- 相关推荐
分数乘分数的教案
作为一位优秀的人民教师,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。我们该怎么去写教案呢?以下是小编收集整理的分数乘分数的教案,欢迎大家分享。
分数乘分数的教案1
教学目标
1、理解一个数乘分数就是求一个数的几分之几是多少。
2、掌握分数乘分数的计算方法,并能正确地进行计算。
教学重点/难点
教学重点:
掌握分数乘分数的计算方法,并能熟练计算。
教学难点:
理解分数乘分数的乘法意义及算理。
教学用具
课件标签
教学过程
一、旧知铺垫说一说,分数乘法的计算方法、步骤。
(1)整数与分子相乘的乘积作分子,分母不变。
(2)能约分的要先约分,再计算
二、探索新知
教学例出示题目:
(1)你想怎样列式?学生回答,教师板书。
(2)分数乘分数怎样计算?
(3)画示意图分析。
(4)发现分数乘分数的计算方法。
(5)引导学生观察算式和结果,看一看其中的联系。
想一想:虚线框中,应该是怎样的一个计算过程呢?学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。
然后,联系以上的算式,让学生说一说计算方法。
学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
教师可不急于作出归纳,再提出问题,继续验证学生自己的'发现。
(1)引导学生列出算式
(2)你认为计算结果是多少?学生回答,教师板书
(3)画示意图加以验证。
(4)总结分数乘分数的计算方法。
师生共同总结,教师板书:
分数乘分数,应该分子乘分子,分母乘分母。
1、教学例出示教材例题,学生简要了解蜂鸟。
2、学生尝试计算,教师巡视课堂了解学生计算情况。完成后,选择两位不同计算过程的学生上台板演。
3、强调:能约分的要先约分,再计算。
(2)5分钟能飞行多少千米?
①学生独立列式解答,请一位学生上台板演。
②教师出示算式,学生判断可以不可以。
③说明分数和整数相乘时约分的方法。
强调:整数约分后的结果要写在整数的上面,并与分子相乘。
三、巩固练习完成例题后“做一做”四、课后作业设计完成练习二第3、4题?课后习题完成练习二第3、4题
分数乘分数的教案2
教学内容:
教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数。
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
(1)分析演示
题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )
确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式 + +
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
(3)比较 和125两种算式异同
提示:从两算式表示的.意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,125是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
分数乘分数的教案3
教学内容:
认识几分之一(教材91—93页)
教学目标:
1、学生通过操作、实践活动初步认识几分之一,理解体验几分之一的意义,会读写几分之一的分数。
2、通过自主学习,学生学会借助直观的方法比较几分之一的大小。
3、通过数学活动,在动手操作、观察比较中培养学生勇于探索和自主学习的精神,学生获得运用知识解决问题的成功体验。
教学重点:
认识几分之一。
教学难点:
理解几分之一的意义。
教学用具:
长方形、正方形、小圆形纸片、大圆形纸片若干张,多媒体课件。
教学过程:
一、创设情境:分一分
学生动手分学具。
二、探索研究几分之??
1、说一说
说一说大圆片是怎么分的?介绍分数的读法、写法。
2、折一折
(1)从刚才分的学具中选择一张自己喜欢的纸片,折一折,找出它的1/2,涂上颜色。并想一想,你是怎么折的?
(2)学生汇报交流
3、想一想
(1)你认为在1/2里,“—”、“2”、“1”分别表示什么意思?“1/2”又表示什么意思?
(2)学生汇报交流
(3)练一练
4、试一试
(1)学生试着说出几个像1/2这样的几分之一的分数。
(2)学生试着折出一张纸片的`1/4,并涂色,说一说是怎样折的?
5、做一做
6、找一找
找一找生活中的几分之一的分数。
三、自主探索、比较大小
1、课件出示情景图,观察、猜测,学生汇报交流。
2、课件出示表示1/2、1/3、1/6的圆片,比较大小,说一说你发现了什么?
3、练习
四、巩固提高
说出涂色部分占大正方形的几分之一。
分数乘分数的教案4
课题:分数乘分数
教学内容:教材第10页例3,第11页例4以及做一做,练习二中的3、4题
教学目标:
1、理解一个数乘分数就是求一个数的几分之几是多少。
2、掌握分数乘分数的计算方法,并能正确地进行计算。
重难点、关键: 1、重难点:分数乘分数的计算方法。
2、 关键:理解一个数乘分数就是求一个数的几分之几是多少。
教学准备:实物投影或者电脑课件。
教学过程:
一、旧知铺垫
1、计算下面各题。
12 32 15 12
2、说一说,分数乘法的计算方法、步骤。
(1) 整数与分子相乘的乘积作分子,分母不变。
(2) 能约分的要先约分,再计算
3、根据题意列出算式。
(1) 一袋大米,每天用去千克,3天用去多少千克?
(2) 某修路队,每天修路千米,5天修多少千米?
(3) 一辆汽车,每小时行驶全程的,4小时行驶全程的几分之几?
二、探索新知
1、教学例3。
出示题目:
问题一:小时粉刷这面墙的几分之几?
(1) 你想怎样列式?
学生回答,教师板书。
(2)分数乘分数怎样计算?
①表示什么?
经过讨论,使学生理解,就是求的.是多少,也就是说把平均分成4份,取其中一份是多少?
③ 画示意图分析。
每小时粉刷 这面墙的
这面墙的 的
③从图上可以看出,这面墙的的,是占整面墙的
板书:
④ 发现分数乘分数的计算方法。
⑤ 引导学生观察算式和结果,看一看其中的联系。
板书:
想一想:虚线框中,应该是怎样的一个计算过程呢?
学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。
然后,联系以上的算式,让学生说一说计算方法。
学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
教师可不急于作出归纳,再提出问题,继续验证学生自己的发现。
问题二:小时粉刷多少呢?
(1)引导学生列出算式
(2) 你认为计算结果是多少?
学生回答,教师板书
(3) 画示意图加以验证。
注意:画示意图时,要紧密结合的意义加以分析。
(4)总结分数乘分数的计算方法。
师生共同总结,教师板书:
分数乘分数,应该分子乘分子,分母乘分母。
3、 教学例4
4、 出示教材例题,学生简要了解蜂鸟。
(1)分钟能飞行多少千米?
①列出算式
②学生尝试计算,教师巡视课堂了解学生计算情况。
完成后,选择两位不同计算过程的学生上台板演。
③强调:能约分的要先约分,再计算。
(2)5分钟能飞行多少千米?
① 学生独立列式解答,请一位学生上台板演。
② 教师出示算式,学生判断可以不可以。
③ 说明分数和整数相乘时约分的方法。
强调:整数约分后的结果要写在整数的上面,并与分子相乘。
三、巩固练习
1、完成例题后做一做
2、完成练习二第3、4题
四、课后作业设计
一、计算
4 10 14 15
二、列式计算。
1、的是多少?
2、千克的是多少?
3、小时的是多少?
三、解答下列问题。
1、高山村农民开荒,每小时开垦荒地公顷,小时能开垦荒地多少公顷?
2、一个长方形长dm,宽dm,它的面积是多少dm2?
分数乘分数的教案5
教学目标:
1.让学生掌握分数乘小数的计算方法,提高学生根据实际情况灵活选择合适的计算方法的能力。
2.在学生自主探索的基础上,引导学生自由地表达自己的想法,培养学生合作交流的能力。
3.通过解决日常生活中的实际问题,让学生体验数学的意义和价值。
教学重点:
掌握分数乘小数的计算方法。
教学难点:
提高学生根据实际情况灵活选择合适的计算方法的能力。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1.计算下面各题
2.通过计算引导学生回忆分数乘整数和分数乘分数的计算方法,并强调能约分的先约分再计算会更简便。(让学生自由回答,教师加以引导与整理。)
3.导语:前几节课我们学习了分数乘整数和分数乘分数的计算方法,今天,我们继续学习分数乘法的有关知识。
【设计意图:通过复习分数乘整数和分数乘分数的计算方法,激活学生的学习经验与学习技能,为学习分数乘小数埋下伏笔。同时,简明扼要地导入新课,让学生迅速地进入学习状态。】
二、自主学习(自主学习,生成问题)
(一)阅读理解
1.出示呈现例5情境图(数学信息),从图中你得到了哪些数学信息?根据这些数学信息你想解决什么数学问题?(学生自主提出问题,教师选择问题板书。)
(1)松鼠欢欢的尾巴有多长?
(2)松鼠乐乐的尾巴有多长?
【设计意图:由孩子们喜欢的小动物的知识引出例5,激发了学生学习的兴趣。了解题目中有哪些数学信息是解决问题的第一步,可以帮助学生更好地解决数学问题。】
1.自主解答
松鼠欢欢的尾巴有多长?怎样列式?你能计算出来吗?在练习本上试一试。(板书:,学生尝试计算,教师巡视,请不同做法的学生板演。)
2.交流探讨,体会不同算法
先在小组内交流计算方法,再全班交流,一一展示,分析出现的不同计算方法。
(1)可以把2.1化成分数,再跟相乘,结果是,化成带分数。
(dm)
(2)可以把化成小数0.75,再跟2.1相乘,结果是1.575。
2.1×=2.1×0.75=1.575(dm)
【设计意图:本环节的交流分为两个层次,一个是在小组内交流,给每个学生参与的机会,使交流活动不至于成为个别学生的专场展示,尽可能让每个学生都说出自己的解题思路;二是全班交流,使全体学生在理解自己算法的同时,知道解决同一道题目还有不同的思路,享受不同算法带来的快乐,并掌握自己未考虑到的计算方法,逐步提高综合运用所学知识解决实际问题的能力。】
3.师小结:同学们说得都很不错,这道分数乘小数的题目我们主要采用两种方法来计算,既可以把小数化成分数再计算,也可以把分数化成小数再计算,这两种方法用到了我们学过的分数乘分数和小数乘小数的知识。
【设计意图:教师的这段简单小结以旧引新,促进知识迁移,巩固掌握新知识,实现了有意识的学法指导。】
三、合作探究(小组合作,解决问题)
1.自主解答
刚才例5第(1)题大家完成得很不错,下面第(2)题有没有信心做对呢?(出示课件,学生尝试独立解答。)
2.交流反馈
(1)可以把2.4化成分数,再跟相乘,结果是。
(dm)
(2)可以把化成小数0.75,再跟2.4相乘,结果是1.8。
2.4×=2.4×0.75=1.8(dm)
3.自学课本
(1)除了上面两种计算方法,这道题还有另一种算法。同学们打开课本第8页,看一看,有没有不明白的地方?(学生看书自学。)
(2)这种算法你看懂了吗?引导学生说计算过程。(课件逐步出示第三种算法。)
小数2.4和分数的分母先约分得到0.6,0.6再跟分子3相乘,结果是1.8。
4.对比思考。
为什么可以这样约分?你觉得这样约分计算简便吗?
【设计意图:让学生独立完例5第(2)题,既复习了分数乘小数的两种计算方法,起到巩固练习的作用,又通过自主阅读教材学习先约分再计算的方法,不仅可以让学生准确掌握计算方法,更使学生深刻地体会到分数乘小数先约分再乘比较简便。】
四、回顾反思
1.既然先约分再计算这种方法这么简便,为什么第(1)题没用这种简便方法计算呢?
2.师小结:先约分再计算虽然简便,但只在小数与分数分母有共同因数的情况下适用,如果小数与分数分母没有共同的因数,就不能直接约分,只能采用把小数化成分数或把分数化成小数再计算的方法。所以在实际计算过程中,我们要特别注意观察算式中小数与分数分母的特征,明确小数与分数分母是否有共同的因数,然后再选择合适的算法进行计算。
【设计意图:在这个环节中,通过思考“为什么第(1)题没用这种简便方法计算呢?”,让学生体会到先约分再计算的局限性,从而引导学生在解决问题的过程中灵活选择合适的算法。】
五、拓展总结(应用拓展,盘点收获)
(一)对比练习
1.学生独立完成。
2.反馈:计算时你更喜欢哪种算法?
【设计意图:在前面学习分数乘整数的过程中,学生已经充分感受了先约分再计算的简便性,在这个练习中,学生会进一步感受到这种算法不仅在分数乘整数中可以让计算更简便,在分数乘小数中同样适用,培养学生简便计算的意识。】
(二)基本练习
教材第8页做一做
1.学生先观察每一道题的特征,思考:每道题可以用几种方法来做?哪种方法更简便?然后选择合适的方法进行计算。
2.反馈交流时提问:哪几题可以先约分再计算?可以把分数化成小数计算吗?
【设计意图:这个环节通过四道题的对比练习,让学生发现不仅先约分再计算有局限性,分数化小数这种算法也有一定的局限性。在引导学生比较各种方法的优缺点的同时,进一步感受计算方法的灵活性与合理性。最终在学生充分理解的基础上共同归纳出结论,以丰富学生体验知识获得结论的过程,加深记忆。】
(三)提高练习
教材第10页“练习二”第2题:美国人均淡水资源量约为1.38万立方米,我国人均淡水资源量仅为美国的。我国人均淡水资源量是多少万立方米?
1.学生独立完成,一生板演。
2.反馈计算过程,强调能约分的先约分再乘。并适时补充我国的`水资源知识,进行节约用水教育。
(四)拓展练习(多余条件)(机动)
教材第10页“练习二”第4题:蜂蜜最主要的成分是果糖和葡萄糖,果糖和葡萄糖的质量占蜂蜜总质量的以上。有一种蜂蜜,果糖和葡萄糖的质量占蜂蜜总质量的。如果有2.5kg的这种蜂蜜,其中的果糖和葡萄糖共有多少千克?
1.学生独立完成。
2.交流汇报。
3.教师点拨:在解决含多余条件的实际问题时,要先弄清楚题意,看问题所需的条件是什么,选择恰当的条件,找出多余条件,然后分析数量关系,列出算式,最后检验结果是否正确。
【设计意图:这道题隐含了一个多余条件,增加了学生的审题难度,所以要引导学生在解决问题的过程中找准题目中的关键条件,提高学生的审题能力,掌握解决含多余条件的实际问题的一些基本策略。】
(五)课堂小结:今天我们学习了什么内容?(板书课题:分数乘小数)分数乘小数怎么计算?计算时应该注意什么?
【设计意图:通过让学生自主回顾本课所学知识,指导学生把新旧知识联系起来,形成知识结构,既帮助学生理清思路、把握学习重难点,又巩固新知识、强化记忆。】
分数乘分数的教案6
第一单元
分数乘法
第五课时
小数乘分数
教学内容:
教材第8页例5,做一做,练习二1~4。
教学目标:
1、在解决问题的过程中学习并掌握小数乘分数的计算方法。
2、经历小数乘分数的计算方法的探究过程。
3、体会算法多样化的数学思想,提高计算能力。
教学重点:
掌握小数乘分数的计算方法。
教学难点:
灵活选择不同的计算方法,熟练地进行小数乘分数的计算。
教学过程:
一、复习导入。
1、计算
交流时让学生说一说计算方法和计算过程中的约分方法。
2、把下面的小数化成分数,分数化成小数。
1.2()
0.4()
3.5()
1.25()
让学生说一说怎样将一个小数化成分数?
二、探索新知
1、例题5:松鼠的尾巴长度约占身体长度的 。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。
(1)提取题中的已知条件和所求问题
已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。
所求问题:松鼠欢欢的尾巴有多长?
(2)确定单位1,根据松鼠的尾巴长度约占身体长度的34可知,应把松鼠欢欢的身体长看作单位1,单位1已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的34是多少,用乘法计算,列式为2.134
启发观察,这个算式和我们前面学习的分数乘法有什么不同?
(3)探讨小数乘分数的计算方法。
提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。
学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把 化成小数。汇报交流计算方法,教师结合交流情况进行板书。
小数化成分数: = = (分米)
分数化成小数: =2.10.75=1.575(分米)
3、解决问题二。
(1)出示问题:松鼠乐乐的尾巴有多长?
(2)学生独立解答。
组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。
学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?
当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的'交流情况进行板书
小数和分母约分: (分米)
4、观察比较,回顾思考。
提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)
三、巩固练习。
1、教材第8页做一做。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。
2、教材第10页练习二第2题。
3、教材第10页练习二第3题。
分数乘分数的教案7
教学内容:
教科书第44—45页
教学目标:
1、结合生活经验和直观图示,理解一个数乘分数的意义,探索分数乘分数的计算方法。
2、通过操作、观察,培养学生初步分析、推理的能力。
3、经历分数乘分数的意义和计算方法的探索过程,渗透数形结合思想,获得成功的学习体验。
教学重点:
一个数乘分数的意义和计算方法
教学难点:
理解分数乘分数计算的算理
教学过程:
一、创设情境,提出问题:
师:在学校举行的“小手艺展示”活动中,王芳同学获得了“编织能手”的称号。她每小时能织1/4米长的围巾,根据这一信息,你能提出什么数学问题?(板书:每小时能织1/4米)
学生自主提出问题,师根据本节课所需选择性地板书。
2小时能织多少米?
1/2小时能织多少米?
2/3小时能织多少米?
[学生如果提出的时间较大时教师就顺势改成2小时;如果学生提出其它问题,教师就说老师来提一个,将问题引过来]
师:要求2小时、1/2小时、2/3小时织多少米?该怎样形式?为什么?
引导学生根据“工作效率×工作时间=工作总量”的关系列式。
[学生可能列出:1/4×2、1/4×1/2、1/4×2/3]
师:同学们真棒,不但自己提出了问题,还会根据“每小时织的米数×织的时间=织的总米数”这个数量关系来列式,这节课我们就先来研究这三道题。
二、探究研讨,学习新知:
教学分数乘分数的意义。
1、教学1/4×2:
(1)师:先来看1/4×2,它表示什么意思?
生可能说:
1/4的2倍是多少?
2个1/4是多少?
(2)师:求2小时能织多少米,就是求1/4米的2倍是多少?你能通过画图或用纸条表示出它的意思吗?
学生操作,抽生前台展示。
[学生如果不能准确地表示,教师再引导说明。]
[师:怎样表示1/4米呢?假设用这个纸条表示1米,1/4米就是把它平均分成4份,取其中的1份,用阴影表示,这就是1小时织的,2小时织的呢?让学生表示两份。]
2、教学1/4×1/2:
(1)师:1/4×1/2表示什么意思,谁有想法?
(2)学生交流:
[可能出现:
生1:1/4的1/2倍是多少?师解释:我们通常所说的倍数一般都是2倍、3倍……而1/2比1小,不够1倍,所以我们一般不这么说。
生2:1/2个1/4是多少?师引导:1/2比1小,不够1个一个呀!]
师:这两位同学非常棒,都是运用迁移的方法根据1/4×2的意义来说的,那么到底表示什么意思,我们可以画图或折纸来分析一下,同学们自己动手试一试行吗?
(3)学生动手操作。
(4)学生交流。
[对于出现的几种情况,只要解释正确教师就预以肯定。]
师:刚才同学们解释的意思大家都明白,但如果不解释,是不是就有点看不明白了,关键是大家没有首先清楚地表示出1/4米,我们一起来画一画。
师再示范一次操作的过程。
3、教学1/4×2/3:
(1)1/4×2/3表示什么意思?
(2)生交流:表示1/4的2/3是多少?师:是不是这样,我们再画图来验证一下。
(3)学生交流。
4、小结:
刚才我们研究的这两道题就是我们今天要研究的内容:一个数乘分数。通过刚才的操作,谁来说说一个数乘分数的意义是什么?
学生交流。师生概括:一个数乘分数,可以看作是求这数的几分之几是多少。
[板书:求这个数的.几分之几是多少?]
5、练习:
下面的算式表示什么?(算式在大屏幕上出现)
1/3×1/3,1/4×2/5,3/4×1/5,3/4×2/9
探索分数乘分数的计算方法。
1、师:同学们对意义理解的很好,那么1/4×1/2和1/4×2/3的结果是多少?
学生交流。
师:想一想,积的分子、分母与两个因数的分子、分母有什么关系?在小组内说一说。
学生交流:得出:两个分数相乘,积的分子是两个因数分子相乘的积,分母是两个因数的分母相乘的积。
[学生交流时,师结合示意图,详细讲解分数乘分数积的分子和分母乘出的过程。]
2、师:应用刚才的发现,计算1/4×1/2,1/4×2/3。
学生独立计算。
订正时注意让学生了解有不同的约分方法,可让学生自己选择。
强调:能约分的要先约分,再计算。
总结分数乘分数的计算方法。
师:王芳8/15小时织了多少米?怎样列式?这个算式表示什么意义?请大家独立计算。
分数乘分数的教案8
设计说明
本节课的教学是在学生掌握了分数乘整数的意义及计算方法的基础上进行的,主要通过情境的创设、几何直观、知识的迁移、类推,使学生掌握一个数乘分数的意义及算理。一个数乘分数的意义及算理既是本节课教学的重点,又是难点,为了突出重点、突破难点,教学设计中采用以下两点:
1.数量与分数的意义相结合,突破重点。
教学初始,在引入例2题目的基础上,引导学生仔细读题,分析题中存在的数量关系,计算出桶、桶水的容量,结合分数的意义,使学生理解求桶、桶是多少升,就是求一桶水的和分别是多少,从具体的.图中理解题意,理解一个数乘分数的意义。
2.观察比较,推导转化。
通过例3的情境,使学生感知并理解:求种土豆的面积和种玉米的面积就是求的和分别是多少,进一步巩固学生对一个数(分数)乘分数的意义的理解。接着引导学生借助形象的图示以及直观的操作演示理解分数乘分数的算理,通过观察、比较、合作、交流,总结出分数乘分数的计算方法。
课前准备
教师准备PPT课件学情检测卡
学生准备每人两张长方形纸两种颜色的彩笔
教学过程
⊙复习导入
1.计算下面各题,并说一说计算方法。
×2=×7=×3=
2.分数乘整数的意义是什么?(表示求几个相同加数的和的简便运算)
3.导入新课。
今天我们来学习一个数乘分数的意义及计算方法。(板书:一个数乘分数的意义及分数乘分数)
设计意图:回顾前面所学的内容,在巩固原有知识的基础上,为学习新课做好准备。
⊙探究新知
1.探究一个数乘分数的意义。
(1)课件出示教材3页例2。
(2)汇报从例2中获取的数学信息。
(已知1桶水有12L,求3桶、桶、桶各是多少升)
(3)讨论题中存在的数量关系。
(总量=单量×数量)
(4)组织学生根据数量关系列出算式。
(5)理解桶、桶的意义,感知一个数乘分数的意义。
桶表示一桶水的一半,12×就是求12L的是多少。桶表示一桶水的,12×就是求12L的是多少
(6)探究一个数乘分数的意义。
根据上面的探究,你能说一说一个数乘分数的意义吗?
学生讨论后明确:
一个数乘分数,表示求这个数的几分之几是多少。
2.探究分数乘分数的计算方法。
(1)课件出示教材3页例3,学生阅读,汇报从题中获取的数学信息。
(学生交流获取的数学信息)
(2)探究问题(1)的列式及计算方法。
①探究列式方法。
师:想一想,求种土豆的面积就是求什么?应该怎样列式?
(求种土豆的面积就是求的是多少,根据一个数乘分数的意义,可以用×表示)
②探究×的计算方法。
a.按要求操作。
拿一张纸表示1公顷,画出它的,表示公顷,再把公顷平均分成5份,表示出其中的1份。
分数乘分数的教案9
教学内容
人教版六年级数学上册第3页例3改编
教学目标
1、理解分数乘分数的意义和分数乘分数计算方法的形成过程(算理)。
2、掌握分数乘分数的计算方法,并能正确地进行计算。
3、发展学生的观察推理能力。
教学重点
理解算理,掌握计算方法。
教学难点
分数乘分数计算方法的形成过程(理解算理)。
教材分析
分数乘分数是在整数乘法、分数的意义和性质的`基础上进行教学的,同时又是学习分数除法和百分数的重要基础。对于分数乘分数,计算方法的掌握比较容易,但是,计算方法的形成过程(即算理的理解)对于学生来说是一个难点。为此,课本没有单独教学分数的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也没有呈现分数乘法的计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供了更多的空间。
学情分析
本节课的教学主要建立在分数意义的基础上,是在学生学习了分数乘整数之后进行的,虽然学生有了一定的知识做铺垫,但是分数乘分数的算理比较抽象,学生难以理解,必须通过学生的动手操作、通过学生的亲身体验来进行教学。
设计理念
1、《课标》指出,有效的学习活动不能单纯地依赖模仿与记忆。让学生记住分数乘法的计算法则并不难,但让学生理解分数乘分数的算理,是本节课教学的难点。本节课将通过观察、实验、操作、推理等探索性与挑战性的活动,帮助学生理解算理,同时培养学生的观察、动手、分析和推理等能力。
学具、教具
每人准备两张A4白纸、彩笔、尺子。
教学过程
一、情境导入
谈话:你知道粮食是怎么来的吗?
由粮食的由来引入拖拉机耕地,出示数学信息:
王师傅用拖拉机每小时耕地EQF(1.4)公顷。
启发:根据这条数学信息,你能提出一条数学信息吗?
引出三个问题并列式:
(1)王师傅用拖拉机3小时耕地多少公顷?
(2)王师傅用拖拉机小时耕地多少公顷?
分数乘分数的教案10
教学内容:
教材第3页例2,做一做。
教学目标:
1、通过直观操作理解一个数乘分数的意义
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:
理解一个数乘分数的意义。
教学难点:
理解一个数乘分数的意义。
教学过程:
一、复习导入
1、计算
2、一个正方形的边长是 m,它的周长是多少米?
二、创设情境,探究整数乘分数
1、借助情境理解整数乘分数的意义。
1桶水有1/2L。3桶共多少L?12 桶是多少L?14 桶是多少L?
(1)理解题意,明确题中的数量关系:单位量数量=总量
(2)根据题意列出算式: 3桶水共多少L?1/23
12 桶是多少L?1/212 14 桶是多少L?1/214
(3)探究每道算式的意义
1/23表示求3个1/2L,也就是求1/2L的3倍是多少。
1/2是一半,1/212 表示12L的一半,也就是求12L的1/2是多少。
1/214 表示求1/2L的14倍是多少。
发现:一个数乘分数表示的.是求这个数的几分之几是多少。
(4)解决问题。123=36(L)
121/4=3(L) 答:3桶共36L。 桶是6L。 桶是3L。
2、完成做一做
一袋面粉重3㎏。已经吃了它的 ,吃了多少千克?
学生独立解答后汇报。
3、在学校举行的泥塑大塞中,一班共制作泥塑作品15件,其中男生做了总数的 。一班男生做了多少件?(分析:男生做了总数的 ,是把一班共制作泥塑作品15件看作单位1,把总数15件平均分成5份。男生做的占其中的3份。)
4、归纳总结
求一个数的几分之几是多少,用乘法计算。
5、练习:29 6= 1234 = 310 4=
观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。
四、巩固练习,反馈提高
练习一第2、3题。
五、全课小结
分数乘分数的教案11
教学目标:
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
重点难点:
学习重点:理解并掌握分数与分数相乘的计算方法。
学习难点:分数与分数相乘计算方法的探索过程。
课前准备:
教学过程:
一、布置要求,引导预学
1.复习迎新
口头列式
(1)80的 是多少? (2) 的 是多少?
二、预习反馈,诊断查学
课中进行预习反馈,教师根据学生的反映有针对性地调整教学。
三、目标引领,探究导学
(一)、创设情境
以前我们学习了分数的意义,下面请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?随着学生的回答,教师继续对它们进行操作,并引出新课
(二)、组织探究
1、教学例4 出现教材中的图形
然后问:画斜线部分是12 的几分之几?又是这个长方形的几分之几?
由此明确:12 的14 是18 ,12 的34 是38
启发学生进一步思考:求12 的14 是多少,可以怎样列式?求12 的34 呢?
师问:你能列算式并看图填写出书中的结果吗?
打开书P45完成
提示:根据填的结果各自想想怎样计算分数与分数相乘?
学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母
2、教学例5
(1) 让学生说说23 ×15 和23 ×45 分别表示23 的`几分之几?你能用前面得出的结论 计算这两道题吗?学生试做订正完后问:你能用什么方法来验证你的计算结果呢?
(2)验证比较
让学生在自己准备的长方形纸上先涂色表示23 再画斜线表示23 的15 和23 的45
学生动手操作,教师巡视对学困生进行指导,看看操作的结果与你计算的结果是否一致? 学生观察比较
3、归纳总结
比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?得出分数乘分数的计算方法:分数乘分数 ,用分子相乘的积作分子,分母相乘的积作分母。
(三)、练习
1、完成P46的试一试
提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算通过交流进一步明确计算分数与分数相乘的计算方法
四、分数与分数相乘的计算方法的推广
同学们,下面着几道题你回计算吗?
出示:211 ×3= 4×56 =
请同学们先完成P46的填空,提醒学生把整数看作分母是1的分数来计算
讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么? 学生分组讨论
明确:(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数和整数相乘
(2)实际计算时可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便
(3)也可以整数与分数直接进行约分后再计算。这样更简便
教师进行示范如P46
2、练习完成P46的练一练
引导学生用直接约分的方法进行计算
四、巩固练习,反馈练学
1、做练习九的第1题 先在图中画一画再列式计算
2、做练习九的第3题说出错的原因
3、做练习九的第4题看谁算的最快
五、课堂总结,拓展思学
全课小结通过这节课的学习,你有什么收获?还有什么疑惑?
板书设计:
分数乘分数
教后记:
分数乘分数的教案12
教学目的与要求
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
教学过程
一、创设情境
以前我们学习了分数的意义,下面请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?随着学生的回答,教师继续对它们进行操作,并引出新课
二、组织探究
1、教学例4 出现教材中的图形
然后问:画斜线部分是1/2 的几分之几?又是这个长方形的几分之几?
由此明确:1/2 的1/4 是1/8 ,1/2 的3/4 是3/8
启发学生进一步思考:求1/2 的1/4 是多少,可以怎样列式?
求1/2 的3/4 呢?
师问:你能列算式并看图填写出书中的结果吗?
打开书p45完成
提示:根据填的结果各自想想怎样计算分数与分数相乘?
学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母
2、教学例5
(1)让学生说说23 ×15 和23 ×45 分别表示23 的几分之几?
你能用前面得出的结论计算这两道题吗?
学生试做
订正完后问:你能用什么方法来验证你的计算结果呢?
(2)验证比较
让学生在自己准备的长方形纸上先涂色表示23
再画斜线表示23 的15 和23 的45
学生动手操作,教师巡视对学困生进行指导
看看操作的结果与你计算的结果是否一致?
学生观察比较
3、归纳总结
比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?
得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的`积作分母。
三、练习
1、完成p46的试一试
提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算
通过交流进一步明确计算分数与分数相乘的计算方法
四、分数与分数相乘的计算方法的推广
同学们,下面着几道题你回计算吗?
出示:2/11 ×3=
4×5/6 =
请同学们先完成p46的填空,提醒学生把整数看作分母是1的分数来计算
讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?
学生分组讨论
明确:(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数和整数相乘
(2)实际计算时可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便
(3)也可以整数与分数直接进行约分后再计算。这样更简便
教师进行示范如p46
2、练习
完成p46的练一练
引导学生用直接约分的方法进行计算
五、综合练习
1、做练习九的第1题
先在图中画一画再列式计算
2、做练习九的第3题
说出错的原因
3、做练习九的第4题
看谁算的最快
六、全课小结
通过这节课的学习,你有什么收获?还有什么疑惑?
七、作业
练习九的第2、5题
教后记:本课的目的是使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则,进一步巩固分数乘法的计算法则。基本达到教学要求。
分数乘分数的教案13
教学内容:冀教版《数学》五年级下册第46、47页。
教学目标:
1、经历动手操作、画图表示、推导、归纳等探索分数乘分数计算方法的过程。
2、掌握分数乘分数的计算方法,会正确进行分数乘分数的计算。
3、体验分数乘分数计算方法的探索性,感受画图分析问题、研究问题的直观性。
教学准备:教学课件、长方形彩纸。
一、折纸
教师说明折纸要求,让学生动手操作,折出这张纸的二分之一和四分之一。
课件演示折纸过程,帮助学生理解四分之一是二分之一的二分之一。
二、种地问题
1、课件出示问题,根据题意出示图示。
2、提出问题(1),继续出示图,使学生明白求西红柿地占整块地的几分之几就是求1/3的1/2是多少,用乘法计算。列出算式,并结合图得出:
1/31/2=(11)/(32)=1/6.
3、提出问题(2),方法和过程同问题(1)。
三、总结计算方法
师生共同总结出计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
完成试一试的四道题。
四、课堂练习
1、练一练第1题。
2、练一练第2题。
3、练一练第3题。
4、练一练第4题。
5、练一练第5题。
由折纸引入学习活动,既调动学生学习的兴趣,又是分数乘法问题的准备。
结合课件直观演示,帮助学生弄清题意。
结合课件演示,使学生理解题意,明白求西红柿地占整块地的几分之几就是求1/3的1/2是多少,用乘法计算。为总结计算方法作铺垫。
先让学生观察两个算式,自己总结方法,教师指导归纳,培养学生的'概括、归纳能力。
让学生独立尝试计算。再交流。
分数乘分数问题的抽象描述,培养学生逻辑思维能力。
其中的指谁的?理解这个问题,学生就知道了是求1/4的2/5是多少。
通过面积计算,巩固分数乘法计算方法。
关注比较方法,进一步理解分数乘法的抽象描述。
在已有知识基础上,学生独立完成。
师:请同学们拿出一张长方形纸,对折一次,再对折,折出的纸片面积是原来长方形纸面积的几分之几?
生:折出的纸片面积是原来长方形纸面积的1/4.
师:折出的纸片面积是原来长方形纸的一半的几分之几?
生:折出的纸片面积是原来长方形纸的一半的1/2.
师:也就是说四分之一是二分之一的二分之一。(利用课件演示说明)
师边口述题意边出示课件。
师边口述题目边演示课件。
师:求西红柿地占整块地的几分之几就是求什么?怎样计算?
生:求西红柿地占整块地的几分之几就是求1/3的1/2是多少,用乘法计算。列式是1/31/2=(11)/(32)=1/6.
师:观察两道题的计算过程,分数乘分数,我们是怎么计算的?
生概括归纳。
师:大家用你们自己归纳的方法试着计算试一试的题目。
交流时说说计算方法和过程。
师:说说怎样列式?
学生独立计算,交流算法。
师:丫丫吃了其中的2/5,是谁的2/5?
理解后独立完成,交流时说说列式的想法和计算过程。
理解题意,独立完成。
学生独立完成,交流时,注意学生比较的方法。对于好的方法给予表扬。并归纳总结比较方法。
集体订正。注意得数后面要有单位名称。
分数乘分数的教案14
教学目标
1、通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。
3、培养学生分析能力、知识的迁移能力和语言表达能力。
教学重点和难点
正确的归纳出分数除以整数的计算法则,并能正确地进行计算。
教学过程设计
(一)复习导入
1、投影,看乘法算式写出两道除法算式。
67=42
( )( )=( )
( )( )=( )
问:谁还记得整数除法的意义是什么?
板书:积 一个因数 另一个因数
师:这节课我们来学习分数除法的意义和计算法则。(板书课题)
首先研究分数除法的意义。(板书:意义)
(二)新授教学
1、分数除法的意义。
我们来看下面的问题。(投影出示)
(1)每人吃半块月饼,5人一共吃几块月饼?
问:谁会列式计算?
问:你是怎么想的?
(2)两块半月饼,平均分给5个人,每人分得多少月饼?
问:怎样列式计算呢?
问:没有学过分数除法,得数怎么得来的?
(3)两块半月饼,分给每人半块,可分给几个人?
问:谁会列式计算?
问:为什么这样列式,怎样算出的得数?
观察这三个算式,它们之间有什么联系?
同桌讨论,指名回答。
生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。
板书:积 一个因数 另一个因数
问:与整数除法对比一下,分数除法的意义是什么?
同桌互相说一说,指定2~3名学生说。
板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。
师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。
做一做:(同学们做在书上。投影订正。)
根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。
问:你根据什么写出得数的?
师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)
2、分数除以整数的计算法则。
为什么这样列式?
(2)根据题意画出线段图。
生:把1米平均分成7份,取其中的6份。
(3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。
师:有道理,结果也正确,还有别的方法吗?
师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。
学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?
师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。
(4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?
生:被除数不变,除号变乘号,除数变成了它的倒数。
(5)试着说一说分数除以整数的计算法则。
板书:分数除以整数( )等于分数乘以这个整数的倒数。
想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)
问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。
计算法则是否会用呢?我们来自测一下。
投影做一做,学生做在书上,投影订正。
(三)巩固练习
1、计算下面各题。(投影)
2、判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)
(2)题为什么对?举错的说说你的想法?1的.倒数是几?
(3)错在被除数变倒数了,而除数没有变。问:这道怎么改?
(4)错在除号没有变成乘号。怎么改?
(5)错在除数没有变成倒数。怎么改?
去计算。)
师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。
下面我们计算几道题,看谁能正确运用计算法则。
3、计算:
4、想一想:如果a是一个自然数,(3)用一个数检验上面的结果是否对。
(四)课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
(五)作业
课本32页第3,4,5,6题。
课堂教学设计说明
这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。
分数乘分数的教案15
教学目标 :
1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。
2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。
3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。
教学重点:
掌握分数乘分数的计算方法,并能熟练计算。
教学难点:
理解分数乘分数的乘法意义及算理。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )
2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )
3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)
【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】
二、合作探究(小组合作,解决问题)
出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)
(一)探究几分之一乘几分之一的算理算法
1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)
求一个数的几分之几,我们可以用乘法来计算。
2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。
3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。
4. 进行交流反馈
重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固
把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。
5. 得出结果
根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?
6. 猜想计算方法
观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?
【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】
(二)探究几分之几乘几分之几的算理算法
1. 尝试猜想
请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。
2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)
3. 验证反馈
(1)请几个采用不同验证方法的学生进行一一展示。
(预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)
(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。
4. 得出结论
看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】
三、展示交流(展示交流,调拨归纳)
简化计算过程
根据我们所得的结论,试着解决下面的问题
出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。
(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?
(2)乌贼30分钟可以游多少千米?
1. 读题,独立列式并解答。
2. 反馈
(1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。
(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的'情况说明约分的书写格式。
(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。
3. 练习
例4做一做1。
【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】
四、拓展总结(应用拓展,盘点收获)
1. 基础练习
(1)先看数再计算(练习一6、7两题)
反馈校对、纠错。
在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。
预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。
【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】
(2)完成例3、例4做一做剩下的题
反馈校对、纠错。
在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。
2. 练习提升
在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?
○ ○ ○ ○
反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。
(1)题1、题3主要引导学生从分数乘法的意义来理解;
(2)题2、题4主要是对分数计算方法的巩固。
【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】
3.拓展总结
这节课我们学习了什么?我们是怎样得出这些结论的?
没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。
【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】
【分数乘分数的教案】相关文章:
《分数乘分数》教学反思03-10
分数乘分数教学反思04-22
《分数乘分数》教学反思15篇03-31
《分数乘整数》教学反思06-22
分数乘整数教学反思04-13
分数比教案12-13
分数的教案12-30
分数乘整数教学反思(精选20篇)09-05
《分数乘整数》教学反思(精选16篇)10-30
《分数除法》教案02-23