;整数部分相同的,再比较十分位上的数,十分位上的数大的那个数就大;……

  4、小结:小数大小的比较方法与多位数大小的比较方法是相通的。

  三、巩固运用

  1、比较下面每组中两个小数的大小。

  3.14○4.130.473○0.46

  5.0192○5.01297.281○8.001

  2、综合运用。

  2004年雅典奥运会男子110m栏决赛真激烈!

  加西亚的成绩是13.20秒

  刘翔的成绩是12.97秒

  特拉梅尔的成绩是13.18秒

  (1).提问:刘翔(中国)、加西亚(古巴)、特拉梅尔(美国)跑在前三位,你能给他们排出名次吗?

  (2).独立思考:有哪些好办法能很清楚地比较出这三个小数的大小?

  (3).学生交流。

  思考:跑步比赛与跳远比赛的成绩排名有什么不一样?

  四、总结:这节课学习了什么?

  你有什么收获?

  设计意图:

  本设计注意挖掘学生身边的学习资源,为学生创建了一个发现、探究的'思维空间,运用大量的实践活动引导学生去发现、去创造,培养学生的初步创新意识和创新能力:

  1、关注学生的生活经验和已有的知识体验。

  2、体现了活动是学习的载体,使学生在活动中学习。

  3、联系实际,灵活应用,培养了学生的创新精神和创新能力。

  4、通过学生间的合作探索,并将学习成果展现,使学生充分感受学习的乐趣,体验成功,建立学习自信心。

  教材分析:“分数比较大小”这部分内容是实验教材新增设的内容之一,也是教材改革的新变化之一。数学课程标准在探索规律的内容中明确说明:“发现给定事物中隐含的简单规律”,并给出了具体例子。我在教学时,为了激发学生的学习兴趣,选取了更贴近学生生活实际的素材.让学生通过操作、观察、实验、猜测等活动去发现,从而培养其探索数学问题的能力和发现、欣赏数学美的意识。

  教材处理:兴趣是的老师,《数学课程标准》指出,数学教学必须注意从学生的生活情境和感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。在教学中就要努力挖掘学生身边的学习资源,为他们创建一个发现、探究的思维空间,使学生能更好地去发现,去创造。在这一理念的指导下,我采用了“以情激学、导入新课——引导观察、探究规律——实践操作、合作互动——联系生活、开放应用——评价体验、畅谈收获”这一教学模式展开教学活动。让学生在自己喜欢的实践活动中探索,通过找一找、摆一摆、涂一涂、演一演等活动去发现事物的规律,从而培养学生初步的观察、概括、推理能力,以及提高学生间相互合作的意识。

小学分数教案10

  教学目标

  1. 认识单位“1”,理解分数的意义及分母、分子的含义。

  2. 培养学生的观察、分析、抽象、概括等思维能力。

  3. 通过层层设疑,不断强化学生的质疑意识,提高学生的质疑能力。

  教学重点:建立单位“1”的概念。

  课前准备:通过各种途径去查找、了解分数是怎样产生的。

  教学过程()

  一.创设情景

  课前让同学通过各种途径去查找、了解分数是怎样产生的,有哪些同学已经查找到了相关的信息,能与大家交流吗?

  再请同学们看两个例子。

  1、出示2个实例(课件)

  (1) 这些饼,我们可以用3个来表示,而这些呢可以用4个来表示,再请大家看这半个饼还能用整数来表示吗?

  (2) 用米尺来测量木板的长度,能用整米数来表示吗?

  许多例子都可以告诉我们,在生产和生活中,有时我们通过计算或是测量都是不能得到整数结果的,为了适应客观实际的需要,而产生了新的数——也就是分数(出示)。开始,人们只认识一些简单的分数,如二分之一、三分之一等。经过很长时间后,才产生像现在这样完善的分数的知识。同学们知道吗?我国还是世界上发明和使用分数比较早的国家之一。

  其实分数对于同学们来说不会太陌生,我们已经对分数有了初步的认识。

  2、 揭示课题:今天这节课我们在分数初步认识的基础上探究分数的意义。

  二、互动探究

  (一)复习把一个物体或一个计量单位平均分

  首先让我们一起来回忆一下:

  1. 用课件展示。(3个例子)

  (1) 把一块饼平均分成2份,每份是它的二分之一。

  (2) 把一张正方形的纸平均4份。

  (3) 把一条线段平均分成5份,

  2. 小结:以前我们学习了把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,都可以用分数表示。

  (二)学习把一个整体平均分

  1.想一想:

  在现实生活中是不是只能把一个物体进行平均分?请举例。

  师小结:在现实生活中不仅能把一个物体进行平均分,还可以把许多物体看作一个整体来平均分。

  2.思考:

  这里有一堆苹果,你能拿出它的1/4 吗?你是怎样想的'?

  把什么看作一个整体?怎么分的?能完整的叙述一下吗?

  把这些苹果看作一个整体,平均分成4份,每份的一个苹果就是这些苹果的1/4。

  3.讨论:

  把6只熊猫平均分,有几种分法?每份用什么分数表示?

  (1)汇报分的情况。

  (2)说说你们是怎样想的?注意叙述完整。

  把什么看作一个整体?怎么分的?

  把六只熊猫看作一个整体,平均分成6份,每份的一只熊猫就是这个整体的1/6。要表示这个整体的2份呢?3份?5份?

  还可以怎样分呢?

小学分数教案11

  教学目标

  抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.

  教学过程

  一、引入

  根据条件列出对应关系.

  1.青砖的块数比红砖多

  2.青砖的块数比红砖少

  3.红砖的块数比青砖多

  4.红砖的块数比青砖少

  上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?

  二、展开

  (一)将上列各条件补充一个共同的条件和问题,出示例1.

  红砖2100块 有青砖多少块?

  1.学生独立解答;

  2.大组交流;

  3.列表归纳.

  (二)出示例2

  电视机厂今年生产电视机3600台,____________________,去年生产多少台?

  1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.

  (1)相当于去年的25%

  (2)比去年少25%

  (3)比去年多25%

  (4)去年生产的是今年的25%

  (5)去年比今年少25%

  (6)去年比今年多25%

  2.将应选择的条件填入下列各式后的括号内.

  ( )

  ( )

  ( )

  ( )

  ( )

  ( )

  3.师生共同分析

  (1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.

  分析:去年的.生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:

  去年的产量□100

  今年的产量360025

  设去年生产x台,得到的式子:

  在第六个式子的括号里填(1).

  (2)按照式子找应补充的条件.

  如:

  分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).

  三、巩固

  (一)根据题意列式解答:

  果园里有梨树168棵 苹果树有多少棵?

  (二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一

  台机器要多少元?

  (三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?

  (四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?

  教案点评

  这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。

小学分数教案12

  教材分析

  分数的大小是在学生已经初步理解了分母相同的分数和分子是1的分数的大小比较方法及学习了分数的基本性质的基础上比较分母不同的分数,在比较过程中,引出“通分”的概念。教材提供了3种思路:第一种是数形结合,根据分数的意义通过画图来比较分数的大小;第二种是根据分数的基本性质把两个分数化成分母相同的分数来比较大小,在此基础上引出通分的概念,即把分母不相同的分数化成和原来分数相等、并且分母相同的分数,再比较大小;第三种是把两个分数化成分子相同的分数,再比较大小。

  本节课主要学会比较两个分母不相同的分数的大小,并能理解通分的.含义,掌握通分的方法。这部分知识在今后的学习和生活中得到广泛的应用,所以掌握这部分内容为学生以后学习及解决简单问题具有十分重要的意义。

  学情分析

  学生已经初步理解了分母相同的分数和分子是1的分数的大小比较方法及学习了分数的意义和分数的基本性质,在此基础上比较分母不同的分数大小。因此,可以通过学生自主探究、亲身实践、合作交流的活动,引导学生来学习这一内容。学会多种比较分数大小的方法,并选择最简便的方法,理解通分的含义,掌握通分的方法。让学生在参与教学活动中灵活掌握本节课的教学重点,突破教学难点。

  教学目标

  1.探索比较分数大小的方法,会正确比较两个分母不相同的分数的大小。

  2.结合具体情境,引导学生用分数描述有关现象。

  3.结合具体情境,理解通分的含义,探索并掌握通分的方法。

  4.进一步渗透等量变换的数学思想和方法,培养学生发散思维的能力。

  5.在解决实际问题的过程中进一步体会教学和现实生活的密切联系,增强自主探索意识。

  教学重点和难点

  教学重点:会比较两个分母不相同的分数的大小;理解通分的含义;掌握通分的方法。

  教学难点:能应用分数大小比较的知识解决生活中的实际问题。

小学分数教案13

  教案设计

  设计说明

  1.以学生自主探究为主,引导学生发现分数与小数的互化方法。

  学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。

  2.在学生原有的认知水平上促进发展。

  本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。

  课前准备

  教师准备 PPT课件

  学生准备 两张完全一样的方格纸

  教学过程

  ⊙创设情境,导入新课

  师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

  (课件出示情境图)

  师:“分数王国”里有哪些数呢?“小数王国”里呢?

  (生汇报)

  师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

  生:和0.06都说自己更大。

  师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

  设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

  ⊙自主探索,学习新知

  1.解决问题。

  (1)课件出示教材7页情境图。

  师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?

  (2)大胆猜测,探究比较方法。

  方法一 把分数化成小数来比较。

  =1÷20=0.05,因为0.060.05,所以0.06。

  方法二 把小数化成分数来比较。

  0.06=,=,因为,所以0.06。

  课件展示学生没有想到的画图法,让学生在讨论中理解。

  0.06>

  师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

  2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

  (1)认真读题,明确题目中的“翻译”指什么。

  (2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。

  (3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

  3.归纳分数化成小数的方法。

  (1)探究将分数化成小数的方法。

  把下列分数化成小数:

  练习,并思考转化方法。

  (2)小组内交流方法。

  (3)班内反馈。

  要求学生说出转化方法,并讲明转化的`原理。

  师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。

  4.归纳“小数化成分数”的方法。

  把0.3,0.27,0.75,0.125化成分数。

  练习,探究小数化成分数的方法。

  师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

  设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

小学分数教案14

  教学目标

  1、使学生学会用方程方法和算术方法解答两步计算的分数一般应用题、

  2、培养学生分析、解答两步计算的的能力和知识迁移的能力、

  3、培养学生的推理能力、

  教学重点

  培养学生分析、解答两步计算的的能力

  教学难点

  使学生正确地解答两步计算的分数一般应用题、

  教学过程

  一、复习引新

  (一)全体学生列式解答,再说一说列式的依据、

  两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?

  132-5

  =6.5-5

  =1.5(千米)

  根据:路程相遇时间-甲速度=乙速度

  (二)教师提问:谁来说一说相遇问题的三量关系?

  速度和相遇时间=总路程

  总路程相遇时间=速度和

  总路程速度和=相遇时间

  (三)引新

  刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)

  二、讲授新课

  (一)教学例1

  例1、两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇、甲每小时行5千米,乙每小时行多少千米?

  1、读题,分析数量关系、

  2、学生尝试解答、

  方法一:解:设乙每小时行 千米、

  方法二: (千米)

  3、质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?

  相同:解题思路和解题方法相同;

  不同:数据不同,由整数变成分数、

  4、练习

  甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?

  (二)教学例2

  例2、一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?

  1、学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系、

  由此得出:一批水果的重量 第一次+第二次

  2、列式解答

  方法一:解:设这批水果有 千克

  方法二:

  3、以组为单位说一说解题的思路和依据、

  4、练习

  六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 、六年级有学生多少人?

  三、巩固练习

  (一)写出下列各题的等量关系式并列出算式

  1、甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?

  2、打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 、这部书稿有多少页?

  (二)选择适当的`方法计算下面各题

  1、一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?

  2、甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?

  四、课堂小结

  今天我们学习的和以前所学的知识有什么联系?有什么区别?

  五、课后作业

  1、商店运来苹果4吨,比运来的橘子的2倍少 吨、运来橘子多少吨?

  2、一套西装160元,其中裤子的价格是上衣的 、上衣和裤子的价格各是多少元?

  六、板书设计

  例1、两地相距13千米,甲乙二人从两地同时出发相向而行,经过

  小时相遇、甲每小时行5千米,乙每小时行多少千米?

  例2、一个水果店运一批水果,第一次运了50千克,第二次运了

  70千克,两次正好运了这批水果的 ,这批水果有多少千克?

  解:设乙每小时行 千米

  答:,乙每小时行 千米、

  解:设这批水果有 千克

  答:这批水果有480千克、

  教案点评:

  教学程序安排紧凑,教学方法得当,语言简炼,重点突出,整体安排符合学生认知规律,适合儿童特点。

小学分数教案15

  教学目标

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学重难点

  教学重点:弄清单位“1”的量,会分析题中的数量关系。

  教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学过程

  一、复习

  出示复习题:

  1、下面各题中应该把哪个量看作单位“1”?

  2、用方程解下列各题。

  3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重×4/5=体内水分的重量。

  4、指名口头列式计算。课件出示。

  二、新授

  1、教学例1

  根据测定,成人体内的水分约占体重的2/3,而儿童

  体内的水分约占体重的4/5,小明体内有28千克水分,

  他的体重是爸爸体重的7/15,小明的体重是多少千克?

  爸爸的体重是多少千克?

  例1的第一个问题:小明的体重是多少千克?

  (1)读题、理解题意,并画出线段图来表示题意:

  (2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量

  (3)这道题与复习题相比有什么相同点和不同点?

  (相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)

  (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

  (5)启发学生应用算术解来解答应用题。

  先在小组内独立解答。

  课件演示计算的算式。

  (根据数量关系式:小明的体重×4/5=体内水分的重量,

  反过来,体内水分的重量÷4/5=小明的体重)。

  2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的`体重是多少千克?

  (1)启发学生找到分率句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)

  爸爸:

  小明:

  根据数量关系式:爸爸的体重×7/15=小明的体重

  小明的体重÷7/15=爸爸的体重

  ①解方程:解:设爸爸的体重是χ千克。

  7/15χ=35

  χ=35÷7/15

  χ=75

  ②算术解:35÷7/15=75(千克)

  课件演示计算的算式。

  3、用方程解应用题应注意哪些问题

  首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间

  的等量关系,再确定设哪个量为χ,并列出方程.

  4、巩固练习:P38“做一做”课件出示:

  学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、巩固应用

  1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?

  (先分析数量关系式,然后确定单位“1”,最后再进行解答。)

  2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?

  (注意引导学生发现250ml的鲜牛奶是多余条件)

  3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?

  (引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)

  4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?

  独立完成后订正。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。

【小学分数教案】相关文章:

小学教案分数01-07

分数的教案12-30

分数比教案12-13

分数的意义教案10-14

分数除法教案10-27

分数的认识教案03-06

分数的意义教案12-26

分数比教案最新12-13

分数与除法教案12-15

《分数的意义》教案12-18