《最小公倍数》教案

时间:2024-05-17 10:32:37 教案 我要投稿

《最小公倍数》教案

  作为一名辛苦耕耘的教育工作者,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写才好呢?下面是小编为大家整理的《最小公倍数》教案,仅供参考,欢迎大家阅读。

《最小公倍数》教案

《最小公倍数》教案1

  教学目标

  (1)使学生理解、掌握求两个数的最小公倍数的算法和算理,并能正确地、合理地求两个数的最小公倍数。

  (2)培养学生观察、分析、概括的能力。

  教学重点、难点

  重点、难点:理解、掌握求两个数的最小公倍数的算法和算理。

  教具、学具准备

  教 学过程

  备 注

  一、复习引入。

  1、师:上一节课我们研究了公倍数和最小公倍数,还学会了找两个数的最小公倍数。现在你能不能找出12和30的最小公倍数,写在本子上。

  学生做后,反馈,教师按学生的记叙板书:

  12的倍数有:12、24、36、48、60......

  30的倍数有30、60、90、120......

  12和30的最小公倍数是60。

  2、师:同学们用列举的方法,依次列出两个数的倍数,再从中选出最小公倍数。这种方法好不好呢?请同学们再试一试,找出810和1350的最小公倍数。

  教师巡视,学生算了很长时间仍未解决,这时有学生提出;这种方法虽然能找到它们的最小公倍数,但太麻烦了。有没有更简便的方法呢?

  师:今天这节课我们就是要重点研究如何“求两个数的最小公倍数”。(板书课题)

  二、新课展开

  1、研究算理,探究算法。

  (1)同学们,还记得我们是怎样发现求两个数的最大公约数的方法的?

  生:我们通过分解质因数,发现了两个数全部公有质因数连乘的'积就是它们的最大公约数,所以我们用短处法可以求出最大公约数。

  (2)师:那么求两个数的最小公倍数能不能也用分解质因数的方法呢?我们一起试一试。

  请学生把12、30和60分别分解质因数。(教师板书)

  (竖式略)

  12=2×2×3

  30=2×3×5

  60=2×2×3×5

  师:请同学们观察上面各数分解质因数的情况,你发现了什么?四人小组讨论。

  教学过程

  备 注

  师生逐步讨论得出:最小公倍数60的质因数里包含12和30公有的质因数2、3,还有12独有的质因数2、30独有的质因数5。

  (教师在黑板上将公有质因数、独有质因数标出标记)请同学们再想一想:

  A、为什么独有的质因数要全部取上,少一个行不行?

  B、为什么公有的质因数只选一个作代表多选一个行不行?

  学生分别进行检验,讨论明确。

  (3)师:你们的这个发现是否具有普遍性呢?请大家再亲自试一试。让学生把6、8及它们的最小公倍数244分解质因数。

  6=2×3

  8=2×2×2

  24=2×2×2×3

  实践再一次征实:两个数的最小公倍数中必须包含两个数所有的质因数。公有质因数选一个作代表,独有的质因数全部取上。

  2、用短除法求两个数的最小公倍数。

  (1)教学例2,用简便方法12和30的最小公倍数。师:现在你能用我们发现的这个规律,求出两个数的最小公倍数吗?

  方法:学生独立完成,再小组讨论,最后看课本。

  指名汇报,教师板演:

  用公约数2除

  用公约数3除

  只有公约数1,不必再除

  把所有的除数和商乘起来,得到:12和30的最小公倍数是2×3×2=60,也可以这样表示:[12,30]=2×3×2×5=60

  (2)讨论:如何用短处法求两个数的最小公倍数?

  讨论后,指名汇报,请学生打开课本,看与课本上总结的方法是否一致。

  三、巩固练习,加深理解

  1、求180和1350的最小公倍数。

  师:现在你能求出810和1350的最小公倍数吗?学生用短处法求得:

  [810、1350]=4050

  师:你认为用短处法和列举法求最小公倍数那种方法简便?

  2、做课本第60页练一练第2题。

  3、试一试:求12和36,9和5的最小公倍数。

  (1)学生试做后反馈;

  [12]=2×2×3×3=36[9,5]=9×5=45

  (2)师:你发现了什么?(四人小组讨)

  生:36是12的倍数,36就是两个数的最小公倍数;9和5互质,它们的积就是最小公倍数。

  师:能不能按照你们发现规律,求出下面每组两个数的最小公倍数?能口算的要口算。

  第一组:9和18200和50

  第二组:11和73和8

  第三组:14和824和20

  小结:如果大数是小数的倍数,那么大数就是这两个数的最小公倍数;如果两个数是互质数,那么这两个数的乘积就是他们的最小公倍数;如果这两个数既不互质,也不成倍数关系,可用短除法求出。

  4、做课本第60页第3题。

  5、做课本第60页第4题。

  四、课堂小结

  1、这节课我们学会了什么?怎样求两个数得最小公倍数?

  2、这个方法我们是怎样研究得到的?

  你认为求两个数的最小公倍数时应注意些什么?

  五、作业《作业本》

  通过分解质因数的方法,让学生理解求最小公倍数的算理。在用短除法求最小公倍数时,要引导学生学生区分同求最大公约数的区别。

《最小公倍数》教案2

  教学内容:书P.22~23页,例1、例2、练一练,练习四第1~4题。

  教学目标:

  1.让学生通过具体的操作和交流活动,认识公倍数与最小公倍数,会用举例的方法求10以内两个数的最小公倍数。

  2.让学生经历探索和发现数学知识的过程,积累数学活动的经验,进一步培养自主探索与合作交流的能力。

  3.让学生参与学习活动的过程中,体验学习和探索活动的乐趣,增强对数学学习的信心。

  教学重点:

  认识公倍数与最小公倍数,会求10以内两个数的最小公倍数。

  教学难点:看懂并会填写用集合图表示的两个数的倍数和公倍数,理解在不同情境下倍数、公倍数的有限与无限。

  教具准备:

  1、长3厘米、宽2厘米的长方形纸片。

  2、边长6厘米和8厘米的正方形。

  教学过程:

  一、游戏引入,认识公倍数。

  游戏激趣

  师:今天是什么日子?(圣诞节)

  对啊,圣诞老爷爷来给我们送礼物了,瞧!(出示图)

  我们每一位同学对应的都有一个学号,学号是3的倍数的同学,你们的礼物在圣诞帽里;学号是5的倍数的同学,你们的礼物在圣诞袜里。(请请学生站一站,选一两个说一说)(出示图,分别在两幅图的下面写上学号。)

  观察一下,谁是今天最幸运的,为什么?(15、30号)为什么?

  (图片:把15、30移至中间,闪烁。)

  师:像这样3、5、15这样的数有怎样的关系呢?今天这节课我们就来研究这样的问题。

  二、教学例1

  1、操作活动。

  出示边长6厘米、8厘米的两个正方形。

  如果用一些长3厘米、宽2厘米的长方形纸片分别铺在这两个正方形上,你觉得可以正好铺满哪个正方形?

  2、学生分组活动,在小组里铺一铺,说一说。

  3、汇报交流。

  通过刚才的活动,你们发现了什么?

  为什么用这样的长方形纸片能正好铺满边长6厘米的正方形?

  引导学生观察正方形边长与长方形的长、宽之间的关系来回答:

  (1)用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(出示图)

  (2)铺边长8里面的正方形呢?每条边都能正好铺完吗?

  (8÷3=2……2,8÷2=4)(出示图)

  (3)讨论:还能有边长是多少厘米的正方形也能用这样的长方形来铺满?(板书:12厘米、18厘米、24厘米……)

  说说你的理由。

  明确:12、18、24……除以2和3都没有余数。

  演示:铺满边长是12厘米的正方形(师:横里铺几个?铺了几行?)

  (4)6、12、18、24……这些数与2有什么关系?与3呢?(6、12、18、24……既是2的倍数,又是3的倍数。)

  4、只要正方形的边长既是2的倍数,又是3的倍数,这样的长方形纸片就能正好把它铺满。6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。(板书)

  (板书课题:公倍数)

  5、2和3的公倍有多少个呢?为什么?

  (用省略号来表示)

  6、8是2和3公倍数吗?为什么?(尽管8是2的`倍数,但8不是3的倍数,所以8不是2和3的公倍数)

  :同学们,要解决例1这样的题目就要学会找两个数的公倍数。那么怎样去找两个数的公倍数呢?

  二、教学例2

  1、出示例2。

  6和9的公倍数有哪些?(其中最小的公倍数是几?)(后面出示)

  (1)你准备怎么去找,同桌交流方法

  师:会了吗?请你们在草稿本上写一写。

  师生交流,说说你是怎样想的?(展示)为什么它们是6和9的公倍数?

  (2)有没有不一样的方法?(讨论)

  (师提示:先找9的倍数,想一想6和9的倍数公倍数是不是都在9的倍数里?能不能从中找出6的倍数来?)

  学生在草稿本上写一写,交流(展示)

  :可以先找9的倍数,再在9的倍数里找6的倍数。

  (3)学生说另一种方法:先找6的倍数……

  学生在草稿本上写一写,交流(展示)

  2、6和9的公倍数中最小是几呢?(显示于例题上)

  因此我们就说18就是6和9的最小公倍数。(板书课题:最小公倍数)

  3、我们有这样的3种方法找两个数的公倍数,请你一下这3中方法。

  4、那么(指着板书)2和3的最小公倍数是多少?

  5、我们可以用集合图来表示6的倍数、9的倍数,6和9的公倍数。

  (出示集合图,一半一半地、边问边出示)

  (课件显示将两个集合圈向中间靠拢,形成交叉状。)

  师:中间部分应该填什么?(课件显示将两个集合圈中的相同的倍数移动到交叉部分,并在下面标出“6和9的公倍数”)

  师:左边圆圈里的数表示?右边圆圈里的数表示?两个圆圈相交的部分又表示什么?(课件闪烁圆圈)

  6、完成练一练。

  先在2的倍数上画“△”,在5的倍数上画“○”,然后完成填空。

  汇报交流。(展示)

  师:说说你是怎样想的?

  问:这里的省略号哪些同学点了?哪些同学没点?

  师:像这样没有明确范围的我们可以加上省略号。

  问:2和5的公倍数有什么特点?(是10的倍数,个位上是0的自然数)

  三、巩固练习

  1、完成练习四第1题。

  (1)独立完成。

  (2)汇报校对。(先填6和8的公倍数)

  这里需要写省略号吗?为什么?

  2、完成练习四第2题。

  (1)出示空白表,师生交流怎样看、怎样填?

  (2)学生完成填表。

  (拓展)

  师:这里都是求两个数的最小公倍数,如果让你求4、5、6三个数的最小公倍数,是多少呢?想一想。

  补充表格,学生观察。

  师:两个数有公倍数,三个数也有公倍数,四个、五个、……同样也有公倍数。

  四、课堂

  今天学习了什么内容?说说看什么是两个数的公倍数和最小公倍数?

  游戏:(出示)圣诞帽、圣诞袜

  4的倍数6的倍数

  师:现在学号是几的同学最幸运?

  怎样设计让尽量多的人幸运?

《最小公倍数》教案3

  【教学内容】:

  人教版五年级下册教科书第88—90页内容。

  【设计理念】:

  数学于生活,有作用于生活。在本堂课的教学,我把数学与生活紧密的联系在一起,从而构建一种生活化的数学课堂。让学生根据现实生活中一些能够反映公倍数、最小公倍数的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验,进而激发学生兴趣,去解决这些实际问题,真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。真正达到“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”。

  【教学目标】:

  1、知识与技能:通过创设具体情境(三个情景片断)和操作活动,使学生认识并理解公倍数和最小公倍数的概念,初步了解两个数的公倍数和最小公倍数在现实生活中的应用,会找两个数的`公倍数和它们的最小公倍数。

  2、过程与方法:通过自主探索解决问题的方法,使学生经历探索找两个数的公倍数和最小公倍数的过程,鼓励学生思考多样化,简洁化,进行有条理的思考。

  3、情感态度价值观:在自主探索与合作交流的过程中,进一步发展与同伴的合作交流能力,获得成功的体验。使学生感受到数学于生活,体会公倍数和最小公倍数在生活中的实际价值。

  【教学重点】:

  1、理解公倍数与最小公倍数的概念

  2、能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

  【教学难点】:

  能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

  【教具、学具准备】:

  多媒体、日历。

《最小公倍数》教案4

  设计说明

  1.充分利用教材中的素材创设情境,让学生在情境中解决问题。

  结合具体的生活情境学习,有助于学生获取知识。“铺墙砖”这一生活情境,学生有一定的生活经验,也具有一定的挑战性,能有效地激发学生的学习兴趣,让学生在实践操作中加强思考与探索,经历知识的形成过程。

  2.放手让学生自主探究,获取新知。

  著名数学家波利亚认为:“学习任何知识的最佳途径是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”为了使学生积极主动地参与学习过程,必须引导学生自己去观察,去思考,去探索。本设计直接出示例题,引导学生利用已有的知识经验,经过自主探究和充分的讨论,获取解决问题的方法,在解决问题的过程中,积累经验,提高解决问题的能力。

  课前准备

  教师准备 PPT课件

  学生准备 若干张长3 dm、宽2 dm的卡片

  教学过程

  ⊙创设情境,引入新课

  1.引导学生回忆。

  师:同学们还记得前面我们学习的给贮藏室铺地砖的例题吗?这节课我们来学习“铺墙砖”的知识。

  2.课件出示例3:用一种长3 dm,宽2 dm的墙砖铺一个正方形(用的墙砖必须都是整块),正方形的边长可以是多少分米?最小是多少分米?

  设计意图:在以前学习过的“铺地砖”的基础上创设类似的情境,让学生在实践操作中加强思考与探索,经历知识的形成过程,完成数学建模。

  ⊙小组合作,解决问题

  1.拼一拼。

  (1)用长3 dm、宽2 dm的卡片代替墙砖拼正方形。

  (2)在印有格子的纸上画出拼成的正方形。边操作边思考:正方形的边长可以是多少分米?最小是多少分米?正方形的边长与墙砖的长和宽有什么关系?

  2.说发现。

  师:你拼出来了吗?想一想,正方形的边长必须满足什么条件?(正方形的边长必须是2和3的公倍数)

  3.解决问题。

  师:正方形的边长可以是多少分米?最小是多少分米?(正方形的`边长可以是6 dm,12 dm,18 dm,…最小是6 dm)

  4.回顾解决“铺墙砖”问题的关键。

  把“铺墙砖”问题转化成求公倍数和最小公倍数的问题,也就是铺成的正方形的边长必须是墙砖长和宽的公倍数,铺成的正方形的边长最小是墙砖长和宽的最小公倍数,这样才能保证用的墙砖都是整块。

  ⊙学习公倍数的应用

  1.解决教材72页11题。

  爸爸、妈妈和我一起跑步,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,我跑一圈用6分钟。如果爸爸、妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此题爸爸、妈妈分别跑了多少圈?[学生分组讨论,教师巡视指导,各组汇报:求至少多少分钟后两人在起点再次相遇,就是求3和4的最小公倍数,3和4的最小公倍数是12,也就是至少12分钟后两人在起点再次相遇,此时爸爸跑了12÷3=4(圈),妈妈跑了12÷4=3(圈)]

  2.引导学生在组内提出其他数学问题并合作解答,明确求三个数的最小公倍数的方法。

  预设

  生1:我和爸爸同时起跑,至少多少分钟后我们在起点再次相遇?

  (3和6的最小公倍数是6,也就是至少6分钟后我们在起点再次相遇)

  生2:我和妈妈同时起跑,至少多少分钟后我们在起点再次相遇?

  (4和6的最小公倍数是12,也就是至少12分钟后我们在起点再次相遇)

  生3:三人同时起跑,至少多少分钟后三人在起点再次相遇?

《最小公倍数》教案5

  教材分析:

  该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

  学情分析:

  五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  教学目标:

  1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。

  2、让学生经历探索和发现数学知识的.过程,积累数学活动的经验,培养学生自主探索合作交流的能力。

  3、渗透集合思想,培养学生的抽象概括能力

  教学重点:

  公倍数与最小公倍数的概念建立。

  教学难点:

  运用公倍数与最小公倍数解决生活实际问题

  教法学法:

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。

  教学过程:

  一、任务导学

  师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。

  师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)

  师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。

《最小公倍数》教案6

  活动目的

  1、理解最小公倍数的意义.

  2、培养学生良好的思维品质和科学的思维方法.

  活动题目

  有两个自然数,它们的最小公倍数是48,那么这两个自然数各是多少?

  活动过程

  1、学生分小组讨论.

  2、小组汇报.

  3、师生共同研究方法,理解求最小公倍数的几种情况.

  参考答案

  由题意可知,48是所求两个自然数的最小公倍数,那么所求两个自然数一定是48的约数,因此我们可以找出48的所有约数,然后进行两两组合,便可找出符合条件的`数组.

  48的约数有:1、2、3、4、6、8、12、16、24、48经试验,符合条件的数组有:1和48,2和48,3和16,3和48,4和48,6和16,8和48,12和16,12和48,16和24,16和48,24和48,48和48.一共有14个数组.

  活动说明

  学生寻找符合条件的答案的过程,实际上就是培养学生思维有序化的过程.

  约分

  教学目标

  1.理解和掌握约分的方法.

  2.掌握最简分数的概念.

  教学重点

  掌握约分的方法.

  教学难点

  训练学生很快看出分子、分母的公约数,并能够准确判断约分的结果是不是互质数.

  教学步骤

  一、铺垫孕伏.

  1.口算.

  135÷552÷1333÷356÷799÷3

  45÷966÷1124÷836÷12125÷5

  2.投影出示下列各题,学生自由回答.

  (1)说出能被2、3、5整除的数有哪些特征?

  (2)说出下面每组两个数的公约数.

  18和2412和309和72

  (3)指出下面哪两个数是互质数.

  3和812和85和27和4

  (4)在括号里填上适当的数,并说出你的根据.

  二、探究新知.

  (一)教学例1.

  例1.把化简.

  1.启发学生思考化简的实际含义.

  教师提问:看到例题1这个题目,你想做些什么呢?

  学生回答:把分数的分子分母都变小.根据分数的基本性质能把化成分子、分母都比较小的分数.

  2.分组讨论:结合分数的基本性质,怎样将化简?

  (1)分母24、分子18有公约数2,先用公约数2去除分子、分母

  (板书:)

  (2)9和12还有公约数3

  (板书:)

  教师明确:分子和分母是互质数就不能再化简了,这种过程叫约分.

  3.引导学生总结归纳出约分的意义.

  板书:

  4.揭示最简分数的概念.

  5.反馈练习.

  指出下面哪些分数是最简分数.

  (二)教学例2.

  例2.把约分.

  1.学生独立解答,集体订正.

  2.师生共同小结:在约分时要把分子、分母的公约数记在脑子里,直接口算,通常要

  除到得出最简分数为止.如果一下能看出分子和分母的最大公约数,直接用它们的最大公约数一次约分比较简便.

  3.反馈练习.

  把下面的分数约分.

  三、全课小结.

  通过今天的学习,谈谈你学到了哪些新知识?

  四、随堂练习.

  1.回答.

  (1)判断下面哪些分数是最简分数,并说出为什么?

  (2)观察下面每个分数的分子和分母,哪些有公约数2?哪些有公约数5?哪些有公

  约数3?

  2.下面哪些分数没有约成最简分数?

  五、布置作业.

  把下面各分数约分.

  六、板书设计

《最小公倍数》教案7

  教学目标

  (1)使学生能比较熟练地掌握求最大公约数和最小公倍数的方法,并且能够根据不同,灵活运用简捷的方法。

  (2)综合运用知识,进一步沟通知识间的联系。

  教学重点、难点

  重点、难点:能够根据不同,灵活运用简捷的方法。

  教具、学具准备

  教 学过程

  备 注

  一、基本练习

  1、填空。(课本第67页第7题)

  (1)9和27这两个数,()能被()整数,()是()的倍数,()是()的约数。

  (2)20以内既是偶数又是素数的数是(),既是奇数又是合数的.数是()

  (3)在4、9和16中,成互质数的两个数有()和();()和()。

  (4)三个素数的最小公倍数是42,这三个素数是()、()和()。

  (5)如果甲数=2×3×5,乙数=2×3×7,那么甲数与乙数的最大公约是(),最小公倍数是()。

  学生先填在书上,再集体交流讨论,注意让学生说说思考方法。

  2、很快说出下面每组数的最大公约数和最小公倍数。

  11和49和65、10和20

  16和1580和20年5、6和7

  说的过程中注意让学生说出思考的过程及理由。

  3、求下面各组数的最大公约数和最小公倍数。

  80和10015、8和30

  25和330、60和75

  19和388、9和10

  让学生用短除法做,选做三题,交流时注意用短除法要注意的地方,同时让学生说说还有其他的思考方法。

  二、综合练习

  1、你能用下面的一个或几个概念和一个或几个数连起来说一句话吗?

  整数自然数整除约数倍数

  奇数偶数合数素数质因数

  公约数最大公约数公倍数最小公倍数

  教学过程

  备 注

  例2:2和8都是自然数,8能被2整除,8是2的倍数。

  2、动脑筋:下面每组数中,你能找出不同类的数吗?

  (1)1473.82345

  (2)21216223647

  (3)23792943

  学生找出不同类的数并说明理由,教师要注意答案的开放性,学生的答案只要有理由,就应该肯定和鼓励.

  3、猜一猜老师家的电话号码.

  老师家的电话号码是七位数,排列如下:

  ()最小的素数

  ()7的最大约数

  ()8的最小倍数

  ()最小的自然数

  ()最小的合数

  ()最小的一位奇数

  ()既不是素数也不是合数的数

  三、课堂

  师:本单元知识概念较多,同学们要注意这些概念的区别和联系,并能够综合练习。还有什么疑问吗?

  四、作业

  1、课本上第9、10题中剩余题目各选一列。

  2、《作业本》

  教学过程中,重在引导学生根据不同情况,灵活运用简捷的方法求最大公约数和最小公倍数

《最小公倍数》教案8

  教学要求:

  1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。

  2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

  教学重点与难点:

  让学生在用不同方法找两个数的公倍数和最小公倍数的`过程中,逐步掌握方法,形成技能。

  教学流程:

  一、基础练习找出下面每组数的最小公倍数。4和63和75和910和6

  二、完成第25页的5~8题。

  1、第5题

  ⑴①让学生观察左边4题,说说这几组数有什么共同的特点。

  ②找出每组两个数的最小公倍数。

  ③比较和交流:有什么发现?(两个数的最小公倍数就是它们的乘积。)

  ⑵独立完成右边4题,再比较交流发现了什么?

  2、第6题

  3、第7题先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实际上就是求7和8的最小公倍数。

  4、第8题先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。

  三、小结:通过今天这一节课的学习,你有什么收获?

  四、思考题

  提示:先用列举法找3、4和6的最小公倍数。

《最小公倍数》教案9

  教学内容:

  教科书五年级下册第22--23页,练习四1--4题。

  教学目标:

  1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。

  2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

  3、培养学生推理、归纳、总结和概括能力。

  教学重点:

  学会用列举法找出两个数的最小公倍数。

  教学难点:

  理解公倍数、最小公倍数的意义。

  教学过程:

  一、以趣激疑

  比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)

  师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数” )

  师:同学们,今天我们就一起来研究有关“公倍数”的问题。

  二、创设情境,感知概念

  1、两个数的公倍数和最小公倍数的概念教学

  师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。

  请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?

  让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)

  同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。

  全班交流,汇报。

  师板书:巴依老爷的休息日:4、8、12、16、20、24、28

  账房先生的休息日:6、12、18、24、30

  他们八月份的共同休息日:12、24

  这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。

  你们猜猜阿凡提会哪一天去巴依老爷家呢?

  师板书:最早的共同休息日:12

  师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。

  师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)

  你还有其他的表示方式吗?(集合圈的图示方式)

  谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。

  2、加深学生对公倍数和最小公倍数现实意义的理解。

  现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?

  细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。

  引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。

  师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)

  3、归纳求最小公倍数的方法。

  师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)

  4、看书22--23页内容,你还有什么问题?

  师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?

  教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。

  三、解决问题,深化理解

  1、互质数和倍数关系的`数的最小公倍数

  师出示书第90页的“做一做”,让学生独立解决,填写在书上。

  观察一下这里的每一组中的两个数有什么关系?

  它们的最小公倍数与这两个数有什么关系?

  (提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)

  提问:根据刚才的分析,你有没有发现什么规律?

  (当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)

  2、打电话游戏。

  师:梁老师家的电话号码是一个七位数,从高位到低位依次是:(1)2和8的最小公倍数(2)最小的质数(3)既是6的倍数又是6的因数(4)5和15的最大公因数(5)既是偶数又是质数(6)比所有自然数的公因数多7的数(7)2和3的最小公倍数。你能说说老师家的电话吗?

  师:你是怎样知道的?

  师:你们分析得多好啊!真了不起!

  四、课堂小结

  今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?

  五、作业

  运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。

《最小公倍数》教案10

  教学要求在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最小公倍数。

  教学重点掌握求两个数的最小公倍数的方法。

  教学难点正确、熟练地求出特殊情况下两个数的最小公倍数。

  教学过程

  一、创设情境

  1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。

  2.回答问题:什么是公倍数?什么是是最小公倍数?

  3.求24和32的最小公倍数。

  4.说说下面每组中的两个数有什么关系?

  12和364和5

  二、揭示课题

  我们已经学会求两个数的最小公倍数,这节课我们将继续学习求特殊情况下两个数的最小公倍数。(板书课题:求特殊情况下两个数的最小公倍数)

  三、探索研究

  1.教学例3

  (1)先让学生用上节课学的方法分别求出这两组数的最小公倍数。

  (2)观察结果:通过这两组数的最小公倍数,你发现了什么?

  (3)归纳方法:先让学生讲,再指导学生看教材的结论。

  (4)尝试练习。

  做教材下面的“做一做”,先让学生判断每组中两个数的关系,再解答出来集体订正。

  四、课堂实践

  1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。

  2、做练习十五的第7题,先让学生观察每组中两个数的`关系,再让学生正确、熟练地说出它们的最小公倍数,并订正。

  3、做练习十五的第9题。先让学生独立判断,对的打√,错的打×,再点几名学生讲打√或×的理由。

  五、课堂小结

  学生小结今天学习的内容、方法。

  六、课堂作业

  做练习十五的第8题。

《最小公倍数》教案11

  教学要求

  ①使学生理解公倍数、最小公倍数的概念。

  ②使学生初步掌握求两个数的最小公倍数的方法。

  ③培养学生抽象概括的能力和实际操作的能力。

  教学重点理解公倍数、最小公倍数的概念。

  教学难点求两个数的最小公倍数的方法。

  教学用具投影仪

  教学过程

  一、创设情境

  1、口答:求下面每组数的最大公约数。

  3和86和1113和2617和51

  2、求30和42的最大公约数。

  二、揭示课题。

  前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

  三、探索研究

  1.教学例1。

  投影出示例1及画好的数轴。

  (1)学生口述4和6的倍数,投影显示在数轴上。

  (2)观察并回答。

  ①4和6公有的倍数是哪几个?

  ②其中最小的一个是多少?有无最大的?为什么?

  (3)归纳并板书。

  ①4和6公有的`倍数有:12、24、36......

  其中最小的一个是12。

  ②也可以用图来表示。

  4的倍数6的倍数

  48162012246830

  ..................

  4和6的公倍数

  (4)抽象、概括。

  ①什么是公倍数、最小公倍数?(让学生说)

  ②指导学生看教材第71页有关公倍数、最小公倍数的概念。

  (5)尝试练习。

  做教材第73页的“做一做”,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

  2.教学例2。

  (1)出示例2并说明:我们通常用分解质因数的方法来求几个数的最小公倍数。

  (2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

  218230

  39315

  35

  18=2×3×3

  30=2×3×5

  (3)观察、分析。

  ①18(或30)的倍数必须包含哪些质因数?

  ②如果2×3×3(或2×3×5)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

  ③18和30的公倍数必须包含哪些质因数?(2×3×3×5)

  (4)归纳:18和30的最小公倍数里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18和30的最小公倍数是:

  2×3×3×5=90

  (5)教学求最小公倍数的一般方法。

  为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求最小公倍数,如:1830并让学生分组讨论写成这种形式后该怎样做。

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出最小公倍数了?

  (6)尝试练习。

  做教材第74页上面的“做一做”,学生解答后,点几名学生说说是怎样做的,然后集体订正。

  (7)抽象、概括求最小公倍数的方法。

  ①谁能说说求最小公倍数的方法。

  ②指导学生看第74页求两个数的最小公倍数的方法。

  四、课堂实践

  1.做练习十五的第1题,让学生讲讲为什么?

  2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

  五、课堂小结

  学生小结今天学习的内容及方法。

  六、课堂作业

  做练习十五的第2、3题。

《最小公倍数》教案12

  教学内容:书~23页例1、例2和“练一练”,练习四第1~4题。

  教学目标:1、让学生认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。2、让学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、让学生在学习过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学重点:1、理解公倍数和最小公倍数的含义。

  2、掌握求两个数的最小公倍数的方法。

  教学过程:

  一、游戏导入,激发兴趣

  谈话:今天我们先玩找朋友的游戏。

  (黑板上标有4、6数字,其他同学的号码是他们其中一位手中卡片的倍数就请站起来,两位同学收上符合要求的号码贴在黑板上。)

  出现争朋友的情况提问:你们为什么争朋友?(12、24等既是4的倍数,同时也是6的倍数)

  那么12、24等数与4、6是什么关系呢?今天我们就来继续研究关于倍数的知识。

  二、教学例1,认识公倍数

  多媒体出示例1

  1、想一想

  谈话:如果用一些长是3厘米、宽是5厘米的长方形纸片分别铺在这两个正方形上,看看铺的结果怎样?(教师提供材料,如果学生不能解决可以拼一拼)

  学生说猜想的结果和想法。

  2、议一议

  提问:为什么用这样的长方形纸片能正好铺边长6厘米的正方形?学生观察正方形的边长与长、宽之间的关系。

  引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺几次?怎样用算式表示?

  铺边长8厘米的正方形呢?每条边都能正好铺完吗?

  提问:这样的长方形纸片还能正好铺满边长是多少厘米的正方形?(同桌交流讨论)

  组织学生说一说。

  提问:能说说你的理由吗?

  引导学生明确12、18、24……除以2和3都没有余数。

  提问:6、12、18、24……这些数与2有什么关系?与3呢?学生发现6、12、18、24……既是2的倍数,又是3的倍数。

  谈话:只要正方形的边长既是2的倍数,又是3的倍数,这样的`正方形就能正好铺满。6、12、18、24……既是2的倍数,又是3的倍数它们是2和3的公倍数。(板书:公倍数)

  提问:两个数的公倍数的个数是有限的还是无限的?为什么?

  明确:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,可以用省略号来表示。

  提问:8是2和3的公倍数吗?为什么?

  学生回答:8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数。

  三、教学例2,求两个数的公倍数和最小公倍数。

  1、多媒体出示:6和9的公倍数有哪些?其中最小的公倍数是几?你有什么好方法能很快找出来?

  学生讨论交流做法和想法。

  教师组织交流:

  学生想到的方法可能有:

  (1)依次分别写出6和9的倍数,然后再找出它们的公倍数。

  (2)先找出6的倍数,再从6的倍数中找出9的倍数。

  (3)先找出9的倍数,再从9的倍数中找出6的倍数。

  引导:这三种方法你觉得哪一种方法简捷一些?

  谈话:6和9的公倍数中最小的一个是18,18就是6和9的最小公倍数。(板书:最小公倍数)

  3、集合图

  谈话:我们可以画图表示6的倍数、9的倍数和6和9的公倍数之间的关系。

  展示书上的集合图,你能从图中看出哪些数是6的倍数吗?哪些数是9的倍数?6和9的公倍数是哪些数?图中的三个省略号各表示什么?6和9的最小公倍数是多少?

  4、给课始活动时的板书加上集合圈。提问这里是否需要加省略号?明确什么情况下需要加省略号。

  四、巩固练习,加深对公倍数和最小公倍数的认识

  1、完成“练一练”。

  2、做练习四第2题。

  引导:4与一个自然数的乘积都是4的什么数?5、6与一个自然数的乘积呢?怎样找4和5的公倍数?填空时还要注意什么?

  3、做练习四第4题。

  说明题意,引导学生思考,哪些方格两种棋都会走到?这些方格中的数有什么共同特点?动笔涂一涂。

  然后同桌开展活动,玩一玩,看看红棋和黄棋是否都走到涂色的方格中。

  五、全课小结(略)

  六、布置作业1、练习四第1、3两题。 2、补充习题11页。

  课后反思:

  1、我为谁备课?

  根据教材的安排,教学中可以将引进概念的环节分成三个步骤。第一个步骤是操作,让学生用长3厘米、宽2厘米的长方形纸片分别铺长6厘米和8厘米的两个正方形。备课时,我认为这个环节简直是低估学生,上学期学生多次做过类似这样的题目,学生解决这个问题不是“小菜一碟”吗?于是,我制作一套材料以备不时之需。课中,发现有些学生对能否铺满边长8厘米的正方形有异议。还好准备一套,立即演示给学生看。看似解决了问题,其实是我剥夺了学生操作感悟的机会。所以,有时自己的想法往往又高估了学生,备课还是要从学生的实际出发。当然,要从学生的实际出发,这一节课的内容就无法完成,是想照顾到全体还是想完成一节课,孰是孰非?

  2、我为谁上课?

  按照教材的建议,这一课时要完成例1、例2和练一练以及练习四1~4题的教学。每次公开课后我都发现学生的课后作业令人失望。究其原因,为完成教学任务,课上即使发现学生没有得到充分的思考,或者练习没有都完成,也不肯为他们停留,为他们等待,而是硬着头皮往下开,导致“夹生饭”的出炉。其实,我知道学生参差不齐,想要在一节课中让每个人都能研究透那是不可能的,所以我把希望寄托在下一节课。公开课只想给听课老师留下一个完整的一节课的印象,感觉公开课不是为学生而开了。所以我也特别希望听课的评价体制能够有所变化,我们是想听真实的课,了解学生的真实情况,还是想看一节课的流程,至少这是我的一个困惑。我究竟应该怎样上课?

《最小公倍数》教案13

  教学目标:

  理解公倍数,最小公倍数的意义。

  会用列举法,分解质因数,短除法求两个数的最小公倍数。

  会求是互质数或有倍数关系的两个数的最小公倍数。

  在知识的探究过程中,培养大胆质疑的习惯。

  教学过程:

  一,导入:

  同学们,从我们学校到中山公园可乘坐A,B两种车,A车大约每隔400米设有一个车站,B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员,售票员送上毛巾擦擦汗,送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。

  慰问点设在距学校1200米,2400米处。

  2,在这里,我们找A,B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢

  出示课题:公倍数谁能用自己的话说一说什么叫公倍数

  (几个数共有的倍数,叫做这几个数的公倍数)

  这一个是最小的,我们又称它为什么

  补充课题:最小公倍数谁能再来说一说什么叫最小公倍数

  (其中最小的一个,叫做这几个数的最小公倍数)

  今天我们就来研究公倍数与最小公倍数。

  二,探究:

  看了这个课题,你想在这节课中了解些什么,请学生写在纸上,并贴到黑板上。

  (为什么不求最大公倍数,求最小公倍数有哪些方法,哪些情况下可以很快说出两个数的最小公倍数是几等)

  四人一组合作解决1~2个问题,举例说明,组长笔录。可以翻书请教,在P.69~71。

  成果汇报:

  (1)公倍数有多少个(公倍数的个数是无限的,没有最大公倍数。)

  (2)求最小公倍数的几种方法:

  ①枚举法:

  根据学生举例填写集合圈并说出各部分所表示的内容:

  的倍数的倍数

  和的公有倍数

  ②分解质因数:如:12与30的最小公倍数

  12= 2 × 2 × 3

  30= 2 × 3 × 5

  60= 2 × 3 × 2 × 5

  12独有的质因数30独有的质因数

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。

  [12,30]=2×3×2×5=60

  从这两个分解质因数的.式子里你能看出12于30的最大公约数是几

  最大公约数与最小公倍数之间有什么关系

  (12= 6 × 2

  30= 6 × 5

  6 × 2 × 5 = 60)

  最大公约数:各自独有的质因数

  最小公倍数是两个数的最大公约数与各自独有质因数的乘积。

  ③短除法:如:36和45的最小公倍数

  3 36 45用公约数去除

  3 12 15

  4 5除到商是互质数为止

  [36,45]=3×3×4×5=180

  讨论:与求最大公约数比较有什么异同之处

  (相同处:都用公约数去除,除到商是互质数为止。

  不同处:求最大公约数只要把公有的质因数相乘,求最小公倍数还要乘以各自独有的质因数。)

  短除法与分解质因数有什么联系

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20 65和130 4和15 18和24

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;

  当两个数有倍数关系时,最小公倍数是较大的数。

  4,总结:今天你们根据自己所提出的问题进行了研究学习,对于今天所学的内容还有什么疑问

  三,回家作业布置:(感兴趣的同学做)

  世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴益融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你做一个设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每隔()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。

《最小公倍数》教案14

  教学内容:教科书五年级上册第81——82页及练习。

  教学目标:

  1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。

  2、了解最小公倍数,学会用短除法求两个数的最小公倍数。

  3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。

  教学重点:学会用短除法求两个数的最小公倍数。

  教学过程:

  一、课前活动——对口令

  师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。

  2、对出一个数,它既是2的倍数也是3的倍数。

  二、创设情境,感知概念

  1、两个数的公倍数和最小公倍数的概念教学

  师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?

  请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。

  师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。

  出示教材上的情境图。

  师:从两个人的对话中了解到哪些数学信息?

  生1:聪聪用了5/6小时。

  生2:红红用3/4小时就打完了。

  师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。

  学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?

  师:谁来说说是怎样比较的?谁打得快呢?

  学生交流,教师进行板书。

  生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。

  5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24

  20/24>18/24,所以5/6>3/4。

  红红打得快。

  生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。

  5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12

  10/12>9/12,所以5/6>3/4。

  ……

  如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。

  师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?

  学生可能有不同的表达方式,概括一下,应有如下回答:

  ●相同的地方

  (1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。

  (2)两种方法通分时用的分母12和24都是6和4的'公倍数。

  教学预设

  ●不同的地方

  (1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。

  (2)24是12的2倍。

  ……

  师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的公倍数。

  学生自己找,教师巡视。

  师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数

  4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,

  师:如果让你继续找下去,4的倍数还有没有?用什么表示?

  生:还有无数个,用省略号表示。

  生:6的倍数有:6,12,18,24,30,36,42,48,

  师:如果让你继续找下去,6的倍数还有没有?用什么表示?

  生:还有无数个,也用省略号表示。

  生:然后找4和6的公倍数有:12,24,36,48,……。

  教师根据学生的回答出示课件。

  师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?

  学生可能会说:

  生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。

  师:60后面还有没有?还有多少个?

  生:还有无数个,用省略号表示。

  师:有没有最大公倍数?

  生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。

  师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?

  生:12。

  师:还有比12小的公倍数吗?

  生:没有了。

  师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)

  师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。

  学生之间互相交流。

  教师引导学生出概念(出示课件)让学生读一读。

  师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)

  用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。

  板书设计:

《最小公倍数》教案15

  教学内容:教科书第30页,练习五第12~14题、思考题。

  教学目标:

  1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。

  2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。

  教学重点:进一步理解公倍数和公因数的含义,弄清它们的联系与区别。

  教学难点:弄清公倍数和公因数联系与区别。

  教学过程:

  一、揭示课题

  今天我们继续完成一些公因数、公倍数的有关练习。

  二、基础训练

  1.写出36和24的公因数,最大公因数是多少?

  2.写出100以内10和6的公倍数,最小公倍数是多少?

  学生独立完成,汇报交流。

  说说自己是用什么方法找到的`?

  三、综合练习

  1.完成练习五第12题。

  谁能说说什么数是两个数的公倍数?两个数的公因数指什么?

  在书上完成连线后汇报方法。

  你是怎样找出24和16的公因数的?你是怎样找到2和5的公倍数的?

  2.完成第13题。

  独立完成。交流各自方法。

  3.完成第14题。

  独立完成。交流各自方法。

  求最大公因数和最小公倍数的方法有什么相同和不同?

  什么情况下可以直接写出两个数的最大公因数?什么情况下可以直接写出两个数的最小公倍数?

  4.完成思考题。

  (1)小组讨论方法。

  (2)指导解法。

  把46块水果糖分给同学后剩1块,也就是同学们分了多少块糖?(46-1)38块巧克力分给同学后剩3块,也就是分了多少块巧克力?(38-3)每种糖都是平均分给这个小组的同学,因此这个小组的人数既是45的因数,又是35的因数。要求小组最多有几人,就是求45和35的什么?(最大公因数)(45,35)=5因此这个组最多有5名同学。

  5.阅读“你知道吗”介绍了我国古代求两个数的最大公因数的重要方法————辗转相除发法,以及用短除法求两个数的最大公因数和最小公倍数的符号表示方法

  四、课堂

  大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。

【《最小公倍数》教案】相关文章:

《最小公倍数》教案03-05

《最小公倍数》教案8篇10-27

《最小公倍数》教案六篇10-26

《最小公倍数》教案汇总六篇04-20

《最小公倍数》教案汇总八篇04-21

关于《最小公倍数》教案三篇04-26

《最小公倍数》教案汇总8篇04-26

《最小公倍数》教案汇编5篇04-14

《最小公倍数》教案集合6篇05-07

《最小公倍数》教案集锦七篇05-11