小数的性质教案
作为一无名无私奉献的教育工作者,就难以避免地要准备教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么写才合适呢?以下是小编收集整理的小数的性质教案,仅供参考,希望能够帮助到大家。
小数的性质教案1
教学内容:
p。34—35的例5、例6及相应的试一试,练一练,完成练习六的第1—5题
教学目标:
1、使学生在建立猜想、验证猜想以及比较、归纳等活动中,理解小数的性质,会应用小数的性质化简或改写小数。
2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。
教学重点:
1、发现小数的.性质并对小数的性质作出抽象概括。
2、理解小数的性质,会应用小数的性质解决问题。
教学难点:
理解小数的性质,会应用小数的性质解决问题
教具准备:
教学挂图、课件
教学过程:
一、复习引入
1、在下面()里填适当的小数。
0。40里面有()个0。01
3角=()元
30分=()元
二、体验发现,理解性质
1、出示例5:指名读题,分组讨论。
思考:小数部分末尾的0添上或去掉,什么变了,什么没变?
2、完成试一试:
(1)学生自主填空。交流自己的看法,并阐明观点。
(2)汇报自己的结果。
(3)观察板书:你得到什么结论?学生自由发言。
三、理解内涵,学会应用。
1、课件出示例6:这些小数中,哪些0可以去掉?指名回答。学生自主填空。学生尝试做练一练第1题。独立完成,集体订正。
2、试一试。给学生充分的交流时间。
四、巩固练习
五、小结
《小数的性质及比较大小》
小数的性质教案2
设计说明
快乐教育理论认为人类的需要得到满足就是快乐。而快乐常常与兴趣联系在一起,兴趣使人产生钻研、探索、创新的愿望,从而激发快乐。基于此,本节课的教学设计突出以下几点:
1.创设情境,激发兴趣。
通过创设一个完整的故事情境,激发学生的学习兴趣,继而引出本节课所要探究的问题——小数的末尾添上“0”或去掉“0”,大小有变化吗?鼓励学生大胆猜想,并用多种方法进行验证,引导学生自主探究,培养学生发现问题、分析问题、解决问题的能力。
2.关注学生个体,自主获取新知。
《新课程标准》强调:学生是学习的主体。本节课的教学充分发挥学生的主体作用,让学生通过对比,自己得出0.1 m=0.10 m=0.100 m,并通过观察归纳出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。引导学生自学例3、例4,养成自主学习的良好习惯。
3.巩固应用,练习形式多样。
练习是巩固新知、形成能力、发展思维的重要手段。基于以上认识,本节课的练习题设置形式多样,梯度合理,既有基础练习,又有生活中的运用,使学生在轻松愉快的氛围中既巩固了基础知识,又深化了所学知识。
课前准备
教师准备 多媒体课件 正方形纸片 数位顺序表
学生准备 水彩笔 米尺
教学过程
⊙创设情境,课前质疑
师:小明的爸爸最近开了一家文化用品商店,想请大家帮忙设计价签,大家愿意帮这个忙吗?(出示中性笔和笔袋)每支中性笔2元5角,每个笔袋8元,价签该怎么写呢?(出示几种写法:2.5元、2.50元、8元、8.00元,引起争论)
师:我们在商店里看到的`价签一般是这样的:2.50元,8.00元。2.5元和2.50元都表示2元5角吗?8元和8.00元相等吗?
生:2.5元和2.50元都表示2元5角,8元和8.00元相等。
师:为什么会相等呢?上完今天这节课你就明白了。(板书课题:小数的性质)
设计意图:给学生提供熟悉的生活情境,使学生产生亲切感,为构建新的认知结构打开切入口,同时引导学生针对生活化的问题情境做出数学猜想,以此猜想引领全课。
⊙探究新知
1.探究小数的性质。
(1)在括号里填上合适的单位名称,使等式成立。
1( )=10( )=100( )
①学生先在小组内讨论、交流,然后教师指名汇报。
预设
生1:1元=10角=100分。
生2:1 m=10 dm=100 cm。
生3:1 dm=10 cm=100 mm。
②出示课件,一边讲解一边动画演示。
因为1 dm=10 cm=100 mm,所以0.1 m=0.10 m=0.100 m。(板书:0.1 m=0.10 m=0.100 m)
(2)提问:根据0.1 m=0.10 m=0.100 m,你发现了什么?通过小组活动进行探究。(出示课堂活动卡)
小数的性质教案3
教学目标
知识与技能
1.引导同学知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写。
2.培养同学的动手操作能力以和观察、比较、笼统和归纳概括的能力。
3.培养同学初步的数学意识和数学思想,使同学感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
过程与方法
经历小数的讲解和比较过程,体验探究发现和迁移推理的学习方法。
情感、态度与价值观
让学生根据已有的生活经验和数学知识尝试体会小数的性质,比较小数的大小,体会知识间的相互关系,培养学生自主学习的意识和创新精神。
教学重难点
教学重点:会正确读、写小数。
教学难点:掌握小数的数位顺序。
教学工具
多媒体、板书
教学过程
创设情境,导入新课
师:同学们,铅笔和橡皮的价格一样吗?
生:一样,0.3元= 0.30元
师:0.3是3个0.1;0.30也可以看做是3个0.1.所以二者相同,今天我们来学习一下小数的性质和小数大小的比较。
板书标题:小数的性质和小数大小的比较
看图填空
0.100米=100毫米;0.10米=10厘米;0.1米=1分米
所以0.100米=0.10米=0.1米
师:从上述两组等式中可以得出相同点,即在第一个数的末尾加上0或者减掉0,结果等式依然成立。
归纳总结:小数的末尾添上“0”或去掉“0“,小数的`大小不变,这是小数的性质
活学活用:
不改变数的大小,把下面三个小数改为三位小数。
0.4=0.400 3.16=3.160 10=10.000
二、探讨新知2,小数大小比较
师:我们学了那么多小数,怎样来确定他们的大小呢?
板书标题:小数大小的比较
师出示例题:先涂色后比较大小0.5和0.50比较
分析:把1分成10份,取其中5份,则这5份可以写为0.5,把1分成100份,取其中50份,同样可以写为0.5,所以二者相等。
所以0.5=0.50
(2)比较0.5和0.05
分析:把1分成10份,0.5是取其中的5份,把1分成100份,0.05是取其中的5份,所以0.5大于0.05.
所以0.5>0.05
小数的性质教案4
(一)单元素材解读
1、素材的选取
本单元,我们以自然界中形形色色的蛋为素材。为什么选取这样一个素材呢?主要是基于以下两点考虑的:
(1)体现小数在自然界及现实生活中的作用。
教材中提供了一些鸟蛋、龟蛋的质量,这些数据不仅真实、可靠,而且非常神奇和有趣,同样是鸟蛋,鸵鸟蛋1、65千克多重,蜂鸟蛋才0、46克(2粒黄豆差不多、3000倍)如果没有小数,蜂鸟蛋的大小都很难描述,体现了小数产生的必要性。
(2)重视学科整合,实现数学教育的多维价值。
学科整合,是新课程改革倡导的一种新的课程观。在小学各学科中,彼此之间有着前千丝万缕的联系,构成了整个教育教学的体系,如何将各学科的信息元有机的结合在一起,发挥教育的整体功能,这正是值得我们去潜心研究的问题,本单元选取“形形色色的鸟蛋、龟蛋等”为素材,其目的就是为了充分发挥科学学科与数学学科的合力,以实现教育功能的最大化。这也正是我们青版教材这套“百科全书”的伟大之处。
2、情境串
(二)单元知识分析
(三)单元教学重点和难点
重点:
小数的意义和性质
小数点位置移动引起小数大小的变化规律
用“四舍五入法”求小数的近似值
[小数的意义是小数读写、小数大小的比较的基础,小数的性质是小数化简和改写的依据;小数点位置的变化引起小数大小的变化规律又是名数改写的依据;用四舍五入法求小数的近似值是小数应用必备的知识点。所以,这3个教学重点抓住了,其他的知识则水到渠成。]
难点:
名数的改写(特别是复名数的改写)[这里涉及到精确度的要求问题。难度也不小。]
用“四舍五入法”求小数的近似数。
(四)单元主要编写特色
1、数形结合,化抽象为直观,降低教学难度。
小数的意义是比较抽象的数学概念,小数的性质也是抽象的数学规律,学生要想真正理解和掌握这些概念,是有一定困难的。为了突破这些难点,教材把抽象的数学知识与具体的图形联系起来,挖掘和利用概念中的直观成分,能有效的降低了教学的难度,加深了,对知识的理解和认识。如教材50页在学习小数得计数单位时,用大正方形表示整数“1”,它的十分之几、百分之几分别表示成一位小数、两位小数;57页学习小数的基本性质时,依托直尺显示几厘米是十分之几分米;55页在数轴上建立点与相应的一位小数、两位小数的联系、这些都加深了学生对小数的意义和性质的理解。
2、始终把小数的意义作为教学重点。
本单元编排的五个信息窗,教学内容是循序渐进的,小数的意义是进一步教学小数性质、比较小数大小的规则、小数点移动引起小数大小变化的规律、名数改写的方法的基础,后4个窗的每一个知识点的探索,都从小数的意义的角度切入,随着这些知识点的教学,小数的概念也逐步地清晰化和明朗化,对小数的认识也进一步得到升华。
3、选择大量有意义的现实数据。
前面解读素材的时候说过清息窗的数据全部选用了真实的数据,这一特点,不仅体现在信息窗中,练习中也体现很充分。如(54页、6题)蔬菜之最、(60页、9)几种食物每100克所含的主要营养成分、(69页、5)几种植物的吉尼斯纪录情况、(70页、9)几种动物的奔跑速度、几个州的人口数据等等,集知识性、应用性、思想教育为一体,对激发学生学习的兴趣,调动学习积极性等都将起到积极的作用。
(五)单元信息窗解读
信息窗1(49页)
1、情境图(见教材49页)
(1)情景图解读:此信息窗的情景题目为“鸟蛋的质量”。情景图上呈现的是丹顶鹤、信天翁、鸵鸟、鸡以及四种鸟的鸟蛋,并标示了四种鸟蛋得的质量。
(2)情景图承载的信息:有4条:(1)丹顶鹤质量0、25千克(2)信天翁蛋的质量0、365千克(3)鸵鸟蛋质量一点六五千克(4)鸡蛋质量零点零六千克。
2、知识点
本信息窗一共有3个例题,包含的知识点分别是(1)小数的意义(两位小数的认识)(2)小数的意义(三位小数的认识、小数的计数单位和数位)(3)小数的读写。
3、教学建议
(1)以两、三位小数的意义为教学重点,逐渐形成比较系统完整的小数概念和计数方法。
有关小数意义的教学,教材是这样编排的,先学习小数的读写,接着学习两位小数和三位小数的认识,同时以两三位小数为例,认识计数单位,和数位,归纳总结小数的意义。例题没有涉及三位以上的多位小数,练习中基本也没涉及。目的是降低难度,集中精力以两、三位小数为抓手,充分认识小数的意义。因此,在教学时,教师要细化教学过程,充分利用直观手段,让学生得到充分的感知和体验。:分母是10的分数还可以写成一位小数,一位小数表示十分之几;分母是100的分数还可以写成两位小数,两位小数表示百分之几、、、、、、通过学习例题和作基本练习,对小数的认识逐步加深。在此基础上,如果遇到像58页0、0297千克;64页0、0528;72页1、3295公顷;74页40075、5696千米这样的四位小数或者在生活中遇到更多位数的小数时,能够举一反三,触类旁通,自主迁移,自命其理,逐渐就形成了比较系统完整的小数概念。
(2)在自主整理数位顺序表的活动中理解小数数位及数位之间的关系
比如教材51页在学习小数的数位顺序表示,教师可以把数位顺序表中的记数单位一行字去掉,让学生通过自主探索,自己去整理小数的数位顺序和计数单位,加深学生对数位和计数单位的理解。(让学生独立去填,完全放手)
(3)借助计数器帮助学生体会数位和位值的含义
教材53页用计数器帮助学生体会数位和位值的含义,是一种行之有效的方法。由于受版面的限制,教材没有把此内容安排在探索里,而是将它放在练习中,建议教师将它当作又例题功能的习题来处理,你能在计数器上拨出下面的小数吗?充分认识它的重要性,不能把他和普通习题一样看待。
4、注意的问题
(1)结合身边事例,加深对小数实际意义的理解
青版教材把小数的教学分为两个阶段,三年级上册第三单元“家居中的学问——小数的初步认识”,本册本单元“蛋的世界————小数的意义和性质”是系统学习小数知识的开始,其内容是小数中最基础的知识,是学习小数四则计算的基础。所以,本单元是整个小数教学的重点。因此,在这部分内容的教学中,教师要引导学生结合身边的事例加深对小数实际意义的理解。能用语言归纳小数的意义。
比如:在学习完例题后让学生说一说生活中哪些地方用到小数?
学生根据自己的经验可以举出许多例子如:到书店买书《谈谈新的学习方式》5、35元;《新十万个为什么》10、95元;《童话大王》3、85元;《我们爱科学》8、10元;还有测量身高,小红1、46米,小明1、52米。
(2)要引导学生归纳概括小数的意义,提高抽象概括能力。
“抽象”是数学的本质。引导学生用比较规范、简洁的语言抽象概括数学概念,将感性认识上升到理性认识,是概念教学的主要目标之一。因此,我们要在概念教学中培养学生的抽象、归纳和概括能力,提高学生的数学素养。
(3)借助直观模型,建立小数的概念。
教材在学习小数的意义的探索中,为我们提供了一些直观模型(见教材50页两位数是平面图形,三位数是立体图形),这些数学模型对学生直观地理解小数的意义都将起到很大的帮助作用。希望老师们利用图片或多媒体,动态地展示出平均分的过程,让学生深刻理解小数的意义。
(4)灵活处理教材中的教学情景,提高教学的有效性。
对于教材中原创的教学情境,我个人的意见是:一要尊重。二要理性对待。之所以要尊重是因为,青版教材所选取的素材,应该说凝聚了许多专家、学者、研究人员、一线骨干教师的智慧。又经过这几年教学实践的检验,应该说是比较实用和有效。因此,老师们要深刻地挖掘其内涵,充分利用她,用需老师的话说,不要贱卖了她。说道理性地对待教材中的情境。是因为,受教学条件、学生生活环境及地域特点的影响,再好的素材,也不可能适应所有的教学对象,因此教师可以根据自己学生的具体情况,在现实生活中广泛地挖掘真实、有效、生动且有浓厚的“数学味”的教学情境,来代替原有的情境,以适应学生的学习需求,实现情境引入应有的价值。
5、自主练习
53页第2题55页小屋
信息窗2(56页)
1、情境图(见教材56页)
(1)情景图解读:此信息窗的情景题目为“龟蛋的质量”。情景图上呈现的是平胸龟、蛇龟、绿毛龟、金钱龟和小鳄龟及五种龟的龟蛋,同时还标示了五种龟蛋的质量。
(2)情景图承载的信息:有5组:(1)平胸龟质量11、68克;长0、4分米(2)蛇龟质量24、12克(3)绿毛龟质量11、85克(4)金钱龟质量24、3克(5)小鳄龟质量11、84克;长0、40分米。
2、知识点
本信息窗一共有5个例题,包含的知识点分别是(1)整数部分不同的小数大小的比较(2)整数部分相同的小数大小的比较(3)小数大小不变的规律(小数的基本性质)(4)小数的化简(5)小数的改写。
3、教学建议
(1)引导学生提出对学习新知有“研究价值”的问题
信息窗中提供了5条信息,从组合的角度来说,学生可以提出许许多多的问题,比如说学生提惯了的加减法的问题,一般情况下面对这些信息他们还会提出“谁比谁重多少的问题”。在这里,教师一定要注意对学生进行引导。引导他们提出对本节课学习有关的问题(你能提出比较两种量之间的大小的问题吗?),保证学习时间的有效性性。
(2)教学小数的性质,突出对性质内涵的体验。
首先体验性质的合理性,然后体验性质的应用性。小数的性质是小数概念的重要内容之一。教学小数的性质,能使学生进一步理解小数的意义,又为教学小数四则计算作必要的知识准备。教材分两段教学小数的性质。第一段是理解性质的内容(57第2个红点),第二段是应用性质化简和改写小数(58页小电脑)。在总结发现小数的性质时,由于受版面的限制,教材中只列举了一个例子,从规律的发现和总结的角度来讲,例子有些单薄,说服力不强,因此,在学生总结发现规律前,建议能引导学生再补充一些类似的例子来验证自己的发现。例2、5元=2、50元。0、1米=0、10米=0、100米等等,这些例子,可为小数的性质提供丰富的感性材料,让学生在许多实例里,体验小数的末尾添上“0”或去掉“0”,小数的大小不变的规律。
(3)在比较大小的练习中,压缩思考过程,掌握比较要领。
学生在红点教学的过程中,初步接触了比较小数大小时经常遇到的一些情况(整数部分不同的、整数部分相同的、小数末尾有零和没有零的),并详细地体验了比较的方法。那么,在自主练习中,可以让学生应用初步获得的经验,通过一定数量的练习,进一步体验比较的方法,掌握比较大小的要领。如59页2(2)比较0、604、0、64、0、064、0、46、0、6的大小,都是纯小数,只要看十分位是6的挑出来比较0、604、0、64、0、6再看这三个数百分位,由小到大排起来是0、6、0、604、0、64,剩下的两个比较小的数0、064最小,因此,五个数的排列顺序是0、064、0、4、0、6、0、604、0、64,如此处理练习,能够引导学生压缩思考过程,体会比较的要领,培养思维的灵活性和敏锐程度。
(4)在开放的问题中,发现并掌握比较小数大小的一般规律。
61页11题。在8、□7>8、47,方框里可以填0、1、2、3;56、24?56、2□方框里可以填5、6、7、8、9;通过填这些数,如果两个小数的整数部分相同,十分位上的数大的小数大,如果十分位上的数也相同,百分位上数小的那个小数比较小。练习12题把组成用卡片组成6个不同的两位小数,按大小顺序排列顺序,学生又一次体验了在第11题里的发现。这些发现就是比较小数大小的一般法则,掌握这些法则,就能迅速比较小数的大小,正确作出判断。
4、注意的问题
(1)红点1和红点2的教学顺序可以随“问”而“行”
见教材56页,教师引导学生提出哪个重?哪个轻的问题后,学生可能先提绿毛龟蛋与金钱龟蛋相比,哪个重?也可能先提小鳄龟蛋与平胸龟蛋相比,哪个重?由于这两个知识点不存在着先后之分的问题,所以教师可以根据学生的提问顺序,随机确定知识学习的先后顺序。
(2)利用直观手段,发现小数的性质。
小数的性质实际是分数性质在小数上体现,因为小数末尾添上0体现在分数上就是分子分母都添上0,小数末尾去掉0,道理也是如此、小数的性质很重要,学生知道小数的末尾添“0”去“0”不改变小数的大小,就加深了对小数意义的理解。它还是小数四则计算、小数的化简与改写、小数大小的比较的基础。所以必须要让学生对小数的性质有深刻的理解。小数的性质实质上是说明小数在什么情况下是相等的。它与分数的基本性质是相通的。由于学生还没有学过分数的基本性质,所以只能通过直观手段来说明。(见教材57页)这两个图的作用很重要,一定要让学生理解。
(3)对教材中设置的关键性的问题,要为学生留有讨论的时间和空间。例如58页在学习小数的化简时教材中抛出了一个关键性的问题:“这个0可以去掉吗?”在学习小数的改写时,教材有抛出了一个关键性的问题:“怎样把5改写成三位小数呢?”对于这些关键性的问题,教师一定引起重视,不要一掠而过,要给学生提供充足独立思考和合作探索的时间和空间,充分调动他们的思维,加深其对知识的理解和内化。
5、自主练习
61页10、11题
信息窗3(62页)
1、情境图
(1)情景图解读:此信息窗的情景题目为“四种鸟蛋的质量关系”。情景图上呈现的是杜鹃、蜂鸟、锦鸡、几维鸟,同时还标示了几维鸟蛋的质量及它与其他3种鸟蛋之间的倍数关系。
(2)情景图承载的信息:有4条:(1)几维鸟蛋质量460、5克;(2)一个几维鸟蛋的质量相当于10个锦鸡鸟或100个杜鹃蛋或1000个蜂鸟蛋的质量。
2、知识点
本信息窗一共有3个例题,包含的知识点分别是(1)小数点位置向左移动引起小数大小变化的规律(2)小数点位置向右移引起小数大小变化的规律(3)运用小数点位置移动引起小数大小变化的规律解决问题。
3、教学建议
(1)解释新的'表述方法
过去,在小学数学阶段关于扩大和缩小的问题,约定俗成的理解是:扩大几倍就是乘几,缩小几倍就是除几。但是一些人对此有不同的看法,有人认为:数a扩大n倍,应是a+na倍,而不是na,也有人认为:倍只适用于数的扩大不适用于数的缩小(有人认为缩小一倍,原来的数就为0a—na)、考虑到上述问题以及与中学的衔接,我们的教材在表述上做了变化(见教材63页),在“小数点位置移动引起小数大小变化规律”中,将“扩大、、、、、、倍”“缩小、、、、、、倍”修改为“扩大到它的、、、、、、、倍”“缩小到它的、、、、、、分之一”、
扩大到原数的10倍
扩大到它的10倍
缩小到原数的1/10
缩小到它的1/10
(2)处理好“补零”的问题。
在应用“小数点位置的移动引起小数大小变化”这一规律解决问题时,重点要解决好“补零”和“去零”的问题、特别是小数点向左移动时,如果整数数位不够,则要在数的左边用0补足,补零问题分两种情况,一是非整十整百整千的数,如,1缩小到原来的1/10就是0、1,如果缩小到原来的1/100就是0、01,小数点后面的0要自己补上。二是,整十整百整千的数,小数点向左移动后,小数末尾的零要去掉、如,250缩小到原来的1/1000(教材63页最后一个绿点,只是出示了问题,没有呈现计算过程、在这里,老师一定要将“补零”问题处理到位)
4、注意的问题
(1)处理好新旧表述方法的取舍问题。
前面说过,将一个数扩大或缩小的表述方法与以前不同了,那么,以后的学习中我们就要一行的表述方法为准绳,废除原来不科学的说法。特别是有些不正规的学生用书中,可能还会存在老的说法,教师要注意向学生加以说明,以免造成不必要的混乱。
(2)根据认知需要确定例题功能。
案例见幻灯片人教版小数变化的规律。
5、自主练习
66页第9题
信息窗4(67页)
1、情境图
(1)情景图解读:此信息窗的情景题目为“天鹅的成长”。情景图上呈现的刚出生的天鹅和成鹅时天鹅,图中同时还标有这两个时期天鹅的体重。
(2)情景图承载的信息:有2条:(1)刚出生的天鹅体重200克;(2)成鹅的体重是10、5千克。
2、知识点
本信息窗一共有2个例题,包含的知识点分别是(1)单名数的改写(2)复名数的改写。
3、教学建议
(1)掌握名数互化的3个主要步骤
a先分清是低级单位的数改写成高级单位的数还是高级单位的数改写成低级单位的数,从而决定怎么计算。
b要清楚两个单位间的进率,是10,100,还是1000。
c根据上述两个方面判断确定小数点应该向左还是向右移,移动几位。
(2)引导学生对改写方法进行归纳总结
学生在学习了红点单名数的改写和小电脑复名数的改写以后,对名数的改写方法有所了解,教材中虽然没有要求学生对改写方法进行归纳和总结,我个人的意见让学生用自己的语言说说改写的基本步骤和方法,提高学生的归纳概括能力。
4、注意的问题
(1)体现改写成相同单位的必要性。
教材67页提出的问题是天鹅长大后比出生时体重增加了多少,要解决这个问题必须将不同的单位改写成相同的单位、教材的编写意图本身就是从解决问题入手,引出小数与名数的改写,突出这种改写是解决问题的需要、在教学时,教师要注意突出体现这一点、
(2)鼓励改写方法多样化。
关于多样化的问题,一是,例题本身体现了多样化的特点,如,探索部分,第一个孩子是把高级单位的名数改写成低级单位的名数,第二个同学的做法是将低级单位的名数改写成高级单位的名数、
另外,学生还可能有其他算法,①200克=0、2千克;②0、5千克—0、2千克=0、3千克;③10千克+0、3千克=10、3千克。
(3)复名数的互化是难点,要突破。
小数与复名数的互化之所以是一个教学难点,主要原因有两点:一是学生常常把进率弄错(进率是10还好说,进率是100、1000或60的就有些困难),二是学生对单名数复名数的认识不足,过去在整数部分接触的就不多,到了小数部分,名数的互化比整数部分更复杂,造成学习上的困难。68页小电脑,出示的是一道复名数改写的题目,这是本信息窗的教学难点,教材只出示了问题,没有呈现改写过程,其目的是增加他的开放性,但并不表示可以弱化它,教师不应轻描淡写,一定要一步步给学生讲解清楚,特别是2、39千克=___千克___克,这里涉及一个补零的问题,教学有一定的难度、教学时要处理到位。
5、自主练习
68页第1题
信息窗5(71页)
1、情境图
(1)情景图解读:此信息窗的情景题目为“测量鸟蛋”。情景图上呈现两个孩子正在测量鸟蛋的长径的场景。
(2)情景图承载的信息:有2组:(1)小华读得鸟蛋长径是3、9厘米,小明读得鸟蛋的长径是4厘米;(2)鸟蛋的宽径是2、04厘米。
2、知识点
本信息窗一共有2个例题,包含的知识点分别是(1)用四舍五入法求小数的近似数(2)求小数近似数方法的巩固(特殊情况取近似数)。(自主练习中:将小数改写成用万或亿做单位的数;保留后的小数末尾正好是0的数。)
3、教学建议
(1)探索环节,要抓住关键性问题进行探讨。
见教材71页,设置了2个关键性问题,合作探索部分,只要抓住这两个关键点,近似数的问题就会迎刃而解。
(2)理清保留小数的位数与精确度的关系
在求小数近似数的过程中,引导学生理解保留几位小数的含义,保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数,依此类推。
另外,要特别指出的是,在求小数近似数的时候,要引导学生弄明白保留不同位数小数的精确程度问题,如:教材72页绿点2、0中的0可以不写吗?这个绿点的设置是让学生体会精确程度。如果不写、则表示2、04保留到整数,写上0则表示保留了一位小数,精确到十分位比精确到整数的精确程度要高。虽然2和2、0从小数性质的角度上看,大小是相等的,但从精确度上看,它们表示了不同的精确程度。所以,近似数2、0末尾的“0”在这里不能去掉。
4、注意的问题
(1)结合身边的现实情景,让学生感受求近似数的意义。
比如:测量物体的长度、重量时由于工具的限制,必然产生误差,所得结果都是近似数(身高1、63米);如用直尺测得课桌的长是1、12米,用秤称小名的体重是25、5千克,这里的1、12和25、5就是近似数,还有对大数进行统计时,一般也取近似数,如某城市有13、5万人,中国有13、1亿人口。这里的13、5万和13、1亿都是近似数、通过这些事例,让学生体会到与实际大体符合的数据或者说是接近实际的数就叫近似数,进一步理解近似数的意义。
(1)适当增补使用“≈”习题。
教材上没有出现让学生自己写“≈”的习题,教师可根据实际情况,适当增补此类练习,让学生学会使用“≈”,因为在后面学习用小数四则运算解决问题的时候,要用到“≈”。
5、自主练习
73页第5题74你学会了吗。
(六)本单元提出研讨的几个问题
1、如何帮助学生建立小数意义的模型?
2、小数的性质和名数的互化都是本单元的教学难点,要突破这些难点,你认为可以采取哪些有效措施?
3、在探索数学规律的教学中,应怎样发挥计算器的作用?
4、新课程倡导学生自主学习,那么,教师的指导作用和提升作用应如何把握?
小数的性质教案5
教学目标:
1.结合具体情境,掌握用“四舍五入法”求小数的近似数,会把较大的数改写成用“万”或“亿”作单位的数。
2.在学习小数意义和性质的过程中,培养探求知识的兴趣。
3.提高合作探索知识的能力。
重点难点:
用“四舍五入法”求小数的近似数。
教学方法:
启发引导、自主探究
教学过程:
一、复习导入新课
教师出示复习题,让学生板演。
372800 19000 725000000 844000000
师生共同订正,点拨“四舍五入法”求近似数。
教师引导学生观察信息窗。
二、讲授新课
1、教师提出问题:“测量同一个蛋的长度,为什么两个人的读数不一样呢?”给学生二分钟时间考虑。
一些学生可能看不出来,教师引导
教师引导学生按照整数求近似数的方法——四舍五入,解决求小数近似数的问题。
2、 教师出示数值“3.9423”让学生解决。
学生有的可能写出“3.94”。
有的可能写出“3.9”。
有的可能写出“4”。
3、教师引导学生比较探究结果的不同,分组讨论,然后让学生回答。
4、教师和学生共同归纳总结:用“四舍五入”法求小数的近似数
保留一位小数时,只看它的百分位上的数是大于5,还是小于5。如果大于或等于5,就向前一位进一,同时将百分位及百分位后面的`数舍去;如果是小于5,就直接将百分位及百分位后面的数全部舍去。
5、教师引导学生分析总结:用“四舍五入法”求小数近似数应注意什么?
有的学生可能回答注意小数点;
有的学生可能回答注意别忘进位;
有的学生可能回答注意四舍五入……
教师引导学生一起总结。
三、巩固运用
教师让学生做自主练习第1—3题,用多种形式巩固求小数近似数的基本练习。(学生独立完成)
四、点拨归纳
教师归纳本课的所学的数学知识,点拨疑难点。(学生小组中充分交流)
五、布置作业
自主练习题4、5、题。
板书设计:
蛋的世界——小数的意义和性质
3.9423≈3.94
≈3.9 四舍五入≈4
1754000=175.4万 1754000≈175万
小数的性质教案6
教学目标:
1、学生理解小数的意义,认识小数的计数单位,会比较小数的大小。
2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。
3、使学生能比较熟练地进行低级单位名数与用小数表示的高级单位名数之间的相互改写。
4、使学生能根据要求写出小数的近似数,能把较大的数改写成以万、亿为单位的数,再取它的近似数。
教材说明:
本单元的教学内容有小数的意义、小数的性质及其大小的比较,小数点位置移动引起小数大小的变化,单名数和复名数,把较大的数改写成以万或亿为单位的数,再取它的近似数。
小数的意义是这一单元的重点,直接关系到小数的性质、单名数和复名数相互改写等知识的学习。由于学生在移动小数点的位置时容易混淆小数点移动的方向、位数、影响小数扩大或缩小的倍数;单名数和复名数的改写,涉及到进率和化法、聚法等知识,学生经常会产生错误,所以这两个小节是本单元的难点。
教学内容:小数的意义
教学目标:
1、使学生初步理解小数的意义,知道小数各部分的名称、计数单位和它的分类。
2、使学生知疲乏小数是在实际生活中产生的,并有着广海参的应用,认识小数与分数、名数之间的内在联系,渗透辩证唯物主义观点的启蒙教育。
教学过程:
一、导入
师:过去这几个学期你们学习的都是整数,上一单位我们学习了分数的初步认识,今天我们来认识一种新的数--小数。
同学们有没有见过小数?大家说一说。
师:小数在实际生活中经常用到。例如:商品标价都是用小数表示的,用米尺量布,量了几次不到1米长的'一段,应用分米、厘米来量,也可以用小数来表示。小数应用很广。
怎样的数是小数呢?我们今天来学习。
二、新授
1、教学例1。
出示米尺,提问:1米有几分米?有几厘米?有几毫米?
(1)1分米是米,写成小数是0.1米;3分米是米,怎样写成小数?(0.3米)9分米是()米,怎样写成小数?(0.9)
(2)1厘米是米,写成小数是0.01米;4厘米是米,怎样写成小数?(0.04米)18厘米是()米,怎样写成小数?(0.18米)
(3)1毫米是米,写成小数是0.001米;16毫米是()米,写成小数是()米;284毫米是()米,写成小数是()米。
2、归纳小数的意义。上面的0.30.9表示十分之一几,0.040.18表示百分之几,0.0160.284表示千分之几。这种用来表示十分之几、百分之几、千分之几......的数叫做小数。
3、认识小数各部分的名称。“.”叫做小数点,小数点左边是整数部分,右边是小数部分。
4、读出下列小数:7.40.85150.036
(1)学生自由读。指名读。
(2)说说读小数的方法:
出示读数的方法:读小数的时候,整数部分的读法读(整数部分是0的读做零),小数点读做“点”,小数部分通常顺次读出每一个数位上的数字。
(3)试一试,读出下列各数。
0.81.624.378.095
5、写出下列小数。
四点三八三十点六零点零七二九十二点五零一
(1)学生自练,指名板演。
(2)校对,并说说你是怎样写的。
(3)出示写法:写小数的时候,整数部分按照整数的写法写(整数部分是零的写做“0”),小数点写在个位的右下角,小数部分顺次写出每一位上的数字。
5、试一试:写出下列各数。
五点零七四十点零八九点六五
师:刚才我们学习了小数,你都知道了哪些知识?下面我们就来做些练习。
三、巩固练习
1、把下列分数用小数表示出来
2、读出下列各数:
0.83.252.091.0060.80539.578800.001606.06
3、写出下列各小数
二点八零点五四十点零七二零点一二六三九点零五
三千点零零二五百零五点零零五
四、课堂小结:
今天这节课我们学习了什么知识?
小数的性质教案7
教学内容:
四年级下册教材第38、39页的内容及练习十第1、2、3、4题。
教学目的:
1、引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写、
2、培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力、
3、培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点、
教学重点:
让学生理解并掌握小数的性质、
教学难点:
能应用小数的性质解决实际问题、
教学步骤:
一、创设情境,导入新课。
创设情境:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店里一种雪糕标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?
为什么2、5元末尾添个0价钱不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
二、出示课题,提出目标。
1、知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写、
2、培养动手操作能力以及观察、比较、抽象和归纳概括的能力、
3、培养初步的数学意识和数学思想,感悟到数学知识的内在联系、
三、自学尝试,探究新知。
1、出示尝试题
(1)1、10.100这三个数相等吗?你能想办法使它们相等吗?
(2)你能把1分米、10厘米、100毫米改用“米”作单位表示吗?
(3)改写成用米作单位表示后,实际长度有没有变化?说明什么?
(4)“0.1米=0.10米=0.100米”这个等式从左往右看,小数末尾有什么变化?小数大小有什么变化?从右往左看又怎样呢?你发现了什么规律?
2、学生自学课本38页后尝试练习并讨论。(5分钟后全班交流)。
3、根据自学情况引导讲解。
四、拓展练习,验证结论。
为了验证我们的这个结论,我们再来做一个实验。
1、出示做一做:比较0.30与0.3的大小
你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
2、想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的.办法越多越好)
3、在两个大小一样的正方形里涂色比较。
(1)左图把1个正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
(3)小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
概括总结:在小数的末尾添上“0”或者去掉“0”,小数的大小不变、这叫做小数的性质。
过度:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简。
五、应用新知,尝试练习。
(1)出示例3:把0.70和105.0900化简、
例4:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
(2)学生自学课本后讨论交流,尝试练习。
(3)引导探究:哪些“0”可以去掉,哪些“0”不能去掉?
105、0900中“9”前面的“0”为什么不能去掉?
“3”的后面不加小数点行吗?为什么?
(4)同桌讨论:应用小数的性质时,要注意什么?
六、巩固新知,当堂检测。
1、下面的数,哪些“0”可以去掉,哪些“0”不能去掉?
3、90米0.30元500米1、80元0.70米0.04元600千克20.20米
2、下面的数如果末尾添“0”,哪些数的大小不变,哪些数的大小有变化?
3、418 0.06 700 3.0 908 104、03 150 10.01 42.00
3、化简下面的小数、
0.40 1、850 2、900 0.080 12、000
4、不改变数的大小,把下面各小数改写成小数部分是三位的小数、
0.9 30.04 5、4 8、18 14
5、判断、
5、00元=5元()7元=0.7元()8米=8、00米()
2、04吨=2、4吨()4、5千克=4、500千克()0.60升=0.6升()
6、用元作单位,把下面的价钱写成小数部分是两位的小数。
3元2角、6角、8元、1元零3分
七、课堂小结。
这节课学习了小数的性质,小数的末尾添上“0”或者去掉“0”,小数的大小不变、应用小数的性质时,要注意小数中间的零不能去掉。
小数的性质教案8
设计意图
从生活实际出发,让学生感受小数的末尾去掉“0”,其大小是没有变化的。
教学目标
1、 利用先移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理处方探究让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、 让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
教学重点与难点
教学重点:
掌握小数性质的含义
教学难点:
小数性质归纳的过程
教学过程
一、创设情境,引导探索
1师:昨天金老师去买几支中华牌HB铅笔,有一家店里每支笔的价格标有:0.50元,另一家店是标了0.5元,那你说金老师应该选择哪家店去买我的铅笔呢?
生:随便哪一家,都一样的呀。
师:那为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?
这节课我们就来研究这一方面的知识。
2 找等量关系。
教师首先板书三个“1”,让学生判断是相等的,接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,板书写成:1、10、100。
师:这三个数相等吗?(不相等)你能想办法使它们相等吗?(可以添上长度单位“米、分米、厘米”或“分米、厘米、毫米”就相等了)。
板书写成:1分米=10厘米=100毫米。
3 思考探索。
(1)你能把它们改用“米”作单位表示吗?
(2)改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)
板书如下:1/10 10/100 100/1000
0.1 0.10 0.100
(3)按箭头所指的方向观察三个小数有什么变化?
生:小数的末尾(后面)添零,它的大小不变。
生:小数的末尾(后面)去掉零,它的大小不变。
师:由此,你发现了什么规律?
板书:小数的末尾添上零或去掉零,小数的大小不变。
二、利用性质,改写小数
师:你理解了小数的性质了吗?现在老师就要考考你,请应用小数的性质,化简小数。
0.70=______ 师:你是如何进行化简的。强调是去掉末尾的“0”。 105.0900=_______
4.09= ( )
师:这个数能化简吗?
生:不能。
师:为什么?
生答。因为它的零不是在末尾,所以不能去掉。
师:那么你能不改变它的大小,把它写成三位小数吗?
生:能,4.09=4.090
师:那3呢?这个数怎么改呢?(生答)那两位呢?
板书:改写成三位小数。
4.09=4.090
3 =3.000
师:现在你会使用小数的性质解决问题了吗?那你能说说我们在应用小数的性质时要注意些什么呢?
去“0”时,只能去掉小数末尾的“0”,添上“0”也只是在小数的末尾添加。……
三、课堂小结
小数的性质:小数的.末尾添上“0”或去掉“0”,小数的大小不变。
四、巩固练习
P58----59的做一做
判断:
1、0.080=0.8 ( × )
2、4.01=4.100 ( × )
3、30=30.00 ( √ )
4、小数点后面添上“0”或去掉“0”,小数的大小不变。( × )
提醒注意:性质中的“末尾”跟一般说的“后面”是不同的。
练习十中的习题。
小数的性质教案9
[教学内容]
苏教版义务教育课程标准实验教科书五年级上册第34~35页。
[教材简析]
这部分内容结合现实的情境,通过自主观察、比较和归纳,引导学生在众多数学现象中体验并发现小数的性质。例4联系学生熟悉的“购学习用品”情境引入,激起学生进行比较的需要,再通过用不同方法对橡皮和铅笔单价的比较,使学生初步体验小数末尾添上0,小数的大小不变。“试一试”则借助直尺图使学生再次体验小数末尾去掉0,小数的大小不变。在此基础上,引导学生综合、归纳两组等式的特点,从而发现小数的性质。例5及相应的“试一试”则是突出小数性质内涵—— “0”在小数末尾的专项教学,同时学习应用小数的性质,进行化简和改写小数的方法。
[教学目标]
1、使学生在现实的情境中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质改写小数。
2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。观察、比较、抽象概括能力
3、在活动中使学生初步感悟数学知识间的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
[教学过程]
一、复习旧知,引发冲突
1、谈话:数的王国里有许多神奇的现象,如不起眼的“0”,表示什么意思?(一个也没有)别小看这个“0”,它的作用可大着呢。看,在整数5的末尾添上一个0,这个数发生了什么变化?添上两个0呢?(屏幕依次出示一组数:5,50,500)
我们再从右往左看,500去掉一个0,发生了什么变化?
2、引发猜想:如果在一个小数的末尾添上0,或者去掉0,小数的大小又会怎样?猜猜看。(学生自由发表,可能出现两种意见:①受整数末尾添“0”的思维定势,认为小数大小也会随之变化。②由钱数等生活经验认为小数大小不变)
谁的猜想正确?我们可以用什么方法证明?(举些例子)
[设计意图:从对“整数末尾添上或去掉‘0’引起大小变化”的思考,进而引导学生关注小数末尾的0,引发猜想。此时的猜想是一种直觉思维,可能两种意见谁也说服不了对方,目的在于通过冲突激起学生进一步探索的欲望。]
二、实例作证,体验小数性质的合理
1、创设情境,初步感知
(1)创设购物情境:两位同学去书店购买学习用品后在交流购物情况:小明:“我买1枝铅笔用了元。”小芳:“我买1块橡皮用了0元。”你从图中能获取哪些信息?
(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后可以和同桌交流。
(3)学生活动后组织全班交流,可能出现如下的比较方法:
①用具体钱数解释:元和0元都是3角,所以元=0元。
②用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的3份、30份分别用、0表示。因为阴影部分大小相同,所以=0。
③结合计数单位理解:是3个,也就是30个,所以=0。
(4)感知与体验:同学们想出了多种办法都能证明元=0元,说明这两个小数确实相等。
教师引读元=0元,从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。
[设计意图:这里选取学生熟悉的购物题材作为研究对象,一方面学生凭借一定的生活经验,能够判断元=0元,“知其必然”。同时,学生借助已有的知识经验又能“知其所以然”,运用多种方法自主验证元=0元。在此基础上通过引读体验,使学生初步感悟小数末尾添0与小数大小的关系。]
2、试一试,加深体验
谈话:看来刚才的猜想二有些道理。当然,仅仅用一个例子证明是不够的,还得找些其他例子进一步研究,看看这是否是普遍的规律。
(1)出示一把有刻度的学生尺,你能比较出00米、0米、米的大小吗?给学生一定的思考时间。部分学生可能有困难,随后出示书上填空,看图填一填,再比较。
(2)交流比较方法:说说你是怎样比较的?
可能出现如下的方法:
①结合直尺图说明:由100毫米=10厘米=1分米,得到00米=0米=米。你还能用其它方法来证明吗?
②用计数单位说明。00是100个,就是10个,也就是1个。
(3)感知与体验:教师引读:00米=0米=米,小数是相等的。从左往右看,小数末尾怎样变化,小数大小也不变?
使学生初步体验小数的末尾去掉“0”,小数的大小不变。
[设计意图:“为什么去掉00米末尾的一个0、两个0,小数依然相等?”这是学生思维受阻、理解较为困难的地方。借助直观的直尺和小数计数单位等相关已有经验,学生能发现00米、0米和米之间的关系,这就为小数性质合理性的体验提供了另一素材。通过引读使学生体验小数末尾去掉0和小数大小的关系。这就为下一环节的总结概括作了必要的认知准备。]
3、总结体验,概括表达
上面的两个例子,小数大小都没变。从左往右看,小数在怎样的情况下,大小是不变的?把你的想法和小组里的同学说一说。
小组交流后组织全班交流。在此基础上引导学生把两次的发现用一句话概括:小数的末尾添上“0”或去掉“0”,小数的大小不变。这就是小数的性质。
刚才我们是从左往右观察,得到了小数的性质。那么从右往左看,你又能发现什么?
4、突出“末尾”,体验内涵
牛奶xx元
面包xx元
汽水xx元
火腿肠xx元
(1)小强去超市购买了一些物品,得到一张购物单(出示例5):
合计xx元
请你帮他找一找:这些物品的价格中哪些“0”可以去掉?
在书上填一填。
学生完成后进行全班交流:
①元=元。说说你是怎样想的。
想法一:根据小数的性质,直接去掉末尾的“0”。
得到元=元。你还能用其它方法证明吗?
想法二:元是2元8角,2.8元也是2元8角。
想法三:是2个一和8个十分之一,2.8也是2个一和8个十分之一。
谈话:根据想法二和想法三,都证明了元末尾的“0”能去掉,看来小数的性质确实是合理的。
②元中的“0”能去掉吗?为什么?可以结合具体数量解释:元是3元零5分,如果去掉“0”,元是3元5角,两者不等。也可以结合计数单位解释。
由此看来,小数中的“0”是否都可以去掉?只有小数哪里的“0”才可以去掉?(只有去掉小数末尾的“0”,小数的大小才不变。)
(2)口答练习六第1题:下面各数中的'哪些“0”可以去掉?哪些“0”不可以去掉?为什么?
[设计意图:在知识的获得上,学生最相信的是自己在学习过程中的亲身经历与体验。小数的性质实质上是说明小数在什么情况下是相等的,学生在例题以及试一试的多个数学现象中已经有了一定的体验及发现。然而,添上或者去掉的“0”应在小数的“末尾”,这种体验尚未深刻。因此,这一层次通过突破重点与难点的专项教学——辨析具体实例中哪些“0”可以去掉,旨在让学生更加深刻地体验小数性质内涵——突出小数“末尾”。]
三、解决问题,体验小数性质的应用
1、小数的化简
根据小数的性质,元就等于元,所以我们通常可以去掉小数末尾的“0”,把小数化简。
化简下面的小数:
学生独立思考,口答。提问:化简,“0”都能去掉吗?
2、小数的改写
试一试:不改变数的大小,把下面各数写成三位小数。 10
学生独立思考,在书上填空。
完成后交流结果,并提问:改写这三个数时应用了什么知识?为什么给三个数添上的“0”的个数不同? “10”是整数,怎样把它改写成大小不变的三位小数?
小结:去掉小数末尾的“0”化简小数,或者在小数末尾添上“0”增加小数部分的位数,这些都是应用小数的性质,在不改变小数大小的前提下进行的。
如果把整数改写成小数的形式,必须在整数个位右下角点上小数点,再添上0。
四、巩固应用,深化小数性质的体验
1、完成练一练第1题。观察数轴图,照样子在方框里填上合适的小数。
完成后观察每组中的两个数,你有什么发现?
和0、和0、和0……每组里的两个数对应于数轴上的同一个点,说明小数的性质确实是存在的。=0,数轴上这个点还可以用哪些小数来表示?
2、完成练一练第2题。先涂色表示各小数,再比一比。
交流时结合涂色部分说说涂色时的感受:为什么和0的大小相同,而和的大小不等?
教师就图小结:如果添上或去掉的“0”在小数末尾,不会改变原来数的大小;如果添上或去掉的“0”不是在小数末尾,小数的大小随之发生变化。
[设计意图:这两题都是数形结合,借助直观的数轴图使学生清晰地看到两个数对应于数轴上的同一个点,通过正方形涂色部分的大小比较又能使学生直观地感受到添上或去掉的“0”必须在小数末尾,突出了小数性质的内涵。直观的形能帮助学生体验、理解抽象的数。]
3、完成练习六第2题。学生练习后提问:为什么不把8和80连起来?
4、完成练习六第4题。学生独立改写。
交流时重点指导,80的改写方法。使学生认识到:应用小数的性质改写小数,有的需要去掉小数末尾“0”,也有的需要在末尾添“0”增加小数部分的位数。
5、完成练习六第5题。
提问:在哪些地方看到过小数末尾添上0的数?(商场的标价上)
学生独立改写后交流。
谈话:用“元”作单位表示钱数时,因为人民币“元”后面还有“角”、“分”,所以钱数一般改写成两位小数。比较一下,用“元”作单位改写成两位小数后有什么感觉?(这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。)
五、总结延伸
通过本课的学习,你有什么收获和大家分享?我们是怎么探索小数的性质的?通过对整数末尾0的变化的研究,我们提出了小数末尾0变化引起变化的猜想,并通过生活的实例发现了小数性质的存在。
0的作用大不大?通过在小数末尾添上或者去掉0,我们就给一个小数找到了许多大小不变的朋友。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
小数的性质教案10
学生填完结果并订正
第二教时
2、师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好,老师提供两个大小一样的正方形,一张数位顺序表)
3、生1:在两个大小一样的正方形里涂色比较。
(2)连线。把相等的数用直线连起来。
第五教时
第六教时
反馈:
第九教时
第十教时
第十二教时
教学内容:教科书P78~79的内容。
教学目标:
1、使学生通过整理和复习,弄清本单元学习了哪些知识,更牢固地掌握小数的意义和性质。
教学目的:
教学重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点、数大小变化的规律。
教学难点:用“四舍五入”法按要求求出小数近似数。
教学过程:
一、揭示课题
这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。
二、复习小数的意义
1、做整理和复习第1题(
(1)学生在书上填写,集体订正。说一说这些小数的意义。
(2)说一说小数的意义是什么?
问:一位小数、两位小数、三位小数……各表示几分之几的数?
2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?
(2)填空。
0.1里面有( )个0.01。 10个0.001是( )。
10个0.1是( )。 0.1里有( )个0.01。
三、复习小数的性质和小数的大小比较
1、练习。
(1)把下面小数化简。
4.700 16.0100 8.7100 14.00
(2)不改变数的大小,把下面的数写成两位小数。
4.2 13.1 21
①学生做,指名板演,集体订正。
②问:做题时是根据什么来做的?什么
(3)、做整理和复习第2题。
0.1 0.012 0.102 0.12 0.021
(2)按要求从小到大排列。
四、复习小数点位置移动引起小数大小变化的规律
1、做整理和复习第3题。
(1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?
问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?
(2)学生练习,指名回答。
2、练习。
(1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。
(2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。
五、复习求小数的近似数和整数的改写
1、把下面小数精确到百分位。
0.834 2.786 3.895
(1)学生做,指名板演。
(2)让学生说一说怎样求一个小数的近似数。
2、(1)把下面各数改写成“万”作单位的数。
486700 521000
(2)把下面各数改写成“亿”作单位的数。
460000000 7189600000
学生在练习本上做,指名板演,说一说怎样把一个较大数改写
成“万”或“亿”作单位的数。
3、把下面各数改写成“万”作单位的数,并保留一位小数。
67100 209500
(1)学生在练习本上做,指名板演。
(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?
(3)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。
(4学生练习,集体订正。
(5)小结:把一个数改写成“万”或“亿”作单位的.数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以
了。
六、全课总结
这节课复习了什么内容?
怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?
【作业设计】
1、0.45表示( )。
2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。
3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是(
)万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。
4、在○里填“>”、“<”或“=”。
16.36○16.63 0.36万○3600
0.97○1.01 0.23亿○2100万
5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?
10000千克稻谷可出大米多少千克?
小数的性质教案11
教学内容
教科书第80~81页,练习十六的习题.
教学目的
1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.
2.使学生在理解的基础上掌握分数、小数的基本性质.
教学过程
一、数的整除
1.整除的意义.
教师:想一想,什么叫做整除?指名回答.
教师进一步强调:整除中说的数是什么数?(整数.)
商是什么数?(整数.)有没有余数?(没有余数.)
教师:什么叫做除尽?(两数相除,余数是0.)
整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:
被除数 除数 商 余数
整除 整数 不等于O的整数 整数 O
除尽 数 不等于O的数 数 O
教师:可以看出整除是除尽的一种特殊情况.
2.能被2、5、3整除的数的特征.
教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:
能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)
能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的数之和进行判别.)
教师:什么叫做奇数?什么叫做偶数?
根据什么来判断一个数是奇数还是偶数?
3.约数和倍数.
教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:
能说6是约数,15是倍数吗?应该怎么说?
教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.
教师:一个数的约数的个数是怎样的?(有限的.)
其中最小的约数是什么数?最大的约数是什么数?(1,这个数本身.)
一个数的倍数的个数是怎样的?(无限的.)
其中最小的倍数是什么数?(这个数本身.)
做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.
4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.
教师:怎样判断一个数是质数还是合数?(检查这个数有约数的'个数,或查质数表.)指名说一说30以内有哪些质数.
让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.
5.分解质因数.
指名说一说质因数、分解质因数的含义.
做练习十六的第5题.学生独立解答,教师巡视,集体订正.
6.公约数、最大公约数和公倍数、最小公倍数.
(1)复习概念.
教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.
什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.
教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)
质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)
两个不同的质数一定互质吗?(两个不同的质数一定互质.)
互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)
(2)课堂练习.
做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.
做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.
小数的性质教案12
教学内容:
九年义务教育人教版小学数学四年级下册第39页的内容以及相应的练习。
教学目标 :
1.学会运用小数的性质把一些小数化简或进行改写。
2.培养学生自主提出问题、自主解决问题的能力以及合作精神、实践能力和创新意识。
3.激发学生对数学的兴趣,引导学生体会数学与生活的联系。
教学重点: 运用小数的性质把一些小数化简或进行改写。
教学难点:掌握在小数部分什么位置添上“0”或去掉“0”,小数大小不变。
教学过程 :
一、温故知新
(同学们新课前我们先来复习旧知识,有没有信心,有,好。抢答,比一比谁又对又快!)
1.抢答。
10×47= 91÷13= 450÷50= 25×40= 360÷6=
36×20= 20×30= 125×8=
2.完成下列填空。
(1)0.58它是由( )个0.1和( )个0.01组成的。
(2)0.045里有( )个0.001
3.什么叫小数的性质?
小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
同学们已经掌握了小数的性质,但是小数的性质应用非常广,大家想不想知道,想,那好,这节课我们一起来学习小数性质的应用。板书课题。
二、探究新课
1.出示学习目标
(下面我们先来明确这节课的学习目标,集体读一读)
(1)学会应用小数的性质对小数进行化简。
(2)学会应用小数的性质对小数进行改写。
2. 自学探究,合作交流。(课本第39页的例3和例4)
接下来请同学们结合自学要求,自学课本第39页例3、例4的内容,自学结束后,四人小组相互交流自己的发现,比一比,谁最善于思考,善于发现。
自学例3并思考:
(1)化简小数的依据是什么?
(2)怎样化简0.70和105.0900?
(3)化简小数的方法是什么?
(4)化简时,小数里的其他0可以去掉吗为什么?
自学例4并思考:
(1) 改写小数的依据是什么?
(2)不改变数的大小,怎样把0.2、4.08、3写成三位小数?
(3)不改变数的大小,改写一位、两位三位小数的方法是什么?
3. 展示智慧,分享快乐。
(好,自学交流结束,现在我们来展示你的智慧,分享你的快乐!)
例3
(1)化简小数的依据是什么?
(2)怎样化简0.70和105.0900?
(3)化简小数的方法是什么?
化简小数的方法:依据小数的性质,去掉小数末尾的0。
(4)化简时,小数里的其他0可以去掉吗?为什么?
例4
(1) 改写小数的依据是什么?
(2)不改变数的大小,怎样把0.2、4.08、3改写成三位小数?
(3)不改变数的大小,把一位、两位小数、整数改写三位小数的方法是什么?
不改变数的大小,把一位、两位小数、整数改写三位小数的方法
原是一位小数,在它的末尾添上2个0。
原是两位小数,在它的末尾添上1个0。
原是整数,在它的右下角点上小数点再添上3个0。
4.举例说明应用小数的性质时,要注意什么?
(同学们对化简小数,改写小数的方法掌握得真不错,可是老师还有一个问题,应用小数性质时要注意什么?举例子说明一下)
要注意小数的中间或末尾不能去掉0,否则会改变小数的大小。
三、巩固提高。
(下面大家能不能应用刚才学到的知识,去完成下面的练习?)
1. 化简下面各数。(口答)
0.40= 1.850= 2.900=
0.80= 12.000= 5.0100=
2. 不改变数的大小,把下面各数写成三位小数。(口答)
0.9= 30.04=
14= 0.15000=
3. 判断。
(1) 在数点的后面添上0或去掉0,小数的大小不变。( )
(2) 0.2元与0.20元相等。( )
(3 ) 0.8与0.80大小相等,意义也相同。( )
(4.) 4.0808可以化简成4.88。( )
4. 用3、3、0、0这几个数学和小数点“.”组数,写出一个符合要求的小数。
(1)可以去掉一个0而大小 不变的小数。( )
(2)可以去掉两个0而大小 不变的小数。( )
(3)一个0都不能去掉的小数。( )
四、全课总结。
(这节课同学们都学习得很认真,收获肯定不少,谁来分享你的收获?)
通过这节课的学习,说说你有什么收获?
五、测评提升。
完成《测评》29页第一、二、三大题。
六、板书设计
小数性质的应用
例3 化简。
0.70 = 0.7
105.0900 = 1.05.09
例4 改写
0.2 = 0.200
4.08 = 4.080
3 = 3.000
教学反思
数学来源于生活,应用于生活。学生学习数学的目的是要学会学习的方法,在学习的过程中不断提高自己的思维能力。在本节课的设计和教学中,我提供了生活中小数的数据,让学生再次感受了小数的实际意义,激发了学生探究新知的欲望。通过自学,掌握如何化简小数,如何把整数和小数改写成指定位数的小数,学会解决实际问题。整节课学生思维活跃,表现积极,自学反馈和巩固练习完成质量高。反思自己与学生的活动过程,有了如下感悟。
一、吃透教材,读懂学生
要上好一节课,要让学生的学习既轻松又愉悦,首先必须深读教材,在研究中找到新旧知识的连接点,确定所研究知识在教材体系中的位置和作用,同时,教师还必须研究孩子的年龄特征和心理特点,分析学生的已有生活经验和知识基础,在此基础上制定适切学生和教学内容实际的教学目标,从而确定恰当的有利于探究活动开展的教学方法。
二、创设情境,激发探究欲望
在设计并执教了《小数性质的应用》后,我认为传统的好的导课方式我们都可以用,关键是看所探究的是什么知识,我们可以根据探究内容的特点和学生的已有经验和知识基础选择或创新导入方式,既可以创设生活情境引入,也可以开门见山直奔主题,还可以谈话揭题,游戏导入……比如,基于四年级学生在学习本节内容之前,已经学习了小数的意义和小数的读法、写法,也学习了小数的性质,对小数已经有了进一步的认识,我就选择了创设情境,激发学生认知冲突的方式导入新课。这里所创设的情境既复习了旧知,又使学生产生了新的认知矛盾,调动了学生探究知识的积极性,为新知的学习打开了学生的思维。
三、自主看书,细化学法指导
如何指导学生自学?这是我们摸索过程中的一个难点。在尝试以自学为主课堂教学实践过程中,我们教师所提供的学法指导往往是大而空,不符合学生的实际,因此,我们在课堂上呈现的学法提示多数形同虚设。我认为,学法指导也应该在研究教材和学生的基础上,定性探究内容的特点和确定学生的生活经验与知识基础,然后才能确定如何指导学生自学书本。只要在研究的基础上,我们所提供的学法才能让学生看得懂,才能是学生有可操作性。我在教学时,确定了学生的知识基础是已经学习了小数的意义和小数的读法、写法,也学习了小数的性质,对小数已经有了进一步的认识,能够利用小数的意义表达生活中小数的.实际意义。因此提供了这样的学法指导:(1)让学生结合自学要求的问题,仔细看书P39例3,例4的内容(2)自学结束后,四人小组交流自己的发现。既给了学生看书的方法,同时又给了学生看书后的任务。这样就让学生的看书自学能够做到有的放矢。
四、把握动态生成,调整教学重点
如何了解学生的自学情况是调整教学重点的基础。这个环节是我们实践中碰到的最大难题,处理不好,就不能确定教学过程中探究的重点。处理好了这个环节就等于掌握了学生的自学情况,也就能展开深入的探究活动。在实际的教学中,我们既可以借助投影仪进行反馈,也可以让不同层次的学生到黑板板书来反馈,出现的问题有学生自己评价指导,存在的疑问由学生自己提出,并通过合作探究来释疑,这就是自学为主课堂教学中的动态生成之一。教学中我让学生上黑板板演答案,并让学生来评价指导。强调书写格式,让学生再看书,看看书上例题是怎样书写的。然后提问:0.080=0.8可以吗?为什么?3=3000可以吗?为什么?你认为在化简小数,把整数和小数改写成指定位数小数的时候要注意什么问题?这样就为学生的探究活动提供了新的支点,进一步激发了学生的探究欲望和动脑意识。
五、整节课学生真正成为规律的探索者、发现者。小数基本性质的运用,我充分地让学生自己去探索、去发现。充分地相信学生、放手让学生去探索、去发现,每一次都是学生自己讨论,自己发现、自己总结、自己归纳,一层一层不断地深入,不断地完善,让学生自己自豪地说自己的发现、自豪地用自己的发现去解决问题,这些无疑都将对学生的终生有用。
因此,我们在设计问题的时候,没有拘泥步步为营,没有在学生容易出现“走岔路”的地方插好路标,而是给予学生更多地思考空间,允许学生犯错,在提问的时候,尽量做到有的放矢,挖掘学生的思维潜能。
小数的性质教案13
教学目标
1、通过教学、实践使学生自己发现并掌握小数的性质。
2、培养学生的抽象概括能力,动手能力。
3、培养学生善于探索的精神。
复习引入
1、准备题(1)1元=()角=()分
(2)在下面()里填适当的小数。
3角=()元
30分=()元
100毫米=()米
(3)0.4里面有()个0.1
0.40里面有()个0.01
2、引入:今天继续研究小数。
体验发现
1、课件出示例4:
(1)读题
(2)分组准备,讨论。
(3)说出结果。0.3元=0.30元
(4)为什么?
学生阐明自己的观点。
A、0.3元和0.30元都是3角,所以0.3元=0.30元。
B、画图理解。
C、从小数的意义解释。0.3是3个0.1,也就是30个0.01,0.30也是30个0.01,所以0.3=0.30。
(5)这两个相等的小数,小数部分有什么不同?
提问:小数部分末尾的0添上或去掉,什么变了,什么没变?
(小数变了,小数的大小没有变)。
2、课本试一试:先看图填一填,再比较0.100米、0.10米和0.1米的`大小。
(1)学生自主填空。
(2)交流自己的看法,并阐明观点。
(3)汇报自己的结果。
由1分米=10厘米=100毫米,得到0.1=0.10=0.100。
(4)观察板书:
你得到什么结论?学生自由发言。
总结:小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。
理解内涵
1、课件出示例5:
学生自主填空。
提问:这些小数中,哪些0可以去掉?指名回答。
(着力于对小数“末尾”的理解。)
结论:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
学生尝试做“练一练”第1题。独立完成,集体订正。
2、试一试。
不改变数的大小,把下面各数改写成三位小数。
0.4=()3.16=()10=()
学生自主改写。
交流:(1)改写这三个数时应用了什么知识?
(2)为什么给三个数添上的“0”的个数不同?
(3)“10”是整数,怎样在小数的末尾添上“0”?
给学生充分的交流时间,进一步体验小数性质的应用。
3、练一练第2题。
学生自主比较,得到结果,并运用学过的小数的意义和性质进行阐明。
巩固练习
练习六的1—5题。
第1、2两题巩固并深化对小数性质的理解,突出去掉或添上“0”必须是小数末尾的0。
第3、4、5题都是应用小数的性质改写小数,其中有去掉末尾“0”化简小数,也有在末尾添“0”增加小数部分的位数;有改写小数,还有改写商品的单价。
这些练习题使学生在应用中掌握小数的性质。
教学后记
让学生自己发现,小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。发现小数的性质并对小数的性质作出抽象概括。
小数的性质教案14
教学要求:
1.渗透事物相互联系和“变”与“不变”的辩证统一关系。
2.培养学生的观察、比较、概括和灵活运用能力。
3.使学生理解和掌握小数的性质,能运用小数的性质进行小数的化简和改写。
教学重点:小数性质的推导与理解,真正掌握并正确运用解决相关的问题。
教学难点:在小数部分什么位置添“0”去“0”,小数大小不变。
教具准备:(师)实物投影、尺子、投影片、小数卡片
(生)尺子、纸、平均分成10份(100份)的两个正方形、小数卡片(每人一张)
学生活动设计:
1.由故事引入组织学生讨论比较0.1米、0.10米、0.100米的大小,初步发现小数的性质的规律。
2.联系小数的意义, 组织学生讨论0.40与0.4、0.60与0.6、0.80与0.8的大小从而归纳小数的性质。
3.组织看书,让学生自学例4,重点评析特别注意的地方,培养学生自学能力和应用所学知识解决实际问题的能力。
4.游戏设计,帮助学生加深对小数性质的理解。
教学过程:
一.引入新课:
1. 故事引入:
师:0.1米、0.10米、0.100米是好朋友,有一天却为了争长短理论起来,0.1米说:“咱们三个我最长!”0.10米说:“我才是最长的!”“你们两个都不对,我才是最长的呢!”0.100米不服气地说。┅┅他们这样你一句我一句争论不休,咱们能不能给他们帮帮忙,用我们手中的`学具想想办法,给他们评判一下,到底谁长谁短呢?
板书:0.1米 0.10米 0.100米
2.小组学习讨论。(可以用尺子把三个长度画在纸上进行比较,也可以从意义上进行比较,还可以用其他办法。)
3.小组汇报。(在充分讨论的基础上,到黑板前或实物投影上演示。)学生说后,教师板书:
4.问:观察一下这三个相等的小数,你们发现了什么?
5.师:那么这种现象在小数中是不是普遍存在的规律呢?下面我们就来一起研究一下。
二.新授课:
(一)揭示小数的性质:
1.板书:①0.40 0.4
②0.60 0.6
③0.80 0.8
2. 小组学习讨论:
每个小组可以从中任选一组或两组小数,用手中的两个正方形(一个是平均分成十份的正方形,另一个是平均分成一百份的正方形)验证一下,也可以想想其他办法,看一看每组中的两个小数是否相等?
3.小组汇报。
①可直观上通过比较阴影的大小进行验证;②也可以通过意义进行验证 如:0.40和0.4
0.40表示百分之四十,有40个0.01;0.4表示十分之四,有4个0.1,因为10个0.01就是1个0.1,所以40个0.01就是4个0.1,因此,0.40=0.4。)
学生演示汇报后教师板书:
4.师:通过对这三组小数的研究,能说明什么呢?(小数的这个现象是普遍规律。)
5.讨论:小数中存在什么规律呢?
6.指名回答。
师:这个规律就是小数的性质。 板书:小数的性质
7.组内互相说一说小数的性质是什么?(小数的末尾添上“0”或者去掉“0”,小数的大小不变。)
8.师:根据刚才总结的小数的性质,你们能不能帮助老师判断一组题呢?
①数的末尾添上“0”或去掉“0”,数的大小不变。 ( )
②把小数中的“0”去掉,小数的大小不变。 ( )
③3.9=3.90 ( )
④60.06=60.6 ( )
(二) 小数性质的应用:
1.板书: 0.8000 0.8 师:比较一下它们的大小,根据什么说它们相等呢?
师:既然大小一样,你们愿意写哪一种?为什么呢(0.8简单,0.8000复杂)?所以我们利用小数的性质把末尾带“0”的小数写成简单的形式,这个过程就是化简。板书:化简
2.板书:0.80 206.0500 问:这两个小数谁能化简?
生说师板书:0.80=0.8 206.0500=206.05 问:这两个0能去掉吗?为什么?
3.练习:化简:0.60、 6.00、 8.44000、 50.60、 4000.010
4.看书105页, 自学小数的性质还有什么应用呢?
5.自学后汇报。 板书: 改写: 0.5=0.500
3.08=3.080
40=40.000
问:把整数改写成小数要注意什么?
(先在整数个位右下角点上小数点再补0 )
6.比较一下改写前后有什么异同点?(大小相同,意义不同)
7.练习:把小数或整数改写成两位小数。
5.4 0.9 7 13 20
三.游戏:“找朋友”
六个同学分别举着0.72、5.204、1.4、3.01、9.5、10.03 站在前面,并同时说“是我的朋友请过来”,举着与它们相等的数的同学跑过去,分别站在六个同学的后面。
四.小结:
师:你们知道小数的性质在我们的生活中有哪些应用吗?(生回答)
师:其实今天学习的知识在我们生活中到处都有。比如:一台电视机价值2850.00元,一本书1.60元,这些商品的标价实际上就是应用的小数的性质,因此我们从小就要注意观察事物,积累知识,做一个有心人。
四.总结:这节课你有什么收获?
小数的性质教案15
教学内容:
教材第117~118页例1~例4,第118页的“练一练”及练习二十四的1~6题。
教学要求:
1、 结合生活实例,通过具体数量和图例的比较,理解和掌握小数的性质。
2、 能利用小数的性质化简和把整数或小数写成指定数位的小数。
教学重难点:
理解和掌握小数的性质。
教学过程:
一、导入新课
1. 出示:1
师:如果老师在后面添上一个0就变成了多少?添上两个0呢?
师:我们发现在整数的末尾添上0或者去掉0,它的大小就发生了变化。
师:那你能使它们相等吗?(比如说在它的后面加上单位名称)
师:同学们真棒,今天就让我们用100分的热情10分认真的上1节你喜欢的数学课好吗?
2、前几天丁老师的红钢笔丢了,就想去买一支钢笔,我看中的一支钢笔在两家商店的单价分别为3.50元和3.5元(课件出示)。你们觉得哪一个更便宜呢?
4、今天这节课我们就一起来研究这个问题。
二、教学新课:
1、教学例1
师:听!好象有人在争吵哎!我们去看看吧。哦,原来是小小猫和小兔子都说自己手中的数量是最大的,正为这而争论呢?你们能帮助他们比较一下大小吗?(课件出示)
师:四人一小组讨论一下,并把讨论的结果记录在练习纸上。可以借助屏幕上的米尺。(小组讨论)
师:谁愿意来发表一下自己的意见?
板书:因为1分米=10厘米=100毫米
所以0.1米=0.10米=0.100米
师:请同学们仔细观察这道等式,从左往右看你能发现什么?四人一小组再交流一下。
汇报、板书
师:同学们真棒!我们用自己的'智慧不仅帮他们解决了难题,而且在这个过程中还有所收获呢?下面我们再来看一题
2、 出示0.30和0.3。
师:你能比较出它们的大小吗?
师:那我们可以怎样证明它们相等呢?
师:拿出练习纸,上面有两个完全一样的正方形,左边的正方形平均分成了100份,右边的正方形平均分成10份。请你用阴影部分在左边的图形中表示出0.30,在右边的图形中表示出0.3。(课件演示重合)
师:仍然从左往右观察这道等式,你又能发现什么?(板书)
3、 小结:
你能把我们刚刚发现的规律用简洁的语言来概括一下吗?你知道这叫做什么吗?这就是我们今天所研究的内容,你觉得在这个性质中哪些地方需要强调?
(小数 末尾)那么现在你能解决在课开始时老师给你们的难题了吗?
4、 教学例3:
师:俗话说“学以致用”,那你认为我们学习小数的性质有什么用途呢?
师:根据这个性质遇到小数末尾有“0”的时候一般可以去掉末尾的“0”,把小数化简。
出示例3:把0.60和203.0500化简.
学生口答。
5、 教学例4:
师:刚刚我们根据小数的性质,去掉小数末尾的0对小数进行化简,但是有的时候我们却要根据需要,要在小数的末尾添上0,或者在整数个位的右下角点上小数点,再添上0,把整数改写成小数的形式。你在实际生活中见过吗?
师:老师也搜集了一些,请看,这袋饼干的单价是1.00元,实际上就是多少元?4.50元呢?(出示食品包装)
在实际生活中,为了保持统一,在价格标签上我们一般都用两位小数来表示价格。
师:下面我们再来看一题。
出示例4:不改变数的大小,把0.4、3.16、10改写成小数部分是三位的小数.
口答。
三、总结:
通过我们的学习,我们发现小数的性质在我们的实际生活中有着广泛的应用,根据它不仅可以对小数进行化简,还可以根据需要在小数的末尾添上0或者把整数改写成小数。下面我们再来共同研究几道题目。
四、巩固练习:
1、公正裁判:
(1)、小数点的末尾添上一个“0”,小数的大小不变。 ( )
(2)、0.060=0.6 ( )
(3)、908的末尾添上两个“0”,数的大小不变。( )
(4)、150.00元可以改写成150元。 ( )
口答并且说一说为什么错。
2、把下面各数改写成小数部分是三位的小数:
0.5400 0.09
30.6 7
80 4.2300
1.02000 2.95
做在练习纸上。
汇报并且说说用了什么方法?
3、把下面各数改写成小数部分是三位的小数:
0.5400 0.09
30.6 7
80 4.2300
1.02000 2.95
3、做累了吧?我们和小明一起去超市逛一逛。
今天小明和妈妈一起去逛苏果超市,妈妈帮他买了许多好吃的:
太平梳打 2元5角
上好佳薯片 1元
火腿肠 5角
旺旺仙贝 3元5角
你能帮小明列一个购物清单吗?
注意:在清单上面至少包括食品名称和单价两个内容,其他的自己可以自由发挥。那么单价应该怎样来表示?
展示。
五、总结全课:
通过这节课你有什么收获?
【小数的性质教案】相关文章:
《小数的性质》教学反思01-14
小数的性质教学反思04-22
五年级小数的性质教案04-07
《小数的意义和性质》教学反思09-24
《小数的性质》教学反思15篇02-12
四年级数学《小数的性质》教案04-03
《小数的意义和性质》教学反思集合03-09
四年级数学教案小数的性质04-03
小数乘小数教案04-24
小数乘小数教案03-07