高中数学教案

时间:2024-11-22 13:19:35 教案 我要投稿

高中数学教案范文12篇

  作为一名教师,时常需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案要怎么写呢?下面是小编为大家整理的高中数学教案范文,欢迎大家分享。

高中数学教案范文12篇

  高中数学教案 1

  教学目标

  (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

  (2)理解直线与二元一次方程的关系及其证明

  (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

  教学重点、难点

  直线方程的一般式.直线与二元一次方程 ( 不同时为0)的对应关系及其证明.

  教学用具

  计算机

  教学方法

  启发引导法,讨论法

  教学过程

  下面给出教学实施过程设计的简要思路:

  教学设计思路

  (一)引入的设计

  前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

  问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

  问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 (或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

  启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

  学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

  【问题1】“任意直线的方程都是二元一次方程吗?”

  (二)本节主体内容教学的设计

  这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

  学生或独立研究,或合作研究,教师巡视指导.

  经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

  思路一:…

  思路二:…

  教师组织评价,确定最优方案(其它待课下研究)如下:

  按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.

  当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.

  当 不存在时,直线 的.方程可表示为 形式的方程,它是二元一次方程吗?

  学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

  平面直角坐标系中直线 上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  综合两种情况,我们得出如下结论:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于 、 的二元一次方程.

  至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成 或 的形式,准确地说应该是“要么形如 这样,要么形如 这样的方程”.

  同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

  学生们不难得出:二者可以概括为统一的形式.

  这样上边的结论可以表述如下:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如 (其中 、 不同时为0)的二元一次方程.

  启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

  【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?

  不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

  师生共同讨论,评价不同思路,达成共识:

  回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程 (其中 、 不同时为0)系数 是否为0恰好对应斜率 是否存在,即

  (1)当 时,方程可化为

  这是表示斜率为 、在 轴上的截距为 的直线.

  (2)当 时,由于 、 不同时为0,必有 ,方程可化为

  这表示一条与 轴垂直的直线.

  因此,得到结论:

  在平面直角坐标系中,任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线.

  为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.

  【动画演示】

  演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.

  至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

  (三)练习巩固、总结提高、板书和作业等环节的设计

  略

  高中数学教案 2

  教材分析:

  前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

  在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

  教学目标:

  (一)知识与技能

  1.掌握数量积的定义、重要性质及运算律;

  2.能应用数量积的重要性质及运算律解决问题;

  3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

  (二)过程与方法

  以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

  (三)情感、态度与价值观

  创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的'意识,加强数学与其它学科及生活实践的联系。

  教学重点:

  1.平面向量的数量积的定义;

  2.用平面向量的数量积表示向量的模及向量的夹角。

  教学难点:

  平面向量数量积的定义及运算律的理解和平面向量数量积的应用。

  教学方法:

  启发引导式

  教学过程:

  (一)提出问题,引入新课

  前面我们学习了平面向量的线性运算,包括向量的加法、减法、以及数乘运算,它们的运算结果都是向量,既然两个向量可以进行加法、减法运算,我们自然会提出:两个向量是否能进行“乘法”运算呢?如果能,运算结果又是什么呢?

  这让我们联想到物理中“功”的概念,即如果一个物体在力F的作用下产生位移s,F与s的夹角是θ,那么力F所做的功如何计算呢?

  我们知道:W=|F||s|cosθ,功是一个标量(数量),而力它等于力F和位移s都是矢量(向量),功等于力和位移这两个向量的大小与它们夹角余弦的乘积。这给我们一种启示:能否把功W看成是两向量F和s的一种运算的结果呢,为此我们引入平面向量的数量积。

  (二)讲授新课

  今天我们就来学习:(板书课题)

  高中数学教案 3

  一、课程性质与任务

  数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

  1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。

  2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

  3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

  本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

  1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。

  2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

  3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

  (一)本大纲教学要求用语的表述

  1.认知要求(分为三个层次)

  了解:初步知道知识的含义及其简单应用。

  理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的'联系。

  掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。

  2.技能与能力培养要求(分为三项技能与四项能力)

  计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

  空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

  分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

  数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

  (二)教学内容与要求

  1.基础模块(128学时)

  第1单元集合(10学时)

  第2单元不等式(8学时)

  第3单元函数(12学时)

  第4单元指数函数与对数函数(12学时)

  第5单元三角函数(18学时)

  第6单元数列(10学时)

  第7单元平面向量(矢量)(10学时)

  第8单元直线和圆的方程(18学时)

  第9单元立体几何(14学时)

  第10单元概率与统计初步(16学时)

  2.职业模块

  第1单元三角计算及其应用(16学时)

  第2单元坐标变换与参数方程(12学时)

  第3单元复数及其应用(10学时)

  高中数学教案 4

  一、什么是教学案例

  教学案例是真实而又典型且含有问题的事件。简单地说,一个教学案例就是一个包含有疑难问题的实际情境的描述,是一个教学实践过程中的故事,描述的是教学过程中“意料之外,情理之中的事”。

  这可以从以下几个层次来理解:

  教学案例是事件:教学案例是对教学过程中的一个实际情境的描述。它讲述的是一个故事,叙述的是这个教学故事的产生、发展的历程,它是对教学现象的动态性的把握。

  教学案例是含有问题的事件:事件只是案例的基本素材,并不是所有的教学事件都可以成为案例。能够成为案例的事件,必须包含有问题或疑难情境在内,并且也可能包含有解决问题的方法在内。正因为这一点,案例才成为一种独特的研究成果的表现形式。

  案例是真实而又典型的事件:案例必须是有典型意义的,它必须能给读者带来一定的启示和体会。案例与故事之间的根本区别是:故事是可以杜撰的,而案例是不能杜撰和抄袭的,它所反映的是真是发生的事件,是教学事件的真实再现。是对“当前”课堂中真实发生的实践情景的描述。它不能用“摇摆椅子上杜撰的事实来替代”,也不能从抽象的、概括化的理论中演绎的事实来替代。

  二、如何进行教学案例研究

  教学案例是教师教学行为真实、典型的记录,也是教师教学理念和教学思想的真实体现。因此它是教育教学研究的宝贵资源,也是教师之间交流的重要媒介。进行教学案例的研究是教师不断反思、改进自己教学的一种方法,能促使教师更为深刻地认识到自己工作中的重点和难点。这个过程就是教师自我教育和成长的过程。

  那么如何进行教学案例研究呢?一般情况下,案例研究的程序基本有以下两个环节:案例研究的准备及实施、案例研究报告的撰写与反思。

  (一)案例研究的准备与实施

  1.研究主题的选择

  案例研究都要有研究的重点和主题,这个主题常与教学改革的核心理念、常见的疑难问题和困惑事件相关,一般来说可以从教学的各个方面确定研究的主题,如从教师教学行为确定主题——教学材料的选择、教学中的提问、教学媒体的使用、教学评价语言、课堂教学调控行为等;也可以从学生的学习方式确定主题——探究性学习、问题解决学习、合作学习、实践性活动等。另外从学科特点、教学内容等都可以确定研究的主题。

  研究者要了解当前教学的大背景,教改的大方向,要熟悉相关的《课程标准》和有针对性地作一些理论准备。还要通过有关的调查,搜集详尽的材料(如阅读教师的教学设计,进行访谈等),同时初步确定案例研究的方向、研究任务,即初步确定案例的内容是关于教学策略、学生行为或是教学技能的研究。

  一般来说,案例研究主题的确定往往需要思考下面一些问题:即研究的事件是否对于自我发现更有潜力?选择的事件对学生是否有较大的情感影响(心灵是否受到震撼)?关键事件再现了前人(或自己)过去成功的行为吗?事件呈现的是一个你不能确定怎样解决的问题?事件需要你做出困难的选择吗?事件使得你必须以一种感觉不熟悉的方式或是仍在思考的方式回答吗?事件暗示一个与道德或道义上相关的问题吗?研究的主题如果反映以上的一些内容,那么这样的案例研究在自我学习、内省和深层次理解方面就可能更加富有成效。

  高中数学教学案例研究的主题内容主要集中在三方面:(1)学科特点的体现:如数学思想方法的教学、数学思维品质的培养、本质属性的抽象、数学结论的推广等;(2)学生数学学习规律的探究:如数学学习习惯、解决问题的思维方式、独立思考与合作学习等;(3)教师专业知识的提升:如数学板书与电子屏幕的展示对学生思维的影响、数学语言的训练对人们思维的.影响、数学知识模式化教学的优劣等。

  2.案例研究的基本方法

  (1)课堂观察。观察方法是指研究者按照一定的目的和计划,在课堂教学活动的自然状态下,用自己的感官和辅助工具对研究对象进行观察研究的一种方法。它可以是教师自己对教学对象——学生,在课堂活动中的片断进行观察,也可以由其他教师来实施观察,这两种观察的目的都是为了掌握课堂教学中的第一手资料。课堂观察方法不限于用肉眼观察、耳听手记,还可利用各种工具如照相、录音、摄像等作为辅助观察的手段,以提高观察的效果。对观察的资料,可以逐字逐句整理成课堂教学实录、教学程序表、提问技巧水平检核表、提问行为类型频次表、课堂教学时间分配表等,以便以后继续分析案例提供翔实的原始材料。

  (2)访谈与调查。对一些课堂教学不能观察到的师生内心活动,如教师教学的目的、教学程序的意图、教学手段的运用以及教学达标的成效等一些需要进一步了解的问题,可以通过与执教教师的交谈以及和学生的座谈,以丰富和充实课堂教学观察的材料;对学生在课堂教学活动中回答问题的心理状态、解题思路等问题,也可以在课后做一些问卷调查;对学生达标的成度、效度,也可以作一些测试调查。从这些访谈、调查的材料中,再分析课堂教学的现象,不难发现造成各种课堂现象与教师教学行为之间的因果关系,然后再具体寻找在哪个教学环节中出现问题,从中提炼出解决问题的对策。

  (3)文献分析。文献分析是通过查阅文献资料,从过去和现在的有关研究成果中受到启发,从中找到课堂教学现象的理论依据,从而增强案例分析的说服力。当然,对广大第一线教师而言,这里所运用的文献分析方法,并不是为了论证新教育理论,也不是去归纳教育的宏观现象,而是通过有关教育理论文献的查阅,去进一步解读课堂教学的活动,挖掘案例中的教育思想。如在数学教学中,我们常常通过学生的动手操作来获得有关的数学概念、法则与公式,那么,为什么要这样做呢?就可以带着问题,查阅、分析有关文献资料,从学习中提高研究者自身的理论水平。

  (二)案例研究报告的撰写

  1.常见的案例报告格式

  撰写教学案例,结构可以灵活多样,并非要千篇一律、一个模式,而是可以有不同的表现形式,如“案例背景——案例描述——案例分析”、“案例过程——案例反思”、“课例——问题——分析”、“主题与背景——情景描述——问题讨论——诠释与研究”等。当前,国内外课堂教学案例编写的格式有多种多样。但不管何种编写格式,它们都有两个共同的特点:一是对案例的客观描述;二是对案例中所述问题、关键教学事件等的分析。

  下面介绍两种常用的案例编写的格式:

  (1)“描述+分析”式

  此格式的特点是将整个案例分为两大部分,前半部分主要为描述课堂教学活动的情景,后半部分主要针对情景中的一个问题进行理论分析并获得结论。案例的描述一般是把课堂教学活动中的某一片断像讲故事一样原原本本地、具体生动地描绘出来。描述的形式可以是一串问答式的课堂对话,也可以概括式地叙述,主要是提供一个或一连串课堂教学疑难的问题,并把教育理论、教育思想隐藏在描述之中。案例的分析部分是针对描述的情景发表个人或多人的感受,同时加以理论的分析与说明。分析方法可以是对描述中提出的一个问题,从几个方面加以分析:也可以是对描述中的几个问题,集中从一个方面加以分析。分析的目的是要从描述的情景中提炼问题的本质,讲述理论的解释,明确正确的方法,最终获得对关键教学事件的正确把握。

  (2)“背景+描述+问题+诠释”式

  此格式是一种要求比较高的编写格式,而且,它在实际教学中的作用也更大。通常它将整个案例分为四个部分:

  A.主题与背景

  主题是关键教学事件中所反映的案例主要观点,也是整篇案例的核心思想。背景主要叙述案例发生的地点、时间、人物的一些基本情况。当然,这部分的内容不宜很长,只需提纲挈领叙述清楚即可。

  B.情景描述

  与“描述+分析”式中的描述相同,主要突出主题所反映的课堂教学活动。

  C.问题讨论

  这是根据主题要求与情景描述,进行的分析、归纳、总结与提炼,包括学科知识的要点、教学法和情景特点以及案例的说明与注意事项。这部分内容主要是为案例教学服务的,目的是提高教师的认识水平与学生主动学习的能力。不同的教学观念,不同的教学手段,所提出的问题也不同。对案例中所提出的主题以及情景描述中提出的问题阐述自己的见解。

  D.诠释与研究

  这部分主要是用教育理论对案例情景作多角度的解读。它包括对课堂教学行为的技术资料、课堂教学实录以及教学活动背后的故事等作理论上的分析。例如,在课堂教学中,我们常看到这样的现象,课堂教学的效果高于预期的目标,反之教师期望的目标学生没有达到或有所偏离,教学内容呈现的先后与学生理解的程度、教学方法运用与学生内在动机的激发等环节存在着矛盾,这些事件的背后,必然隐含着丰富的教育思想。所以,通过诠释,挖掘这些事件背后的内在思想,揭示其教育规律就显得十分的必要。

  2.案例报告撰写的关键

  (1)掌握四个原则。要写好教学案例,除了平时多积累素材,学习他人的案例作品以提高写作技巧外,还应把握以下四点:

  A.主题性原则:要有捕捉关键教学事件的意识,以此确定案例研究的主题。为此要注意了解新的课程改革的动向、把握适合时代要求的数学教育方式、明确学生数学学习的难点和重点,寻找数学教师专业发展的途径与规律。报告围绕主题进行情景描述和获得解决问题的策略。这种描述不是简单的教学活动实录,要反映事件发生的过程,重点描述反映关键教学事件的变化和戏剧化的情境,犹如记叙文写作,突出主题,详写重点,雕刻高潮。

  案例鲜明的主题通常关系到教学的核心理念、常见问题、处理方法等等,可以说,主题就是案例的灵魂。而主题的最佳表现形式就是文题直接体现主题。因此,设计主题就要有新意、有时代感,通俗地说就是与众不同,要有独特见解、独家发现。来源于实践的教学案例并非都有同等价值,关键要看撰写者对实践的发展与理论的升华程度,包括对题目的推敲。如有的教学案例重点描述了有戏剧性的情节,用了“细节决定成败”的题目,给人耳目一新,一下子揪住了读者的心。再如,一些有创意的题目《“导之有方”方能“导之有效”》、《跳出数学教数学》、《在数学的疑难处悟成长》、《捕捉资源因势利导》等等,让人一看题目就有阅读的欲望。实践证明,在写作案例时,选择有感悟、有新意的内容,在明确主题,恰当拟题后再动笔,才能写出高质量的案例。

  B.理论性原则:解决问题的策略中应当蕴含一定的教育基本原理和教育思想。实际是将自己对教育理念以及教育基本原理的理解渗透于描述的字里行间,比如学生做了什么,参与程度,投入程度如何,教师如何引导点拨,师生心理、行为变化情况等,无不体现教师的教学思想和教育基本原理。

  C.叙事性原则:案例报告的书写方式是叙事式,它不同于论述式。叙事方式必须以课堂教学生动的事实为主要情节,可以夹叙夹议,也可以选择情景片段,可以是一节课中的情景,也可以是围绕一个主题的几节课的情景片段。

  D.学科性原则:数学案例报告一定要体现学科的特征,要有较深刻的理性思考,要反映数学的基本思想与方法,要符合课程标准,满足教材内容的呈现方法,积极培养良好的思维习惯。就是撰写者的教育思想和教育理念在教学实践中具体体现。

  (2)用好四种表述。教学案例的表述方法很多,可以归纳为以下四种方法:

  A.故事式陈述法:就是教学全程或某一精彩教学片段实录,包括教师和学生的一言一行。陈述时,根据操作程序作一点“简评”,最后作“总评”。

  B.以案说理:对教学过程进行陈述时,舍去与文题不相关或不重要的部分,并强化与主题相关的重要情节,尤其是引发高潮的关键行为,然后有较长篇幅的理性思考。

  C.图表展示法:用图表进行统计的形式体现撰写者的教育思想,给人以一目了然的感觉,帮助读者迅速了解撰写者的写作意图,是常用的一种案例撰写方法。比如,描述学生的参与人数,投入程度,解决问题的质量等多个问题,都可以在一张或数张图表上用百分比或个(次)数进行统计。在每一张图表后,应有一段“分析”或“结论”,将撰写者的教学理念进行理性阐述,亦可在图表展示后,总的提出自己对案例的分析和建议。

  D.分析讨论法:在撰写时,应汲取分析讨论中最精彩的部分做深入、细致的全面记录,最后撰写者还必须对讨论情况做一分析,或提出一些值得今后进一步思考的问题。

  3.优秀案例的特征

  (1)时代性:一个好的案例描述的是现实生活场景——案例的叙述要把事件置于一个时空框架之中,应该以关注今天所面临的疑难问题为着眼点,至少应该是近年发生的事情,展示的整个事实材料应该与整个时代及教学背景相照应,这样的案例读者更愿意接触。一个好的案例可以使读者有身临其境的感觉,并对案例所涉及的人产生移情作用。

  (2)真实性:一个好的案例应该包括从案例所反映的对象那里引述的材料——案例写作必须持一种客观的态度,因此可引述一些口头的或书面的、正式的或非正式的材料,如对话、笔记、信函等,以增强案例的真实感和可读性。重要的事实性材料应注明资料来源。

  (3)适用性:一个好的案例需要针对面临的疑难问题提出解决办法——案例不能只是提出问题,它必须提出解决问题的主要思路、具体措施,并包含着解决问题的详细过程,这应该是案例写作的重点。如果一个问题可以提出多种解决办法的话,那么最为适宜的方案,就应该是与特定的背景材料相关最密切的那一个。如果有包治百病、普遍适用的解决问题的办法,那么案例这种形式就不必要存在了。

  (4)反思性:一个好的案例需要有对已经做出的解决问题的决策的评价——评价是为了给新的决策提供参考点。可在案例的开头或结尾写下案例作者对自己解决问题策略的评论,以点明案例的基本论点及其价值。

  三、案例研究过程中需注意的问题

  1.选材面过窄。从内容上看,多数案例是关于课堂教学甚至局限于一节课的研究,往往不能说明问题,或者在一节课中,也只会从简单的对话分析问题,做不到全方位、多角度。这说明教师对教学情境的丰富性、复杂性和联系性认识不够。

  2.缺乏典型性。有的案例对教学实践没有挖掘与反思,随意摘取一些教学片段泛泛而谈、人云亦云,没有实用价值。不能够通过对某一事件现象的分析、处理、诠释,达到举一反三的效果,这样的案例对他人没什么借鉴作用。

  3.主题不明确。主要体现为:

  (1)主题涣散。有的案例象记流水帐,没有根据需要进行恰当的取舍,看不出作者要反映、探讨什么问题,缺乏指导性、创新性和参考性。

  (2)定题过于随意。有的案例直接用案例研究依据的文题为题目,如《“三角函数”教学案例》、《“抛物线”教学案例》等,题目不鲜明、不形象,影响读者的选读和案例的传播。

  4.结构不合理。案例作为一种文体,有它自己的写作结构,只有优化案例的结构,才能增强案例的可读性和指导性。如写成一般的教学设计,一般包括“备课思路、教学目标、教学重点、教学方法、课前准备、教学内容、教学过程”等内容;写成教学实录,把一堂课从头到尾详尽地记录下来,再写上作者的看法;重记录轻分析,过程描述多,评析少等等。没有创新,平淡无趣,看不出案例研究和反映的问题。

  5.描述与分析脱节。有的案例描述与分析矛盾,让人不知所云;有时反映的是一种观点,分析阐明的是另一种观点,虽然不矛盾,但联系不紧密;有的分析中热衷于抄录教育理论的一些条条,脱离案例描述的事件而空谈理论,显得空泛无物。

  高中数学教案 5

  一、教学目标:

  1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.

  2.培养广泛联想的能力和热爱数学的态度.

  二、教学重点:

  在于让学生领悟生活中处处有变量,变量之间充满了关系

  教学难点:培养广泛联想的能力和热爱数学的态度

  三、教学方法:

  探究交流法

  四、教学过程

  (一)、知识探索:

  阅读课文P25页。实例分析:书上在高速公路情境下的问题。

  在高速公路情景下,你能发现哪些函数关系?

  2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?

  问题小结:

  1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有唯一确定的值与之对应,才称它们之间有函数关系。

  2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有唯一确定的y值与之对应。

  3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。

  (二)、新课探究——函数概念

  1.初中关于函数的定义:

  2.从集合的观点出发,函数定义:

  给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;

  此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。

  定义域,值域,对应法则

  4.函数值

  当x=a时,我们用f(a)表示函数y=f(x)的'函数值。

  (三)、知识体验(课堂练习及课外作业)

  1.某电器商店以2000元一台的价格进了一批电视机,然后以2100元的价格售出,随着售出台数的变化,商店获得的收入是,它们之间是______关系.

  【函数y=100x,x∈D】

  2.现实生活中,与时间存在函数关系的量_______________________.(三个以上)

  【路程与时间;炮弹的射高与时间的变化关系问题;用电量与时间的关系。】

  3.坐电梯时,电梯距地面的高度与时间之间存在______________关系.【函数】

  4.在一定量的水中加入蔗糖,糖水的质量浓度与所加蔗糖的质量之间存在怎样的依赖关系?如果是函数关系,指出自变量和因变量.

  【是函数关系;自变量是所加蔗糖的质量;因变量是糖水的质量浓度。】

  5.日期与星期之间存在怎样的依赖关系?这种依赖关系是函数关系吗?如果是,指出自变量和因变量.

  【是函数关系;自变量是日期;因变量是星期。】

  6.下列过程中变量之间是否存在依赖关系,其中哪些是函数关系:

  (2)在空中作斜抛运动的铅球,铅球距地面的高度与时间的关系;

  (3)某水文观测点记录的水位与时间的关系;

  (4)某十字路口,通过汽车的数量与时间的关系;

  (5)等边三角形的边长与面积之间的关系.

  7.下列各式是否表示y是x的函数关系?如果是,写出这个函数的解析式。

  (1)5x+2y=1(xR);

  (2)xy=-3(x0);

  (3)(x(-1,0))

  (4)(xR)

  五、课后反思:

  高中数学教案 6

  一、预习目标

  预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。

  二、预习内容

  阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:

  1、例1如果不用向量的方法,还有其他证明方法吗?

  2、利用向量方法解决平面几何问题的“三步曲”是什么?

  3、例3中,

  ⑴为何值时|F1|最小,最小值是多少?

  ⑵|F1|能等于|G|吗?为什么?

  三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容。

  课内探究学案

  一、学习内容

  1、运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题。

  2、运用向量的有关知识解决简单的物理问题。

  二、学习过程

  探究一:

  (1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?

  (2)举出几个具有线性运算的几何实例。

  例1、证明:平行四边形两条对角线的平方和等于四条边的平方和。

  已知:平行四边形ABCD。

  求证:

  试用几何方法解决这个问题,利用向量的方法解决平面几何问题的`“三步曲”?

  (1)建立平面几何与向量的联系,

  (2)通过向量运算,研究几何元素之间的关系,

  (3)把运算结果“翻译”成几何关系。

  例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?

  探究二:两个人提一个旅行包,夹角越大越费力。在单杠上做引体向上运动,两臂夹角越小越省力。这些力的问题是怎么回事?

  例3,在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力。你能从数学的角度解释这种现象吗?

  请同学们结合刚才这个问题,思考下面的问题:

  ⑴为何值时|F1|最小,最小值是多少?

  ⑵|F1|能等于|G|吗?为什么?

  例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?

  变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。

  三、反思总结

  结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题。

  代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。

  本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。

  高中数学教案 7

  教学目标

  1、知识与技能:

  函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

  赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

  2、过程与方法:

  (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示函数的定义域;

  3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

  教学重点/难点

  重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

  难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学用具

  多媒体

  标签

  函数及其表示

  教学过程

  (一)创设情景,揭示课题

  1、复习初中所学函数的概念,强调函数的模型化思想;

  2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

  3、分析、归纳以上三个实例,它们有什么共同点;

  4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  (二)研探新知

  1、函数的有关概念

  (1)函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  (2)构成函数的三要素是什么?

  定义域、对应关系和值域

  (3)区间的概念

  ①区间的'分类:开区间、闭区间、半开半闭区间;

  ②无穷区间;

  ③区间的数轴表示.

  (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

  通过三个已知的函数:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

  师:归纳总结

  (三)质疑答辩,排难解惑,发展思维。

  1、如何求函数的定义域

  例1:已知函数f(x)=+

  (1)求函数的定义域;

  (2)求f(-3),f()的值;

  (3)当a>0时,求f(a),f(a-1)的值.

  分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

  例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

  分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引导学生小结几类函数的定义域:

  (1)如果f(x)是整式,那么函数的定义域是实数集R.

  2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

  (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

  (5)满足实际问题有意义.

  巩固练习:课本P19第1

  2、如何判断两个函数是否为同一函数

  例3、下列函数中哪个与函数y=x相等?

  分析:

  1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  解:

  课本P18例2

  (四)归纳小结

  ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

  (五)设置问题,留下悬念

  1、课本P24习题1.2(A组)第1—7题(B组)第1题

  2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

  课堂小结

  高中数学教案 8

  教学目标

  1、知识与技能

  (1)推广角的概念、引入大于角和负角;

  (2)理解并掌握正角、负角、零角的定义;

  (3)理解任意角以及象限角的概念;

  (4)掌握所有与角终边相同的角(包括角)的表示方法;

  (5)树立运动变化观点,深刻理解推广后的角的概念;

  (6)揭示知识背景,引发学生学习兴趣。

  (7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。

  2、过程与方法

  通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

  3、情态与价值

  通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的`关系。理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。

  教学重难点

  重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。

  难点:终边相同的角的表示。

  教学工具

  投影仪等。

  教学过程

  创设情境

  思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了

  小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

  [取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。

  探究新知

  1.初中时,我们已学习了角的概念,它是如何定义的呢?

  [展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a.旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点。

  2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角。同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?

  [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

  3.学习小结

  (1)你知道角是如何推广的吗?

  (2)象限角是如何定义的呢?

  (3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

  线上的角的集合。

  五、评价设计

  1.作业:习题组第1,2,3题。

  2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点。

  课后小结

  (1)你知道角是如何推广的吗?

  (2)象限角是如何定义的呢?

  (3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

  线上的角的集合。

  课后习题

  作业:

  1、习题组第1,2,3题。

  2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点。

  高中数学教案 9

  教学目标:

  1、使学生了解角的形成,理解角的概念掌握角的各种表示法;

  2、通过观察、操作培养学生的观察能力和动手操作能力。

  3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化

  4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。

  教学重点:

  理解角的概念,掌握角的三种表示方法

  教学难点:

  掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化

  教学手段:

  教具:电脑课件、实物投影、量角器

  学具:量角器需测量的角

  教学过程:

  一、建立角的概念

  (一)引入角(利用课件演示)

  1、从生活中引入

  提问:

  A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?

  B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的物品中找出角?

  2、从射线引入

  提问:

  A、昨天我们认识了射线,想从一点可以引出多少条射线?

  B、如果从一点出发任意取两条射线,那出现的是什么图形?

  C、哪两条射线可以组成一个角?谁来指一指。

  (二)认识角,总结角的定义

  3、 过渡:角是怎么形成的呢?一起看

  (1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。

  提问:观察从这点引出了几条射线?此时所组成的图形是什么图形?

  (2)、判断下列哪些图形是角。

  (√) (×) (√) (×) (√)

  为何第二幅和第四幅图形不是角?(学生回答)

  谁能用自己的话来概括一下怎样组成的图形叫做角?

  总结:有公共端点的两条射线所组成的图形叫做角(angle)

  角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边.

  B

  0 A

  4、认识角的各部分名称,明确顶点、边的作用

  (1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称)

  (2)角可以画在本上、黑板上,那角的位置是由谁决定的?

  (3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。

  5、学会用符号表示角

  提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示)

  (1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA.

  (2)观察这两种方法,有什么特点?(字母B都在中间)

  (3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B

  (4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1

  (5)注:区别 “∠”和“ a , b 是正数,且,求证

  [分析]依题目特点,作差后重新组项,采用因式分解来变形.

  证明:(见课本)

  [点评]因式分解也是对差式变形的一种常用方法.此例将差式变形为几个因式的积的形式,在确定符号中,表达过程较复杂,如何书写证明过程,例3给出了一个好的示范.

  [点评]解这道题在判断符号时用了分类讨论,分类讨论是重要的数学思想方法.要理解为什么分类,怎样分类.分类时要不重不漏.

  [字幕]例5甲、乙两人同时同地沿同一条路线走到同一地点.甲有一半时间以速度 m 行走,另一半时间以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,问甲、乙两人谁先到达指定地点.

  [分析]设从出发地点至指定地点的路程为,甲、乙两人走完这段路程用的时间分别为,要回答题目中的问题,只要比较、的大小就可以了.

  解:(见课本)

  [点评]此题是一个实际问题,学习了如何利用比较法证明不等式的思想方法解决有关实际问题.要培养自己学数学,用数学的良好品质.

  设计意图:巩固比较法证明不等式的方法,掌握因式分解的变形方法和分类讨论确定符号的方法.培养学生应用知识解决实际问题的能力.

  【课堂练习】

  (教师活动)教师打出字幕练习,要求学生独立思考,完成练习;请甲、乙两位学生板演;巡视学生的'解题情况,对正确的给予肯定,对偏差及时纠正;点评练习中存在的问题.

  (学生活动)在笔记本上完成练习,甲、乙两位同学板演.

  [字幕]练习:1.设,比较与的大小.

  2.已知,求证

  设计意图:掌握比较法证明不等式及思想方法的应用.灵活掌握因式分解法对差式的变形和分类讨论确定符号.反馈信息,调节课堂教学.

  【分析归纳、小结解法】

  (教师活动)分析归纳例题的解题过程,小结对差式变形、确定符号的常用方法和利用不等式解决实际问题的解题步骤.

  (学生活动)与教师一道小结,并记录在笔记本上.

  1.比较法不仅是证明不等式的一种基本、重要的方法,也是比较两个式子大小的一种重要方法.

  2.对差式变形的常用方法有:配方法,通分法,因式分解法等.

  3.会用分类讨论的方法确定差式的符号.

  4.利用不等式解决实际问题的解题步骤:①类比列方程解应用题的步骤.②分析题意,设未知数,找出数量关系(函数关系,相等关系或不等关系),③列出函数关系、等式或不等式,④求解,作答.

  设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的知识体系.

  (三)小结

  (教师活动)教师小结本节课所学的知识及数学思想与方法.

  (学生活动)与教师一道小结,并记录笔记.

  本节课学习了对差式变形的一种常用方法因式分解法;对符号确定的分类讨论法;应用比较法的思想解决实际问题.

  通过学习比较法证明不等式,要明确比较法证明不等式的理论依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在以后的学习中继续积累方法,培养用数学知识解决实际问题的能力.

  设计意图:培养学生对所学的知识进行概括归纳的能力,巩固所学的知识,领会化归、类比、分类讨论的重要数学思想方法.

  (四)布置作业

  1.课本作业:P17 7、8。

  2,思考题:已知,求证

  3.研究性题:对于同样的距离,船在流水中来回行驶一次的时间和船在静水中来回行驶一次的时间是否相等?(假设船在流水中的速度和部在静水中的速度保持不变)

  设计意图:思考题让学生了解商值比较法,掌握分类讨论的思想.研究性题是使学生理论联系实际,用数学解决实际问题,提高应用数学的能力.

  (五)课后点评

  1.教学评价、反馈调节措施的构想:本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,通过启发诱导学生深入思考问题,解决问题,反馈学习信息,调节教学活动.

  2.教学措施的设计:由于对差式变形,确定符号是掌握比较法证明不等式的关键,本节课在上节课的基础上继续学习差式变形的方法和符号的确定,例3和例4分别使学生掌握因式分解变形和分类讨论确定符号,例5使学生对所学的知识会应用.例题设计目的在于突出重点,突破难点,学会应用

  高中数学教案 10

  教学目标:

  (1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

  (2)进一步理解曲线的方程和方程的曲线。

  (3)初步掌握求曲线方程的方法。

  (4)通过本节内容的教学,培养学生分析问题和转化的能力。

  教学重点、难点:

  求曲线的方程。

  教学用具:

  计算机。

  教学方法:

  启发引导法,讨论法。

  教学过程:

  【引入】

  1、提问:什么是曲线的方程和方程的曲线。

  学生思考并回答。教师强调。

  2、坐标法和解析几何的意义、基本问题。

  对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:

  (1)根据已知条件,求出表示平面曲线的方程。

  (2)通过方程,研究平面曲线的性质。

  事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。

  【问题】

  如何根据已知条件,求出曲线的方程。

  【实例分析】

  例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。

  首先由学生分析:根据直线方程的知识,运用点斜式即可解决。

  解法一:易求线段的中点坐标为(1,3),

  由斜率关系可求得l的斜率为

  于是有

  即l的方程为

  ①

  分析、引导:上述问题是我们早就学过的',用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

  (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。

  证明:(1)曲线上的点的坐标都是这个方程的解。

  设是线段的垂直平分线上任意一点,则

  即

  将上式两边平方,整理得

  这说明点的坐标是方程的解。

  (2)以这个方程的解为坐标的点都是曲线上的点。

  设点的坐标是方程①的任意一解,则

  到、的距离分别为

  所以,即点在直线上。

  综合(1)、(2),①是所求直线的方程。

  至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

  解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

  由两点间的距离公式,点所适合的条件可表示为

  将上式两边平方,整理得

  果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。

  这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。

  让我们用这个方法试解如下问题:

  例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。

  分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。

  求解过程略。

  【概括总结】通过学生讨论,师生共同总结:

  分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

  首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:

  (1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

  (2)写出适合条件的点的集合

  ;

  (3)用坐标表示条件,列出方程;

  (4)化方程为最简形式;

  (5)证明以化简后的方程的解为坐标的点都是曲线上的点。

  一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。

  上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。

  下面再看一个问题:

  例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。

  【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。

  解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

  由距离公式,点适合的条件可表示为

  ①

  将①式移项后再两边平方,得

  化简得

  由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。

  【练习巩固】

  题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。

  分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。

  根据条件,代入坐标可得

  化简得

  ①

  由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

  【小结】师生共同总结:

  (1)解析几何研究研究问题的方法是什么?

  (2)如何求曲线的方程?

  (3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?

  【作业】课本第72页练习1,2,3;

  高中数学教案 11

  教学目标

  (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

  (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

  (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

  (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

  (5)进一步理解数形结合的思想方法。

  教学建议

  教材分析

  (1)知识结构

  曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

  (2)重点、难点分析

  ①本节内容教学的`重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

  ②本节的难点是曲线方程的概念和求曲线方程的方法。

  教法建议

  (1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

  (2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。

  (3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

  (4)从集合与对应的观点可以看得更清楚:

  设 表示曲线 上适合某种条件的点 的集合;

  表示二元方程的解对应的点的坐标的集合。

  可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

  (5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

  这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

  文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

  由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

  (6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

  高中数学教案 12

  教学目标:

  1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

  2、会求一些简单函数的反函数。

  3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

  4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

  教学重点:

  求反函数的方法。

  教学难点:

  反函数的概念。

  教学过程:

  教学活动

  设计意图一、创设情境,引入新课

  1、复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

  3、板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

  二、实例分析,组织探究

  1、问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2、问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3、渗透反函数的概念。

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

  三、师生互动,归纳定义

  1、(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

  2、引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因。

  3、两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4、函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1、(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x—1 (2)y=x 1

  【例2】求函数的反函数。

  (教师板书例题过程后,由学生总结求反函数步骤。)

  2、总结求函数反函数的步骤:

  1) 由y=f(x)反解出x=f(y)。

  2) 把x=f(y)中 x与y互换得。

  3) 写出反函数的定义域。

  (简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

  (2)的反函数是________。

  (3)(x<0)的反函数是__________。

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的`把握。

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

  五、巩固强化,评价反馈

  1、已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

  (1)y=—2x 3(xR) (2)y=—(xR,且x)

  ( 3 ) y=(xR,且x)

  2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

  六、作业

  习题2.4 第1题,第2题

  进一步巩固所学的知识。

  教学设计说明

  "问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

【高中数学教案】相关文章:

高中数学教案模板11-14

高中数学教案(集锦15篇)12-28

高中数学教案汇编15篇01-07

高中数学教案(集合15篇)12-30

高中数学教案(合集15篇)01-29

高中数学教案合集15篇01-31

高中数学教案(通用20篇)07-31

(精选)小学数学教案08-23

小学数学教案07-20