《百分数的应用一》数学教案

时间:2024-11-01 12:31:18 教案 我要投稿
  • 相关推荐

《百分数的应用一》数学教案(通用15篇)

  作为一位杰出的教职工,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。如何把教案做到重点突出呢?以下是小编为大家收集的《百分数的应用一》数学教案,欢迎阅读与收藏。

《百分数的应用一》数学教案(通用15篇)

  《百分数的应用一》数学教案 1

  【教学内容】

  小学数学实验教材(北师大版)六年级上册第一单元P23-24内容

  【教学目标】

  1、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的`密切联系。

  【教学重点】

  理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。

  【教具准备】

  多媒体课件。

  【教学设计】

  一、 准备

  线段图是把握数量关系的重要方法之一

  你能用线段图表示下面的数量关系吗?

  在学校开展的第二课堂活动中,参加围棋班的有32人,参加航模班的人数比参加围棋班的多25%

  1、学生独立完成线段图

  2、展示学生成果

  3、教师对学生的作品进行评价

  25%=1/432人

  围棋班比围棋班25%

  航模班

  二、百分数的应用

  1、出示教科书P23上面的问题

  2、思考:“增产百分之几”是什么意思?

  ※学生自由发表自己的见解

  ※教师评价

  杂交水稻比普通水稻增加的产量是普通水稻产量的百分之几

  3、学生独立解答问题

  4、班内交流

  方法一:7-5.6=1.4(吨)

  1.4÷5.6

  =0.25

  =25%

  方法二:7÷5.6

  =1.25

  =125%

  125%-100%=25%

  三、试一试

  1、出示教科书P23下面的问题

  2、“几成”是什么意思?

  ※成数主要用于农业收成

  ※几成就是十分之几。

  ※一成就是1/10,也就是10%

  二成五就是2.5%,也就是25%

  3、学生独立解决问题

  ※(2.61-2.25)÷2.25

  =0.36÷2.25

  =0.16

  =16%

  四、练一练

  1.教科书P24练一练第1题

  2.科书P24练一练第2题

  3.教科书P24练一练第3题

  五、课堂总结

  通过今天的学习你有什么收获?

  《百分数的应用一》数学教案 2

  教学目标:

  1、知识与能力:在具体情景中理解百分数的意义

  2、过程与方法:能解决有关百分数的实际问题

  3、情感态度价值观:体会百分数与现实生活的密切联系。

  教学重点:

  百分数的意义,作用。

  教学难点:

  百分数应用的正确计算。

  教学过程:

  一、我会填空。

  1、一套西服,上衣840元,裤子210元,裤子的价钱是上衣的()%,上衣的`价钱是这套西服的()%。

  2、五月份销售额比四月份增加15%,五月份销售额相当于四月份的()%;四月份销售额比五月份减少()%。

  3、“六一”期间游乐场门票八折优惠,现价是原价的()%。儿童文具店所有学习用品一律打九折出售,节省()%。

  4、大豆种子的发芽率是98%,发芽数占种子总数的()%,未发芽数占种子总数的()%。

  5、从学校到文化宫,甲要20分钟,乙要16分钟。乙的速度比甲快()%,乙的时间比甲少()%。

  6、用80粒大豆种子作发芽试验,结果有4粒没有发芽。种子的发芽率是()%,如果需要3800棵大豆苗,需要播种()粒大豆种子。

  二、判断。

  1、甲班男生占全班人数的53%,乙班男生也占全班人数的53%。甲、乙两班男生人数相等。()

  2、100克糖放入400克水中,糖占糖水的20%。()

  3、甲数比乙数多35%,乙数比甲数少35%。()

  三、选择正确答案的序号填在括号里。

  1、如果甲数的60%等于乙数的(甲数和乙数都不为零),那么()。

  A、甲数<乙数B、无法确定

  C、甲数>乙数D、甲数=乙数

  2、下面的三种说法中,正确的是()

  A、一段铁线长80%米

  B、全班的及格率是102%

  C、男生人数比女生多5%

  3、一商品先提价15%,再降价15%。现价()原价。

  A、低于B、等于C、高于

  4、六年级男生有132人,比女生多10%,六年级有女生多少人?设女生有x人,方程不正确的是()

  A、x+10%x=132   B、x—10%x=132   C、(1+10%)x=132

  四、解方程。

  25%x = 75 60%x-35%x = 125

  五、解决问题。

  1、一个电饭煲的原价220元,现价160元。电饭煲的价格降低了百分之几?(百分号前保留一位小数)

  2、修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米。这条公路全长多少千米?

  3、西乡今年荔枝大丰收,产量达到3.6万吨,比去年增产了二成,西乡去年荔枝的产量是多少万吨?

  4、用汽车运一批水果,第一天运的吨数与总重量的比是1:3。如果再运15吨,就可以运完这批水果的一半。这批水果共有多少吨?

  《百分数的应用一》数学教案 3

  教学内容

  教科书第116页例3,完成“做一做”中的题目及练习三十的第1~4题。

  教学目的

  在解答求一个数是另一数的百分之几的应用题及分数应用题的基础上,通过迁移类推,使学生掌握求一个数比另一个数多(或少)百分之几的应用题,提高学生分析解答应用题的能力。

  教学过程

  一、复习

  1、把下面各数化成百分数。

  0.63,1.08,7,0.044

  2、解答下面的应用题,并导入新课。

  “一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?”

  学生独立在练习本上列式解答,订正时教师板书下面的线段图和算式:

  14÷12=116.7%

  提问:为什么这样列式?

  要求学生分析出从问题“实际造林是原计划的百分之几”可以看出是求实际造林数与计划造林数的比,要以原计划造林的公顷数(12公顷)作为单位“1”,求14是12的百分之几,用除法计算。

  提问:从题目看,原计划造林多还是实际造林多?如果把这道题的问题改为“实际造林比原计划多百分之几”该怎样解答呢?

  教师将复习题问题改变后成为例3。

  二、新课

  1、帮助学生理解题意。

  (1)指名学生读题。

  (2)提问:例3的问题与复习题有什么不同?

  你怎样理解“实际造林比原计划多百分之几”这句话?

  (引导学生利用黑板上的线段图说明,求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数占原计划的百分之几。)

  (3)在学生回答的.同时,教师完成下面线段图。

  (4)启发学生想,“实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较?谁是单位“1”?

  2、讨论算法并列出算式。

  提问:根据以上分析,要求出“实际造林比原计划多的公顷数”占“原计划的百分之几”必须先算什么?再算什么?

  列式:(14-12)÷12

  让学生计算出结果,教师板书并写出答案。

  3、想一想,这道题还有其他解法吗?

  引导学生思考,把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数。

  学生列式,教师板书:

  14÷12×100%-100%

  4、将例3中的问题改成“原计划造林比实际造林少百分之几”该怎样解答呢?

  (1)提问:从问题看,哪两个量在比较?把谁看作单位“1”?解答时,先求什么?再求什么?

  (引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要以实际造林作为单位“1”。必须先求出原计划造林比实际造林少的公顷数,才能求出原计划造林比实际少的百分之几。)

  (2)学生列式,教师板书:

  (14-12)÷14

  如果有学生列出14÷14-12÷14也是允许的。

  (3)观察比较:

  将例3的第一种列式及改变问题后的第一种列式进行比较。不同点在什么地方?为什么除数不一样?

  通过学生的讨论,再次强调两题中和谁比的标准不同,单位“1”就会发生变化。解答这种题时,仍然要注意找准单位“1”。

  5、引导学生观察例3的问题及变化后的问题,提问:“谁能概括说明今天我们学习的是什么新知识?”

  学生回答后,教师板书课题:求一个数比另一个数多(或少)百分之几的应用题。

  三、巩固练习

  1、提问:

  求一个数比另一个数多(或少)百分之几的应用题的解题方法是什么?(即先求什么,再求什么。)

  解答此类应用题必须注意什么?(找准单位“1”、)

  2、独立解答第30页“做一做”的题目。

  订正时要求学生说出:先求十月份比九月份节约用水的吨数,再求节约的吨数占九月份的百分之几。九月份用水吨数为单位“1”,作除数。学生口述算式,教师板书:(800-700)÷800。

  教师提出,如果求九月份用水比十月份多百分之几,该怎样列式?学生列式,教师板书:(800-700)÷700。然后教师再次强调问题不同,单位“1”有所变化,必须要仔细审题,弄清数量关系。

  四、课堂练习

  1、学生做练习三十的第1题。集体订正时要提问算法。

  2、学生在书上做练习三十的第3题,要求先在练习本上列式计算,再将结果填在表中。教师要注意行间巡视,看看学生是否掌握了今天所学的解题方法,发现问题,及时纠正。

  五、作业

  练习三十的第2、4题。

  《百分数的应用一》数学教案 4

  教学内容

  教科书第112页例1、第113页例2及“做一做”中的题目,完成练习二十九的第1~4题

  教学目的

  使学生在学过的百分数的意义和分数应用题的基础上,能够正确地解答求一个数是另一个数的百分之几的应用题

  教具准备

  将复习中的第1题图画在小黑板上,第2题写在黑板上

  教学过程

  一、复习

  1.看图,回答下面的问题.

  (1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

  (2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

  先让学生想一想,然后,再指定学生回答.

  2.五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的几分之几?

  出示上面的复习题后,先让学生在练习本上做,同时,请3名学生在黑板上每人做一题

  核对第2题时,教师可以说明:这道题是求五年级学生中已达到国家体育锻炼标准的人数占五年级全体学生人数的几分之几

  然后提问:

  “解答这样的题目关键是什么?”

  “关键是应该以谁作单位‘1’?”

  “用什么方法计算?怎样列式?”

  教师:这是我们过去学过的.分数应用题.百分数的应用题跟分数应用题类似.下面我们就来学习百分数应用题.板书课题:百分数的一般应用题(一).

  二、新课

  1.教学例1.

  出示例1:“五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的百分之几?”

  请学生读题,提问:

  “这道题和上面复习中的第2题有什么不同?”

  “解答这道题应该以谁作单位‘1’?用什么方法计算?怎样列式?”学生口述,教师板书:120÷160=0.75=75%

  教师:这道题和上面复习中的第2题相比,题目的条件完全相同,只是问题不同.因为这道题的问题是求占五年级学生人数的百分之几,所以要把结果化成百分数.

  2.出示练习题:“一班种树40棵,二班种树48棵,二班种树的棵数占一班的百分之几?”先让学生想一想,再提问:

  “这道题怎样列式?”

  让学生讨论一下.

  学生讨论后,教师说明:解答这样的题目,必须看清求的是什么,弄清以谁作单位“1”?把数量关系弄清楚了,才能确定怎样列式.

  3.教学例2.

  教师:百分数在日常生活和生产中的应用非常广泛.比如在农业生产中,要实行科学种田,播种前需要进行种子发芽试验,然后根据发芽的种子数占试验种子总数的百分之几,决定单位面积的播种量.这样既能确保基本苗的数量,又可以避免浪费种子.通常把“发芽的种子数占试验种子总数的百分之几叫做发芽率”(口述后再板书发芽率的概念).求发芽率是百分数在农业生产上的一种重要应用

  口述并板书发芽率计算公式:

  发芽率=×100%

  教师指着公式中的百分号说明:在这个公式中为什么要乘100%呢?因为发芽率是指发芽的种子数占试验种子总数的百分之几,如果公式只写成,不加“×100%”,一般来讲,这只是分数形式,除得的商是小数,而不是百分数.如果在的后面加上“×100%”,相当于乘1,这样就可以使除得的结果化成大小不变的百分数了.所以在计算发芽率的公式中必须加上“×100%”。我们在这以后还要学习像出粉率、合格率、出勤率等等,这些也要用百分数表示,所以它们的计算公式也必须加上“×100%”

  《百分数的应用一》数学教案 5

  教学内容:

  百分数的应用(一)教材第23——24页

  教学目标:

  1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  2、能计算出实际问题中“增加百分之几”或“减少百分之几”。提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

  教学重点:

  会计算实际问题中“增加百分之几”或“减少百分之几”。

  教学难点:

  在具体情境中理解 “增加百分之几”或“减少百分之几”的意义。

  教学过程:

  一、 创设情境

  1、 关于百分数,我们已学过那些知识?

  根据学生回答,板书如下:

  百分数的意义

  小数百分数分数之间的互化

  百分数的应用

  利用方程解决简单的百分数问题

  2、 引入:从这节课开始,我们继续学习有关的百分数的知识。

  板书课题:百分数的应用(一)

  二、 新知探究

  问题引入:盒子里有45立方厘米的水结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?

  1、 引导学生认识“水结成冰,体积会增加”这种物理现象,并找出题中的'条件与问题。

  2、 你认为“增加百分之几”是什么意思?

  指导学生画线段图理解“增加百分之几”的意思是:冰的体积比原来水的体积增加(多)的部分是水的百分之几

  3、 学生自主解决问题,师巡视,个别指导。

  4、 合作交流:

  方法一:(50-45)÷45 方法二: 50 ÷45 ≈ 111%

  =5÷45 111%-100%≈11%

  ≈11%

  指名学生说出自己具体的想法:

  方法一:先算增加了多少立方厘米,再算增加了百分之几。

  方法二:先算冰的体积是原来水的体积的百分之几,再算增加百分之几。

  5、 即时练习

  指导学生完成第23页“试一试”。

  重点引导学生理解“降低百分之几”的意思是降低的价钱数目占原来价钱的百分之几。

  三、 总结:

  求一个数比另一个数增加或减少百分之几的应用题的方法:

  (1) 先求一个数比另一个数增加或减少的具体量,再除以单位“1”。即:两数差额÷单位“1”

  (2)先求一个数是另一个数的百分之几,再把另一个数看作单位“1”即100%根据所求问题两者用减法运算。

  四、练习提高

  指导学生完成第24页练一练第1,2,3,4,5题。

  《百分数的应用一》数学教案 6

  教学内容:

  练习四第10~16题

  教学目的:

  1、通过练习,使学生能比较熟练地掌握列方程解稍复杂的百分数问题,提高解题能力。

  2、通过练习,沟通百分数和分数的联系,提高学生解决相关问题的能力。

  教学过程:

  一、基本训练

  根据所给信息,说出数量间的相等关系

  1、一条路,已修了全长的60%

  2、一种彩电,现价比原价降低10%

  3、松树的棵数比柏树多1/5

  4、红花和黄花一共有100朵

  5、一种商品,打七折出售。

  二、巩固练习

  1、做练习四的'第11题

  (1)先让学生画线段图

  (2)选择合适的数量关系

  (3)列出方程解答

  (4)进行对比

  2、做第14题

  (1)读题,理解含有分数的条件,说出等量关系

  (2)根据等量关系列方程解答

  3、做第15题

  (1)引导学生弄清题中两个分数的不同含义,分析含有分率的条件。

  (2)找出题中数量之间的相等关系

  (3)列方程解答

  三、总结

  《百分数的应用一》数学教案 7

  教学内容:

  第11页例5及相应的“练一练”,练习四第1~4题

  教学目标:

  1、引导学生在已学会的一些基本的百分数实际问题的基础上,引出列方程解一些稍复杂的百分数实际问题的`方法。

  2、能根据题中的信息,熟练地找出基本的数量关系,培养学生的分析解题能力。

  教学过程:

  一、教学例5

  出示例5:朝阳小学美术组有36人,女生人数是男生人数的80%。美术组男、女生各有多少人?

  (1)读题,理解题意

  问:80%是哪两个数量比较的结果?比较时,要把哪个数量看作单位“1”?

  (2)引导学生画图

  问:如果画图,应该先画谁?再画谁?如何画?

  如果用X表示男生的人数,那么女生人数怎样表示?(逐步完善线段图)

  怎样表示36人?

  得出数量关系式:男生人数+女生人数=美术组的总人数

  (3)让学生列方程解答

  (4)交流解答过程及结果

  (5)检验让学生尝试检验;

  交流总结:看男生+女生是不是等于36人,并且还要看女生除以男生是不是等于80%。

  二、教学“练一练”

  1、学生练习

  2、交流讨论两点:一:是怎样想到列方程解的?二:列方程时,依据了怎样的等量关系?

  3、比较两题有什么共同点和不同点?

  三、小结

  问:今天学的百分数应用题有什么特点?

  解决这类题目关键是什么?

  四、巩固练习

  完成练习四第1~4题

  其中第4题,要引导学生将此题跟例题相比较,沟通百分数问题和倍数、分数问题的联系。

  《百分数的应用一》数学教案 8

  课堂教学目标:

  1.正确计算一些含有百分数的式题,正确求出有关含有百分数的方程的解。

  2.进一步理解税率、折扣、利率的含义,正确解答有关纳税、利息和打折以及其他有关百分数的实际问题。

  教学准备:

  多媒体教学设备

  教学过程:

  一、单元练习讲评:

  填空部分:

  重点讲评以下题目:

  第3小题,学生错误原因是没有分析题中两个数量的.关系,没有按照解决实际问题的思路来分析。讲评时重点教给学生方法。

  第9小题,学生错误原因是把题中已知的工作时间就当成工作效率来计算。讲评时帮助学生从问题入手,分析一下问题是求什么,是哪两个数量进行比较。

  第10小题,本题有一定难度,讲评时重点帮助学生从含糖率的含义着手,然后用方程来解答这一题。(不要求全体学生全部掌握。)

  第12小题,先让学生分析错误原因,教师再有针对性地指导,可以借助画线段图来分析,帮助有困难的学生理解数量关系。

  判断:

  第2小题错误率较高,需要举例说明,通过计算帮助学生理解这里由于单位“1”发生变化,得到的百分数也是不同的。

  选择:

  第1小题,先请学生来说说自己的思考过程,教师及时组织学生分析这样做的错误之处,还可将题目更改为54减少了0.54,减少了百分之几?帮助学生辨析这两题的不同之处。

  第5小题,请做出正确选择的学生来交流各自的思考过程,本题还要教会学生做出选择后应进行检验。

  计算部分:

  “解方程”部分出现错误较多的是第3小题,重点讲评这一题。

  “计算下面各题”中出现错误较多的是第1、4小题,第1小题可重点指导学生运用简便方法来计算。

  解决问题部分:

  第5小题,部分学生画线段图和写等量关系存在错误,要重点讲评。

  第6小题,学生错误原因之一是把“优惠5%”和“打五折”混淆起来,错误原因之二是没有正确理解“共需付费多少元”的含义。

  第8小题,本题有一定难度,要重点帮助学生分析题中两个“20%”分别表示占了哪个数量的20%,启发学生思考:要知道是赔还是赚需要先求出什么,怎样求。

  第9小题,本题共三小题,学生错误集中在第3小题,重点分析第3小题。

  二、补充相关练习。

  见《天天练》上《第一单元单元测试》。

  《百分数的应用一》数学教案 9

  教学目标:

  1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。

  2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

  3、培养学生分析问题、解决问题的能力,激发学生学习数学的兴趣。

  教学重点难点:

  理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。

  教具准备:

  课件。

  教学过程:

  一、复习旧知,导入新课

  1、师:同学们,今天这节数学课我们一起来研究百分数的应用。(板书:百分数)什么是百分数?你能说一个生活中的百分数吗?你怎么理解这个百分数?

  2、师:因为百分数的意义使百分数在日常生活中的应用非常广泛,今天要研究的主题就是百分数的应用(补充板书:百分数的应用)

  二、教学过程

  活动一:创设情境,引出新知

  1、师:同学们,在炎热的天气里人们常常用冰块来消暑降温。你们制作过冰块吗?水结成冰之后体积发生了什么变化?

  2、课件出示情境,引导学生观察

  师:有一位同学把他制作冰块的过程记录了下来,(大屏幕出示实验记录)请看:

  45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

  3、师:根据这两个条件,你能提出什么问题?

  生提问,师选择板书。

  (1)、冰的体积是原来水的体积的百分之几?

  (2)、原来水的体积是冰的体积的百分之几?

  (3)、冰的体积比原来水的体积增加百分之几?

  4、在这些问题中,我们能解决哪些问题?

  师生共同解决,并将解决的问题擦掉。

  活动二:理解“增加百分之几”。

  1、师:今天我们重点解决“冰的体积比原来水的体积约增加百分之几?”这个问题,一起读题,你觉得哪句话最难理解?

  2、学生用自己的方式理解“增加百分之几”的意思。

  3、全班汇报,由口头理解的不清晰,引出线段草图。

  4、对比书中的线段图和学生的线段草图,引导学生思考“增加了……”这个省略号背后所隐含的意义,从图上看出,冰的体积比水的体积增加了,增加了百分之几指的增加了谁的百分之几?

  通得讨论得出:冰的体积比水的体积增加的部分是水的.体积的百分之几。

  5、列式计算,数形结合,说出两个列式的含义

  6、课件演示,小结两种解题思路。“增加百分之几”指的是增加的部分是单位“1”的百分之几。

  可以先求出增加的部分再除以单位“1”;也可以先求出增加后是单位“1”的百分之几再减去单位“1”。

  三、训练巩固

  1、根据问句,说出谁和谁比,谁是单位“1”的量。

  ①女生人数是男生人数的百分之几?

  ②梨的质量是苹果质量的百分之几?

  ③降价了百分之几?

  ④增产了百分之几?

  2、消费宝典

  电饭煲降价,原价220元,现价160元,价格降低了百分之几?(百分号前保留一位小数)

  (引导学生先理解“降低百分之几”再列式计算。)

  3、建设新农村

  选一选:

  光明村今年每百户拥有彩电121台,比去年增加66台,今年比去年增长了百分之几?

  (1)、(121-66)÷121

  (2)、 66÷121

  (3)、 66÷(121-66)

  (让学生说出选择的依据。)

  四、课堂小结

  通过这节课的练习,我们理解并掌握了“求一个数比另一个数多(或少)百分之几”的实际问题,解题的重点是理解题意,关键是正确地找到单位“1”。

  《百分数的应用一》数学教案 10

  教学内容:

  教材第4-5页的例2和“试一试”、“练一练”,练习二第1-4题。

  课时教学目标:

  1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

  2、培养和解决简单的实际问题的能力,体会生活中处处有数学。

  教学重点:

  掌握百分数在实际生活中的应用。

  教学难点:

  渗透生活即数学的教学思想。

  预习题:

  弄清什么是纳税?怎样纳税?纳税的意义是什么?

  疑难点:

  分段纳税的有关知识。熟练地运用百分数进行纳税的计算。

  教学过程:

  一、认识、了解纳税(幻灯投影出示)

  纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的`义务。

  税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。我国的税收逐年增长,到2005年,全年税收收入已达到30866亿元。(进行纳税意识教育)

  提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。板书:纳税

  二、教学新课

  1、教学例2.

  出示例2:星光书店去年十二月份的营业额约为50万元。如果按营业额的6%缴纳营业税,这个书店去年十二月份应缴纳营业税约多少万元?学生读题。

  提问:想一想,题里的营业额的6%缴纳营业税,实际上就是求什么?怎样列式计算?你们会做吗?试试看!

  学生尝试练习,集体订正,教师板书算式。

  强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额。

  2、我们怎样计算呢?

  方法1:引导学生将百分数化成分数来计算。

  方法2:引导学生将百分数化成小数来计算。

  3、做“试一试”

  提问:这道题先求什么?再求什么?

  生:先求5200元的10%是多少?再加上5200元就是买摩托车共付的钱。

  学生板演与齐练同时进行,集体订正。

  4、学生在课本上完成练一练。

  三、同步练习

  1、练习二的第1题

  指名学生读题,让学生说明算式里的每个数据的意思。

  18万和360万分别表示什么?那么这儿应缴纳的营业税应该怎样求呢?

  学生讨论并练习。

  四、拓展提高

  练习二的第4题。

  我国2005年10月公布的个人所得税征收标准:个人收入1600元以下不征税。月收入超过1600元,超过部分按下面的标准征税。

  超过部分不到500元的5%

  超过部分是500元---2000元的10%

  超过部分是2001元---5000元的15%

  李明的妈妈月收入1800元,爸爸月收入2500元,他们各应缴纳个人所得税多少元?

  在这道题中,李明的妈妈应纳税的收入是1800元吗?为什么?全班展开讨论李明妈妈的纳税的收入应为多少元?税率是多少?那么爸爸的收入是2500元,应纳税额为多少?他的税率又是多少呢?

  介绍分段纳税,最后让学生分别求出李明的爸爸妈妈各应缴纳的个人所得税。

  五、课堂回顾

  提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!

  《百分数的应用一》数学教案 11

  教学内容:

  第12页例6及相应的“练一练”,练习四5~9题

  教学目的:

  1、使学生进一步掌握稍复杂的百分数应用题的分析与解答的方法,提高学生的分析解题能力。

  2、通过练习,体会列方程解答稍复杂的百分数的实际问题,正确理解数量之间的相等关系的重要性。

  教学过程

  出示例6:青云小学十月份用水440立方米,比九月份节约20%。九月份用水多少立方米?

  1、读题,理解题意

  2、分析题意

  问:十月份用水量比九月份节约20%,这里的20%是哪两个数量比较的'结果?

  这两个数量比较时,要把哪个量看作单位“1”

  九月份用水量的20%是哪个数量?

  3、让学生画图,根据图进一步理解以上3个问题

  4、用字母或含有字母的式子表示相关数量。

  5、找出数量间的相等关系:

  九月份用水量—十月份比九月份节约的用水量=十月份用水量

  6、让学生列方程解答

  7、检验

  可以用十月份比九月份节约的除以九月份,看是不是20%;也可以用九月份减十月份比九月份节约的,看是不是440立方米。

  教学“练一练”

  1、做第1题,先审题

  问:比舞蹈组人数多20%应该怎么理解

  题中的数量间的相等关系是怎样的?

  学生解答

  2、做第2题

  先帮助学生理解比原价降价15%的意思及等量关系。

  再让学生解答。

  巩固练习

  对比练习:

  1、练习四的第8题:先解答;交流比较;小结:虽然一个条件和所求的问题相同,但由于另一个条件不同,表示单位“1”的量不同,所以解题方法也不同。

  2、练习四第9题:引导学生画图;分析写出数量关系;列式解答

  《百分数的应用一》数学教案 12

  学习内容:

  课本第8页的例4和“练一练”,练习三的第1~4题。

  课堂目标:

  1.使学生联系百分数的意义认识折扣的含义,了解打折在日常生活中的应用,并联系对“求一个数的百分之几是多少”的已有认识,学会列方程解答“已知一个数的百分之几是多少,求这个数”以及与打折有关的其他实际问题,进一步体会有关百分数问题的内在联系,加深对百分数表示的数量关系的理解。

  2.使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,体验成功的乐趣,增强学好数学的信心。

  教学重点:

  认识折扣的含义并能正确列方程解答“已知一个数的百分之几是多少,求这个数”以及与打折有关的其他实际问题。

  教学准备:

  教学光盘及多媒体设备

  教学过程:

  一、教学例4

  1.认识折扣。

  谈话:我们在购物时,常常在商店里遇到把商品打折出售的情况。

  出示教材例4的场景图。让学生说说从图中获取到哪些信息。

  提问:你知道“所有图书一律打八折销售”是什么意思吗?

  在学生回答的基础上指出:把商品减价出售,通常称做“打折”。打八折就是按原价的80%出售,打“八三折”就是按原价的83%出售。

  2.探索解法。

  提出例4中的问题:《趣味数学》原价多少元?

  启发:图中的小朋友花几元买了一本《趣味数学》?这里的“12元”是《趣味数学》的现价,还是原价?在这道题中,一本书的现价与原价有是什么关系?

  追问:“现价是原价的80%”这个条件中的.80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?

  进一步启发:根据刚才的讨论,你能找出题中数量之间的相等关系吗?

  学生在小组里互相说一说,再在全班交流。教师根据学生的回答板书:

  原价×80%=实际售价

  提出要求:你会根据这个相等关系列出方程吗?

  根据学生的回答,板书。

  解:设《趣味数学》的原价是ⅹ元。

  ⅹ×80%=12

  ⅹ=12÷0.8

  ⅹ=15

  答:《趣味数学》的原价是15元。

  3.引导检验,沟通联系。

  启发:算出的结果是不是正确?你会不会对这个结果进行检验?

  先让学生独立进行检验,再交流交验方法。

  启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。

  二、指导完成“练一练”

  先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?

  三、巩固练习

  1.做练习三第1题。

  学生读题后,先要求说说每种商品所打折扣的含义,再让学生各自解答。

  学生解答后追问:根据原价和相应的折扣求实际售价时,可以怎样想?

  2.做练习三第2题。

  先让学生独立解答,再对学生解答的情况适当加以点评。

  3.做练习三第3题。

  先让学生在小组里互相说一说,再指名口答。

  4.做练习三第4题。

  先让学生独立解答,再指名说说思考过程。

  四、全课

  提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?

  提出要求:课后抽时间到附近的商场或超市去看一看,收集有关商品打折的信息,并提出一些问题进行解答。

  五、布置作业

  课内作业:补充习题第4页

  板书设计:

  折扣问题

  原价×折扣=实际售价

  解:设《趣味数学》的原价是x元。

  x×80%=12

  x=12÷0.8

  x=15

  答:《趣味数学》的原价是15元。

  《百分数的应用一》数学教案 13

  课堂教学目标:

  1.通过综合练习,进一步巩固用百分数知识解决实际问题的基本思考方法,提高学生综合运用知识解决问题的能力。

  2.通过探索和实践,让学生进一步体会百分数在实际生活中的广泛应用,感受百分数学习的意义和价值。

  3.通过评价与反思,激励学生学好数学的信心。

  教学重点:

  通过探索与实践,让学生在解决稍复杂的各类百分数实际问题的过程中,能合乎逻辑地进行分析和思考,能用自己的语言描述解题思路,能合理、自觉地选择解决问题的策略。

  教学准备:

  教师准备教学光盘及多媒体设备;课前组织学生收集父母身高和体重的数据以及作好第13题的调查活动。

  教学过程:

  一、谈话揭题。

  上节课,我们将第一单元的数学知识进行了整理。运用我们所学的这些有关百分数的知识还可以解决生活中很多稍复杂的.实际问题。(板书课题)

  二、练习与应用

  1.完成第7题。

  (1)独立解答。

  (2)交流算法,重点分析数量关系。

  2.完成第8题。

  (1)理解题意,适当解释“合金”的意思。

  明确:一块黄铜的千克数由两部分组成,一是铜的,二是锌的千克数。

  (2)学生独立解答后交流解题思路,学生可以有不同的解法。

  3.完成第9题,学生解答后交流思考过程,教师及时评价。

  4.完成第10题。

  (1)理解题意,问:两个百分数分别是以什么为单位“1”?数量间有怎样的相等关系?要算这个月的城市维护建设税,需先求出什么?

  (2)学生解答。

  5.完成11题。

  (1)读题,重点理解“携带行李超过20千克的部分,每千克要按飞机票原价的1.5%购买行李票”这句话的意思。

  可先让学生独立思考,再讨论交流。

  明确两点:

  一、首先算出超过20千克的那部分重量;

  二、行李票的价格=飞机票原价x1.5%。

  (2)学生解答。

  三、探索与实践

  1.完成12题。

  (1)同桌间交流课前收集爸爸妈妈及自己的体重和身高。

  (2)根据公式算一算各自的标准体重。

  (3)根据公式算算实际体重是否属于正常体重。

  2.完成13题。

  (1)根据课前调查计算。

  (2)组织学生交流,说说通过计算谈谈自己的想法。

  3.思考题。

  引导分析:利用倒过来推想的策略

  先算出这件商品打折前的售价是:104x80%=130元

  再算出商品的成本价:x+30%x=130,求出x=104元

  作出判断。

  四、评价与反思

  通过这一单元的学习,请你对自己的学习情况做一评价与反思。

  学生就教材提供的内容进行评价,教师及时了解学生评价情况。

  《百分数的应用一》数学教案 14

  教学目标:

  1.在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,加深对百分数意义的理解。

  2.能解决有关中“增加百分之几”或“减少百分之几”的实际问题。提高运用数学解决实际问题的能力。

  3.让学生体会百分数与现实生活的密切联系,激发数学学习的兴趣。

  教学重点:

  在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系。

  教学难点:

  能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力。

  教学过程:

  一、复习导入

  1.同学们,在学习第四单元时,我们初步认识了百分数,大家回忆一下,我们学过哪些关于百分数的知识?

  教师根据学生的回答适当板书,对学生没有说完整的知识点,可以进行适当补充。

  2. 引入:百分数在我们的日常生活中用处很大,从这节课开始,我们来学习百分数的应用知识。

  板书课题:百分数的应用(一)

  二、互动新授

  1.探究“增加百分之几”解题方法。

  (1)引导学生认识“水结成冰,体积会增加”这种物理现象,并让学生看教材第87页情境图,并提出数学问题:冰的体积比原来水的体积月增加了多少?

  (2)尝试解答。

  ①小组讨论:“增加百分之几”是什么意思?

  学生反馈,教师适当总结:增加百分之几指的是多出来的体积占水的体积的百分之几。

  ②指导学生画线段图。

  ③学生自主解决问题,教师巡视,对解题有困难的学生适当指导。

  学生反馈解法:

  方法一:(50-45)÷45

  =5÷45

  ≈11%

  方法二: 50 ÷45 ≈111.1%

  111.1%-100%=11.1%

  指名学生说出自己具体的想法:

  方法一:先算增加了多少立方厘米,再算增加了百分之几。

  方法二:先算冰的体积是原来水的'体积的百分之几,再

  算增加百分之几。

  (3)小结求一个数比另一个数多百分之几的方法。

  2.解决“减少百分之几”的问题。

  (1)引导:如果冰化成了水,体积比原来减少了百分之几呢?

  (2)追问:“减少百分之几”的问题应如何解决?

  (3)解答:让学生独自画线段图,小组内展示,并说说所画线段图的意思。

  学生独立解决问题,教师巡视。

  指名说说解题过程,并说清楚解题思路。

  (4)即时练习:指导学生完成第88页“试一试”。

  (5)小结求一个数比另一个减少百分之几的方法。

  三、巩固拓展

  1.填空。

  (1)小明的身高比小强矮20%,把()看成单位“1”。

  (2)今年我们班的学生人数比去年增加4%,表示()占()的4%。

  2.完成教材第88页“练一练”第1题。

  3.举例说出生活中的有关百分数的应用问题,并尝试解决。

  三、总结

  求一个数比另一个数增加或减少百分之几的应用题的方法

  (1)先求一个数比另一个数增加或减少的具体量,再除以单位“1”。即:两数差额÷单位“1”

  (2)先求一个数是另一个数的百分之几,再把另一个数看作单位“1”即100%根据所求问题两者用减法运算。

  四、练习提高

  指导学生完成第24页练一练第1,2,3,4,5题。

  《百分数的应用一》数学教案 15

  【教学内容】

  北师大版6年级数学第11册

  【教学目标】

  1、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

  【教学重点】

  理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。

  【教学过程】

  一、教材分析

  本节课是在学生已学习百分数的简单应用、运用方程解决简单的百分数问题的基础上进一步学习百分数的应用。教材通过创设“水结成冰块”的情境,引发问题,让学生带着问题探寻解决的办法,从而真正理解增加百分之几,减少百分之几的意义并由此及彼的掌握解决此类问题的方法。

  二、学习目标

  1、理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  2、能计算出实际问题中“增加百分之几”或“减少百分之几”。

  3、进一步体会数学与生活的联系,增强数学学习的主动性、积极性。

  三、教学设计

  (一)创设情境,提出问题

  1、观察表格,提出问题

  (1)师:这里有一份关于百大超市和国光超市七月份、八月份销售金额情况统计表。如果你是经理,看了之后,你能得到哪些信息?

  百大超市 国光超市

  七月份:40万元 50万元

  八月份:20万元 30万元

  (2)同桌讨论

  (3)学生汇报

  (4)师:两个超市七月份的销售金额都比八月份有所增加,其增加的金额都是10万元,通过这个数据我们能说两个超市的增加幅度一样吗?

  (5)小组讨论

  (6)汇报:要比较两个超市的增长幅度,必须进行第二次比较,即百大超市八月份销售金额比七月份销售金额多百分之几?国光超市八月份销售金额比七月份销售金额多百分之几?

  2、出示课题:百分数的应用

  (二)自主构建,探究新知

  1、解决“百大超市八月份销售金额比七月份销售金额多百分之几?”这一问题。

  (1)小组讨论,解决问题。

  提示:

  要求百大超市八月份销售金额比七月份销售金额多百分之几,就是要求谁是谁的百分之几?

  通过小组研究,你们认为这道题应该怎样解答?

  生1:50÷40

  生2:(50—40)÷40

  生3:(50—40)÷50

  (2)学生评议,理清思路

  ①学生评议时,引导他们画出线段图:

  ②启发学生思考:“百大超市八月份销售金额比七月份销售金额多百分之几”,是哪两个量在比较?

  ③得出结论,列出算式:

  要求百大超市八月份销售金额比七月份销售金额多百分之几,就是求“百大超市八月份销售金额比七月份销售多的金额”是“七月份销售金额”的百分之几?

  列式:(50—40)÷40

  =10÷40

  =25%

  ④引导学生说出第二种解法:

  师:还有别的算法吗?

  ⑤交流汇报:

  50÷40—1=125%—1=25%(结合线段图理解)

  2、解决“百大超市七月份销售金额比八月份销售金额少百分之几”的`问题。

  ①提出问题:

  师:“同学们解决了自已提出的问题,老师也有一个问题,你们能帮老师解答吗?”

  生:能。

  师:“百大超市七月份销售金额比八月份销售金额少百分之几?”

  ②学生列式解答:

  生:(50—40)÷50

  =10÷50

  =20%

  ③引导学生小结:被除数相同,但除数不同,多百分之几与少百分之几的结果是不一样的。

  ㈢巩固应用、深化提高

  1、解决问题

  ①国光超市八月份销售金额比七月份销售金额多百分之几?

  ②国光超市七月份销售金额比八月份销售金额少百分之几

  (1)列式解答:

  (30—20)÷20=50%

  (30—20)÷30≈33.3%

  (2)观察发现:

  师:你认为解答的关键是什么?

  生:求百大超市八月份销售金额比七月份销售金额多百分之几,就是求“百大超市八月份销售金额比七月份销售多的金额”是“七月份销售金额”的百分之几?

  师:解决今天的问题关键在于把它转化成已经学过的问题。

  其实我们以前也运用过转化的方法,你还记得吗?

  生:上个单元学习圆的面积时,把圆转化成长方形来求的。

  师:转化的方法是我们学习、研究数学的好办法。以后遇到难题时也可以用转化的方法试试。

  2、做课本“试一试”第(1)题。

  学生自己读题,说一说几成是什么意思后独立完成。

  3、解决实际问题:

  师:据了解赣州为了迎接宋城文化节活动,正在大搞绿化工作,一个绿色的赣州将展现在我们眼前。在叔叔、阿姨的绿化过程中遇到一个问题,你们想帮他们来解决吗?

  出示题目:赣州原计划造林12公顷,实际造林14公顷,实际比原计划多造林百分之几?原计划比实际少造林百分之几?

  4、小调查:

  ⑴调查你家上个月和这个月用水、用电的量,并进行比较,从比较中你发现了什么?

  ⑵了解一下你班上同学零花钱的情况,并进行比较,看看你能得到什么结论?

【《百分数的应用一》数学教案】相关文章:

百分数应用一教案11-17

百分数应用一教学反思12-19

百分数的应用教案10-12

百分数应用教学反思04-22

百分数的应用教学反思04-16

百分数的应用四教案10-25

百分数的应用4教案10-31

百分数数学教案04-15

《百分数应用题》教学反思12-31