分数的意义教案

时间:2024-11-06 16:40:28 教案 我要投稿

分数的意义教案(经典)

  在教学工作者开展教学活动前,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?下面是小编整理的分数的意义教案,欢迎大家分享。

分数的意义教案(经典)

分数的意义教案1

  教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。

  学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

  教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

  教学目标:

  1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,培养学生的抽象、概括能力。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

  教学难点:对单位“1”的理解。

  教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

  教学过程:

  一、创设情景,温故引新。

  1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  2、能根据成语说出下面的分数吗?

  一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )

  1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

  2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

  3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

  4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

  三、教学分数的意义。

  师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

  出示一个1/4的正方形的阴影部分。

  师:阴影部分可以用什么分数表示?它表示什么意思?

  2、师:下列图中的阴影部分能用1/4表示吗?为什么?

  如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

  (强调一定要平均分)(板书:平均分)

  3、动手操作,探索新知。

  (1)操作。

  师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的.绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

  学生动手操作,教师巡视。

  (2)交流

  师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

  小组交流。

  (3)认识单位“1”。

  师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

  师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

  (课件显示:一个物体)

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

  把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

  师:(投影出示):我们可以把这3只象看作一个整体吗?

  我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

  我们还可以把哪些物体也看成一个整体呢?(学生举例。)

  师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (4)理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

  (5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

  ①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

  生:1/2

  ②师:为什么可以用1/2来表示?

  ③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

  ④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

  ⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

  师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

  四、教学分数单位。

  师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

  加强练习,深化概念。

  练习:

  1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

  2、67 的分数单位是( ),有( )个这样的分数单位。

  3、说出每个分数的意义。

  (1)五(1)班的三好生人数占全班的29 。

  (2)一节课的时间是23 小时。

  4、课本练习十一第9题。

  5、判断(对的打“√”,错的要“×”)。

  (1)一堆苹果分成4份,每份占这堆苹果的14 ( )

  (2)把5米长的绳子平均分成7段,每段占全长的57 ( )

  (3)14个19 是914 ( )

  (4)自然数1和单位“1”相同。( )

  五、小结。

  今天这节课我们学习了?你有哪些收获?

分数的意义教案2

  教学内容:

  教材第37页例1.

  教学目标:

  1.知识与技能

  ⑴会分析简单的分数除法应用题的数量关系。

  ⑵会列方程解已知一个数的几分之几是多少求这个数的一步应用题。

  ⑶培养学生初步分析和解答分数除法应用题的能力。

  2.过程与方法:经历从现实生活情境抽象出数量关系的过程,体验自主探究,合作交流的方法。

  3.情感态度与价值观:感悟数学与日常生活的密切联系,体验数学问题的探索性和挑战性,激发学习兴趣平,培养应用数学的意识。

  教学重点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、复习

  1、根据条件说出把哪个数量看作单位1。

  (1)棉田的'面积占全村耕地面积的2/5.

  (2)小军的体重是爸爸体重的3/8.

  (3)故事书的本数占图书总数的1/3.

  (4)汽车速度相当于飞机速度的1/5.

  2、找单位1,并说出数量关系式。

  (1)白兔的只数占总只数的2/5.

  (2)甲数正好是乙数的3/8.

  (3)男生人数的1/3恰好和女生同样多。

  3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?

  集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。35=28同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)

  二、新授

  1、教学例1.一个儿童体内所含的水分有28千克,占体重的4/5.这个儿童体重有多少千克?

  (1)指名读题,说出已知条件和问题。

  (2)共同画图表示题中的条件和问题。

  (3)分析数量关系式

  提问:根据水份占体重的4/5,可以得到什么数量关系式?

  学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。根据学生的回答,把线段图进一步完善。

  提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)

  让学生试列方程,并说出方程表示的意义。X=28

  让学生把方程解完,并写上答案。

  出示教材的检验,提问:要检验儿童关键字

  儿童体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)2、比较。

  提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?

  根据学生的回答,帮助学生整理出

  (1)看作单位1的数量相同,数量关系式相同。

  (2)复习题单位1的量已知,用乘法计算;

  例1单位1的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。

  三、巩固练习

  1、做书P34做一做

  要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。

  2、做练习九第1题。

  先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。

  四、小结

  这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?

  六、布置作业

  练习九第2题

  教后反思:略

分数的意义教案3

 一、教学目标:

  1.让学生探索并掌握异分母分数的加、减计算方法,能正确计算异分母分数的加、减法。

  2.使学生在联系已有的知识经验探索异分母分数加、减计算方法的过程中,进一步体会数学知识之间的内在联系,感受转化思想在解决新的计算问题中的价值,发展数学思考。

  3.使学生在数学学习活动中,感受数学学习的挑战性,体验成功的乐趣,增强学好数学的信心。

  二、教学重点:

  正确计算异分母分数的加、减法。

  三、教学难点:

  异分母分数加、减法算理的理解。

  四、教学过程:

  (一)谈话引入

  1.我们之前已经学过同分母分数加、减法,请大家计算下面的题目课件出示.

  指名板演,集体订正。

  提问:你是怎样计算的?为什么只可以把分子相加、减,分母不变?你能结合分数的意义说说理由吗?(学生回答)

  2.谈话:这节课我们继续学习分数加法和减法,不过今天学习的内容与以往学习的有所不同。我们一起来看看到底有什么不同。

  (二)交流共享

  1.教学例1.

  (1)出示教材第80页例1,指名读题,并说说自己从题中获得了哪些数学信息。(学生回答)提问:怎样列式?(根据学生的回答板书:11+)为什么这样列式?

  谈话:这道分数加法算式,和我们刚才的'分数加法算式有什么不同?

  揭示课题:分母不同的分数叫作异分母分数。这节课,我们就来探究异分母分数加、减法的计算方法。(板书课题)

  (2)学习计算方法。

  谈话:分母不同,就是分数单位不同,不能直接相加。应该怎样计算呢?先独立思考,再把自己的想法在小组内交流并汇报。

  2.完成教材第80页试一试。

  (1)课件出示:

  (2)课件出示:

  指出:计算1减几分之几时,把1转化成与减数同分母的假分数再计算。指名回答

  提问:你用什么方法验算上面的两道题目?还有别的验算方法吗?

  引导学生交流并明确:可以用差加减数,看结果是否等于被减数,也可以用被减数减差,看结果是否等于减数来验证。

  3.总结计算方法。

  (三)反馈完善

  1.完成教材第80页练一练第1题。

  2.完成教材第80页练一练第2题。

  学生读题,理解题意,独立列式解答,集体订正。

  3.完成教材第82页练习十二第1题。

  学生各自涂色、写得数,同桌互相检查。

分数的意义教案4

  一、教学内容

  分数的意义、分数与除法的关系

  真分数与假分数

  分数的基本性质

  最大公因数与约分

  最小公倍数与通分

  分数与小数的互化

  二、教学目标

  1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

  2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

  3、理解和掌握分数的基本性质,会比较分数的大小。

  4、理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。

  5、会进行分数与小数的互化。

  三、编排特点

  1、多侧面地展现了分数的来源。现实需要和数学需要。

  2、把因数、倍数的有关知识与分数的相关知识结合起来教学。

  3、关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。

  4、部分内容作了适当的精简处理或编排调整。

  (1)求一个数是另一个数的几分之几的实际问题,原来安排在分数与除法的关系之后,现在挪后。

  (2)分数大小比较,不单列一段,而是与通分结合在一起学习。

  (3)删去了原来第2节中把整数或带分数化成假分数的内容。

  四、具体编排

  1、分数的意义

  分数的产生

  通过测量与分物,引入分数,使学生感悟分数是适应客观需要而产生的。

  分数的意义

  (1)单位“1”既可以表示一个物体,也可以表示一些物体,体现了部分与整体的关系。同一个分数可以表示不同的具体量,体现了分数的抽象性。

  (2)分数单位的概念。

  分数与除法

  (1)体现了分数的数学来源:计算时往往不能正好得到整数的结果,常用分数来表示。可从数系的扩展角度来认识分数的产生。

  (2)分数与除法的统一点:对一个整体进行平均分。

  (3)为后面的假分数以及把假分数改写成整数、带分数作准备。

  例1

  把除法的意义和分数的意义进行统一:把1个物体平均分成3份,用除法的意义列出除法算式1÷3,根据分数的意义得到每份是。

  例2

  (1)把许多物体(3块月饼)平均分成4份,求每份是多少。用除法的意义列出除法算式3÷4,根据分数的意义得到每份是,在这儿,可以用两种方式来理解:A、把1平均分成4份,每份是,这样的3份是。B、把3平均分成4份,每份是。

  (2)通过图示得到分数结果,方法多样:一、用操作或图示法。二、推理:1块月饼平均分给4人,每人分得块,3块月饼平均分给4人,每人分得3个块,是块。

  分数与除法关系的总结

  根据例1和例2总结出分数与除法的关系。在这儿,可以把分数的意义进一步扩展,它既可以表示作为结果的一个数,也可以表示一种运算过程。

  (1)可以解决整数除法中商不是整数的情况。

  (2)分数与除法可以互逆,可看作同一种运算。

  (3)因为除数不能为0,所以分母不能为0。

  2、真分数与假分数

  以前学生只接触过分子比分母小的分数,现在介绍分子和分母相等或分子大于分母的分数,可以让学生更全面地认识分数。

  例1

  让学生根据已有知识写出分数,并重点观察分数中分子和分母的大小,并借助直观把它们和1比较,再介绍真分数的概念。

  例2

  让学生重点观察分数中分子和分母的大小,并把它们和1的大小比较,给出假分数的概念。需指出这里的单位“1”是一个圆而不是所有圆的总体。

  例3

  (1)从生活语言“一个半”引出带分数的写法及读法。

  (2)让学生仿照着写出其他的分数。

  例4

  (1)要把假分数化成整数或带分数是因为要培养学生对于分数的数感。

  (2)化的时候有不同的方式。

  A、根据分数的意义:4个就是1。

  B、利用直观图。

  C、利用分数与除法的关系。

  (3)可引导学生总结假分数化成整数或带分数的一般方法。

  3、分数的基本性质

  分数的基本性质是约分、通分的基础。

  例1(分数基本性质的推导)

  (1)通过直观图观察得出三个分数相等。

  (2)从两个方向观察三组分数的分子、分母的变化规律。

  (3)通过自主举例,从具体到一般,总结出分数的基本性质。

  (4)由于分数与除法的内在一致性,引导学生用除法中商不变的性质来说明分数的基本性质。

  例2(分数基本性质的应用)

  把分数化成分母不同(分母扩大、分母缩小两种情况),但大小相同的另一分数。

  4、约分

  与九义教材相比,把公因数、最大公因数移至此,更体现了求公因数的必要性。

  最大公因数

  例1(公因数、最大公因数的概念)

  (1)利用实际情境(用正方形铺满长方形且必须是整块数)引出求公因数的必要性。

  (2)借助操作进一步理解正方形的边长必须既是长方形长的因数,又是宽的因数,从实际问题转入数学问题。

  (3)用集合的形式表示出因数、公因数,与第二单元相响应。

  例2(最大公因数的求法)

  (1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最大公因数的方法,只在“你知道吗”中进行介绍。

  (2)多种方法。

  A、分别列出两个数的所有因数,再找公因数。

  B、从较小的数的最大因数开始找,看是不是另一个数的因数。

  也可引导学生想出不同的方法,如:从较大的数的最大因数开始找,然后和上面的B方法进行比较,看哪种更合适。

  (3)让学生通过观察,找出公因数和最大公因数之间的关系:所有的公因数都是最大公因数的因数。

  做一做

  让学生接触两类特殊数的最大公因数:两数存在因数和倍数的关系,两数互质。

  约分

  例3(最简分数的'概念)

  (1)通过实际情境引出两个分数(根据不同的素材引出:具体的米数、分成四段)。

  (2)利用分数的基本性质说明两个分数相等,为后面的约分设下铺垫。再给出最简分数的概念。

  例4(约分)

  (1)原理:利用分数的基本性质把分数改写成相等的最简分数。

  (2)方法多样:可以逐步约分,也可直接用最大公因数约。

  (3)给出约分的简便写法。

  5、通分(编排方式与约分相似)

  与九义教材相比,把公倍数、最小公倍数移至此,更体现了求公倍数的必要性。

  最小公倍数

  例1(公倍数、最小公倍数的概念)

  (1)利用实际情境(用长方形铺满正方形且必须是整块数)引出求公倍数的必要性。

  (2)借助操作进一步理解正方形的边长必须既是长方形长的倍数,又是宽的倍数,从实际问题转入数学问题。

  (3)用集合的形式表示出倍数、公倍数,与第二单元相响应。

  例2(最小公倍数的求法)

  (1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最小公倍数的方法,只在“你知道吗”中进行介绍。

  (2)多种方法。

  A、分别列出两个数的倍数,再找公倍数。

  B、从较大的数的最小倍数开始找,看是不是另一个数的倍数。

  也可引导学生想出不同的方法,如:从较小的数的最小因数开始找,然后和上面的B方法进行比较,看哪种更合适。

  (3)让学生通过观察,找出公倍数和最小公倍数之间的关系:所有的公倍数都是最小公倍数的倍数。

  做一做

  让学生接触两类特殊数的最小公倍数:两数存在因数和倍数的关系,两数互质。

  通分

  例3(分数大小的比较)

  (1)通过实际情境引出两个分母相同的分数的大小比较。

  (2)和的比较方法多样(三年级上册已经有了一定基础)。

  A、根据分数的意义。

  B、根据分数单位的多少。

  (3)让学生通过一些特例,自行总结分母相同或分子相同的分数的大小比较方法(三年级上册有了分子都是1的分数大小比较方法)。

  (2)利用分数的基本性质说明两个分数相等,为后面的约分设下铺垫。再给出最简分数的概念。

  例4(通分)

  (1)从实际情境引入,出现分子、分母均不相同的情况,比较大小时产生认知冲突。

  (2)原理:利用分数的基本性质把两个分数改写成分母相等的分数。

  (3)通分时,可以把分母都化成两个分母的最小公倍数,也可以不是最小公倍数。

  (4)作为比较大小的方法,还可以把两个分数改写成分子相同的分数。

  (5)区别通分与约分:约分是对一个分数的运算,通分是对两个分数的运算。

  6、分数和小数的互化

  例1(小数化分数)

  (1)用小数和分数两种不同的方式表示同一个除法运算的结果,建立起两者的联系。

  (2)利用小数的意义给出小数化分数的一般方法。一位小数由教材给出范例,两、三位小数由自己类推。

  例2(分数化小数)

  (1)创设六个数比较大小的数学情境。

  (2)分数化小数的方法多样;

  A、分母是10、100......的,利用小数的意义来化。

  B、分母不是10、100......的,可以化成分母是10、100......的,也可以利用分数与除法的关系来化。

  整理和复习

  分数的概念

  分数的分类

  分数的基本性质及其运用

  分数与小数的互化

  五、教学建议

  1、充分利用教材资源,用好直观手段。

  2、及时抽象,在适当的抽象水平上,建构数学概念的意义。

  3、揭示知识与方法的内在联系,在理解的基础上掌握方法。

分数的意义教案5

  一、 本周主要内容: 百分数的意义和读写、百分数与小数、分数的互化

  二、本周学习目标:

  1、在现实情境中,理解百分数的意义,会正确读、写百分数。能正确进行百分数和小数、分数的互化。

  2、使学生在理解百分数的.意义、探索百分数与分数、小数互化方法的过程中,进一步体会数学知识之间的内在联系,增强思维的深刻性及数感。

  3、使学生在用百分数表达和交流生活现象,解决简单实际问题的过程中,体会百分数与生活的密切联系,增强自主探索与合作交流的意义,进一步增强学好数学的信心。

  三、考点分析:

  1、表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫做百分率或百分比。

  2、百分数通常不写成分数的形式,而在原来的分子后面加上“﹪”来表示。

  3、百分数只能表示一个数是另一个数的百分之几,而不能表示具体的量,也就是说百分数后面不能加单位。

  4、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

  5、把分数化成百分数,通常先把分数化成小数(除不尽时,一般保留三位小数),再把小数化成百分数。

  6、百分数化成分数:先把百分数改写成分数,能约分的要约成最简分数。

  7、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

分数的意义教案6

  教学目标:

  1让学生了解的产生

  2引导学生理解分数的意义,知道分数各部分的名称3通过分数的学习,培育学生视察、思索、抽象概括的实力

  4通过分数的产生,使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增加学生学习数学的爱好

  教学重点:分数意义的理解

  教学难点:对单位“1”的理解教具学具:水果图片若干,实物(4个苹果),小黑板教学过程:

  一揭示课题(分数的产生)

  1.出示4个苹果,问:假如把它平均分给两个小挚友,那么每人分得几个?(2个)

  2.出示2个苹果,问:假如把它平均分给两个小挚友,那么每人分得几个?(1个)

  3.出示1个苹果,问:假如把它平均分给两个小挚友,那么每人分得几个?(半个或1/2个)这里的1/2是什么数?

  在实际生产和生活中,人们在进行测量和计算的时候,往往不能得到整数的结果,经常就会用到分数。分数在我们生活中随处可见,与我们的生活密不行分。那么,原委什么叫做分数呢?这节课我们就来探讨这个问题。(板题)二教学新课

  1引探分数的意义

  刚才老师把1个苹果平均分给两个小挚友,每人分得1/2个。(板书:贴苹果图片,平均分成两份,表示这样的一份1/2)

  现在老师要让你们随意说一个分数,并说说这个分数表示什么意思

  指名回答,板书:大饼3份1份/2份1/32/3刚才我们分的都是一个物体,现在老师这里有一条线段,假如我把它平均分成五份,那么其中的一份,表示几分之几?其中的4份呢?

  指名回答,板书:—————5份1份/4份1/54/5 小结:把一个物体、一个计量单位平均分成2份、3份、5份等等若干份,这样的一份或者几份都可以用分数表示。板书:若干份一份或者几份

  2进一步相识分数的意义

  出示苹果图片(4个),把它看成一个整体,并演示把4个苹果装进一个袋子里,问:这表示什么?(一袋苹果)是一个整体。我们可以把这个整体平均分成多少份,每份是几个苹果?1个苹果是这个整体的几分之几?3个苹果是这个整体的几分之几?

  把4个苹果看作一个整体,还可以平均分成多少份?每份是几个苹果?是这个整体的几分之几?板书:4份1份/2份1/42/4

  2份1份1/2

  这里的2/4是几个苹果?1/2是几个苹果?

  2/4和1/2表示的苹果个数相同,意义相同吗?(不同)小结:把一个整体平均分成若干份,这样的一份或者几份也可以用分数来表示。

  3归纳分数的意义

  (1)单位“1”

  看来我们不仅可以把一个物体,一个计量单位拿来平均分,还可以把很多物体组成的一个整体拿来平均分,这样的一份或几份也可以用分数来表示。这里的一个物体,一个计量单位或一个整体,我们可以把它取名叫做单位“1”板书:单位“1”

  谁能说说单位“1”的含义?(2)完整概念

  什么叫做分数?谁能用一句话表述出来?板书:叫做分数

  (3)练习

  教材76页练习十三第3题

  4理解分数各部分意义、写法

  刚才我们把一条线段平均分成5份,其中的1份是1/5,4份是4/5,那么3份是几分之几?板书:3/5说出分数各部分的名称,并说出各个名称表示的含义板书:分数线分母分子

  写分数应先写什么,再写什么,最终写什么?用手指描描

  拿出笔来写写分数,任务是8个。学生在写的过程中,老师突然叫停。问:你写了几个?能用一个分数表示你任务的完成状况吗?请学生用分数来表示其任务的完成状况,其他人猜其写了几个。

  三巩固练习

  1教材74页练一练

  2教材76页练习十三第一题

  3摘桃子嬉戏

  (1)把6个桃子看作一个整体,请一

  名学生随意摘几个桃子,其他人说摘了几分之几(2)师说一个分数,请学生上来摘四课堂小结

  1什么叫单位“1”?

  2分数的意义是什么?

  3分数个部分名称是什么?

  五课堂作业

  教材76-77页练习十三第四题

  教学反思:

  本课是在学生已有“分数的初步相识”的基础上进行教学的,我从学生已有的.学问动身进行教学,其教学特点主要表现为以下几点:

  1、力求数学问题生活化

  本节课,我所选的教学内容,尽量结合学生的生活实际进行教学,如学生喜爱的苹果桃子等水果进行教学,让学生在现实情境中体验和理解数学,变传统的“书本中学数学”为“生活中学数学”。

  2、让学生经验学问的形成过程

  本节课,我对一些重点和难点的地方,尽量让学生结合各种操作活动,讲透和理解透,让学生多说,老师只起引导作用。如在教学把几个物体组成的整体看作单位“1”时,老师利用学生感爱好的4个苹果,把它放在一个袋里,这里的“一袋苹果”就可以看作“单位1”,这里就让学生很好地突破了这一学问点。这里形象的引导操作使学生特别明白,所以一下子使学生举了好多例子。

  3、学生的主体意识较强。在让学生探究分数意义时,学生学习主动性较高,爱好较浓,都能主动主动地参加到学习的过程中。如在摘桃子嬉戏中,一学生到前面摘桃子,其他学生能依据前一位学生摘的桃子个数很快说出表示哪个分数,且方法多样。这里充分体现了学生的参加意识与主体精神。又如在总结分数的意义时,老师没有把书上完整的概念出示出来,而是让学生在理解的基础上让学生逐步归纳、修正、完善概念,也使学生真正理解了分数的意义。这里也较好地体现了学生的主体意识和实践实力,同时也培育了学生的概括实力。

分数的意义教案7

  教学目标

  1。使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

  2。掌握分数除以整数的计算法则,并能正确的进行计算。

  3。培养学生分析能力、知识的迁移能力和语言表达能力。

  教学重点

  正确归纳出分数除以整数的计算法则,并能正确的.进行计算。

  教学过程

  一、复习引新

  (一)说出下面各数的倒数。

  0.3 6

  (二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

  (三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来

  学习

  分数除法。(板书课题:分数除法的意义和计算法则)

  二、新授教学

  (一).教学分数除法的意义(演示课件:分数除法的意义)

  1.每人吃半块月饼,4个人一共吃多少块月饼?

  教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()

  2.两块月饼,平均分给4人,每人分得多少块?怎样列式?

  列式:2÷4

  3.两块月饼,分给每人半块,可以分给几个人?

  列式:

  教师提问:说一说结果是多少?你是如何得出结果的?

  4.组织学生讨论:分数除法的意义。

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  5.练习反馈。

  1.出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

  (1)求每段长多少米怎样列算式?

  (2)以小组为单位讨论一下得多少呢?

  米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

  (3)教师板书整理。

  2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

  也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:

  把米铁丝平均分成6段,就是求米的是多少,列式是:

  3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

  4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

  三、巩固练习

  (一)计算下面各题。

  学生独立完成,教师巡视,进行个别辅导。

  (二)求未知数

  1.2.

  (三)判断。

  1.分数除法的意义与整数除法的意义相同。()

  2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

  (四)解答下面各题。

  1.把平均分成4份,每份是多少?

  2.什么数乘以6等于?

  3.一个正方形的周长是米,它的边长是多少米?

  四、课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  五、课后作业

  (一)计算下面各题。

  (二)解下列方程。

  六、板书设计

  分数除法

分数的意义教案8

  教学内容:

  人教版课程标准实验教材小学数学五年级下册

  教学目标:

  1、让学生在分一分、画一画、写一写、折一折、涂一涂体验中理解单位”1”,感受什么是分数,进而理解分数的意义,培养学生实际操作能力和抽象概括能力。

  2、让学生在轻松和谐的氛围中主动参与、积极合作、充分体验,感受数学与生活的密切联系,激发学生学习数学的兴趣和树立学好数学的信心。

  教学重点:单位“1”和分数的意义的教学。

  教学难点:突破一个整体的教学。

  教学具:多媒体课件、纸片、一分米、方块、小棒、小刀、水彩笔。 教学过程:

  一、 激趣引入:

  师:板书数字1。这是几?表示什么?能具体说说可以表示1个什么吗? 学生回答(1个苹果、一张白纸、一根绳子、一个学校的全体学生??) 师:老师想问大家一个非常简单的问题,1+1=?(点击课件)可能等于1吗?(点击课件)

  师:一吨煤+一吨煤=一堆煤 (点击课件)

  7个苹果+8个苹果=? (点击课件)

  师:这个简单而又神奇的1有如此丰富的意义,老师可以给它加上引号,起名叫作单位“1”。

  师:取出学具袋,倒出其中的学具,分一分、说一说,哪些能用单位“1”表示?

  【设计意图:开门见山教学单位“1”,突出“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”,单刀直入式的导入无疑是本课亮点之一,不仅大大提高了教学效率,有效突破了教学难点,其分一分、说一说的教学设计为学生提供了丰富的体验,激发了学生的求知欲。】

  二、课题揭示

  师:板书“分”字,问这是什么字?

  师:分过东西吗?你是怎样分的,能举例说明吗?

  生:??

  师:他这样分叫做什么分?板书:平均分

  师:以前学过的数学知识中,什么和平均分有关?

  生:分数(板书)。

  师:你对分数了解有多少?

  生:??

  师:这节课我们进一步学习分数。板书课题:分数的意义

  让读课题后,问学生意义指什么?

  分数起源于分,分数在我们的生活中应用非常广泛。(点击课件介绍分数的产生)

  三、探索新知:

  (一)回顾旧知:

  师:用以前所学的分数的知识,分你手中的单位“1”,你能得到哪些分数?

  学生操作,组内交流,各组推荐汇报。以1/4为例说明。

  教师提醒学生注意倾听别人的意见,对不准确的地方要加以修正,尤其要强调“平均分”,尽量做到不要重复别人的发言内容。

  【设计意图:把学习的主动权真正交给了学生,教师将几种学具材料交给学生,让学生通过小组合作的方式操作用分数表示,既尊重了学生的已有知识储备,又在不知不觉中为新知的构建架设桥梁。】

  (二)、研究几分之一

  师:你们想研究别的分数吗?教师出示1/○

  师:这是分数吗?你会读吗?它有什么特别之处?

  师:请大家拿出12根小棒,分一分、说一说,看看可以有多少种不同

  方法来表示1/○ ?

  学生操作,小组讨论、交流,教师巡视,引导学生用不同的方式表示。 学生汇报,教师板书1/2 →6根、1/3 →4根、1/4 →3根、1/6 →2根、1/12 →1根。

  师:你又发现了什么?

  师:同学们真了不起,发现了这么多知识!

  【设计意图:富有挑战性的问题犹如一枚枚石子投进蓄势已久的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作,足以让学生获得积极的、深层次的体验。】

  (三)、研究几分之几

  1、教师出示○/○

  师:猜猜看,老师想让你干什么?

  教师出示要求:

  分一分(选择合适的学具表示这个分数)

  画一画(用简单的图形来表示这个分数)

  折一折、涂一涂(选择合适的学具,用折叠、涂色的.方法表示这个分数) 说一说(组内互相说说这个分数)

  学生动手操作、组内交流,教师巡视指导。

  2、各组推荐学生汇报??

  【设计意图:遵循小学生数学学习的心理规律,问题设计得精且极具开放性、挑战性,以丰富的操作实践刺激学生的多种感官,注重学生感性认识,学生真正在“做数学”。】

  四:阅读教材:

  1、师:关于分数的知识,以前我们学习过一些,在课前我们也通过自学课本、查阅资料、请教别人,你现在知道多少分数的知识,能告诉老师吗?

  学生回答??

  2、师:让我们看看数学书上专家是怎样说的?

  学生看书、圈划、摘读,组内交流。

  3、师:什么是分数单位?我们刚才研究了吗?3/5 的分数单位是什么?有几个? 7/12 、11/20 呢?

  【设计意图:注重对学生学习方法的熏陶。在设计时,注意到学生自我获取信息能力以及良好学习习惯的培养,让学生课前自学课本、查阅资料、请教别人,了解分数的有关知识,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为学生的终身发展打下坚实的基础。】

  五、 综合应用

  1、完成课本第62页做一做。

  2、填一填:

  (1)把一堆苹果平均分成5份,一份是这堆苹果的( )两份是这堆苹果的( )。

  (2)这两位同学是( )人数的几分之几?

  3、糖块游戏。

  拿走9块糖的1/3,拿走几块?为什么?再拿走剩下的1/3,拿走几块?为什么?再拿剩下糖的1/4,拿走几块?

  4、写分数游戏

  师:下面请同学们练习写分数,比一比谁写得规范好看?任务是8个。 学生在写分数的过程中教师突然叫停。

  师:数一数,你写了几个分数?你能用刚学的分数说一句话,让大家猜一猜你完成的情况吗?

  生:我写了??

  【设计意图:学以致用,在应用中赋予数学活力与灵性,让学生在生动活泼的数学学习活动感受到数学与生活的紧密联系。所谓“人人学有价值的数学”、“不同的人在数学上得到不同的发展。”】

  六、全课小结:

  师:对于分数的意义你还有什么不懂的可以提问。

  学生质疑,学生解答,教师补充。

  师:关于分数的知识你掌握的情况如何,你能用今天学习的分数的知识

  说一说吗?

  生:??

  本课设计特色:

  1、淡化形式,注重实质

  分数的意义对于小学生来讲是一个比较抽象的概念,本课设计淡化形式,注重实质,一切以学生的发展为本,以解决问题为中心,以引导学生发现问题、分析问题、解决问题的逻辑性来体现教学的严谨性。整节课教师都没有将“把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数”这句严密、枯燥、抽象的话语塞给学生,但是整节课彻头彻尾都紧扣“分数的意义”教学的重点和难点,苦心经营,匠心运作。

  2、源于生活,回归生活。

  小学生学习的数学应是生活中的数学,是学生“自己的数学”,同时数学又必须回归于生活,数学只有在生活中才能赋予活力与灵性。本课设计注意到数学的教与学紧密联系生活,帮助学生在生活中发现意义,注重现实体验,力避传统的“书本中学数学”,体现生活中教学相长的互动关系,大胆改革教材的例题呈现方式,“跳出教材教数学”。

  3、强调合作,知识增殖。

  本课设计做到把学习的主动权交给学生,多给学生思考和表现的机会,多些成功的体验,突出每个个体的作用,使每一个学生不仅对自己的学习负责,形成人人教我,我教人人,让学生在主动参与合作中完成任务,实现知识在交流中增殖,思维在交流中碰撞,情感在交流中融通。

  4、注重体验,培植兴趣。

  学生学习的不只是“文本课程”,而更是“体验课程”,“学生的数学学习内容应当是现实的、有趣的、富有挑战性的”。本课教学中的说一说、分一分、画一画、写一写、折一折、涂一涂为学生提供了高频率、多维度、深层面的体验,我们的学生在学习时感到了乐趣,体验到了成就感,激励他们进行更深入的学习与研究。

分数的意义教案9

  教学目标:

  1.知识与技能:使学生掌握分数除法应用题的结构及数量关系,学会分析解答分数法除应用题,发展学生思维能力。

  2.过程与方法:引导学生充分自主探索,分组讨论,观察分析和比较,在自主学习中探究,在探究中发展提高。

  3.情感、态度与价值观:通过过师生交流总结,让学生获得学习数学的成功。让学生养成认真审题、积极思考的良好学习习惯。

  教学重点:

  能用方程正确解答分数除法应用题。

  教学难点:

  确定单位1、分析数量关系

  设计思路:

  教学这类应用题,要紧密联系一个数乘分数的意义,先用列方程的方法来解答,在此基础上再教学用分数除法来解答,这样不但加强了与求一个数的几分之几是多少的乘法应用题的联系,同时也加强对应用题的数量关系的分析,特别是判断哪个数量是单位1的量,分析它是已知还是未知来确定怎样用方程解。另外,还加强了方程解法与用除法解法之间的联系,使学生在掌握方程解法的`基础上,切实学会用除法来解,依据理论:

  这样既培养了学生灵活解答分数应用题的能力,又有助于发展学生思维的灵活性。

  课程标准:

  初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识

  教学过程:

  一、复习(10分钟)

  单位1和数量之间相等关系

  激趣,指导

  使学生掌握分数除法应用题的结构及数量关系

  二、自主探究、解决问题(20分钟)

  例1,例2

  引导,点拨

  学会分析解答分数法除应用题,发展学生思维能力。

  三、练习(10分钟)

  诱思

  初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。

  流程图

分数的意义教案10

  教学目标:

  使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。

  教学重点:

  分析题里所含的数量关系,把哪个数看作单位1。

  教学难点:

  怎样列出方程。

  教学过程:

  一、复习

  列式计算,并口述把哪个数看作单位1。

  (1)的是多少? ( )看作单位1。

  (2)14的是多少? ( )看作单位1。

  (3)1的是多少? ( )看作单位1。

  二、新授

  1、板书课题:列方程解文字题

  2、出示例4:一个数的是,这个数是多少 ?

  (1) 分析数量关系

  提问

  ①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)

  ②硬该把哪个数看作单位1?为什么?

  ③单位1所表示的数知道吗?

  ④怎样求单位1所表示的`“这个数”?(引导学生用设未知数X的方法来解决)。

  使学生明确:根据一个数乘以分数的意义。

  由已知:一个数的是,得:一个数×=?

  (2) 列方程解文字题。

  第一步,设未知数为X。教师板书

  解:设这个数是X。

  第二步,根据题意列出方程。教师板书

  X×=

  第三步,解这个方程。教师板书:(略)

  第四步,检验:(略)

  第五步:作答

  3、小结

  (1)怎样设求知数?

  要求单位“1”的量,设单位“1”的量为X。

  (2) 样根据题意列方程?

  找出题中数量之间的等量关系。

  三、巩固练习

  1、教科书第35页“做一做”。

  2、一个数的1倍等于2,求这个数。

  四、课堂练习

  练习九第12、16—19题。

  五、作业

  练习九第13—15题。

  六、课外思考

  练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。

分数的意义教案11

  课题一:(一)

  教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。

  教学重点 理解。

  教学用具 教材第84~85页有关的投影片、线段图等。

  教学过程

  一、创设情境

  1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。

  2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。

  3.揭示课题

  在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。

  二、探索研究

  1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:

  (1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?

  (2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )

  (3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?

  如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?

  2、进一步认识单位1。

  以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:

  (1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?

  (2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?

  (3)练习:说出下图中涂色的部分各占整体的几分之几。

  ● ●

  ●○○○○○ ● ●

  ●○○○○○ ● ●

  ● ○

  ● ○

  ● ○

  3.揭示。

  (1)观察以上教学过程 所形成的板书。

  一个物体

  计量单位 单位1

  一些物体

  告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)

  (2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?

  (3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

  4.练习。练习十八第1、2、3题。

  5.教学分数各部分名称、分数单位。分数的读、写法。

  (1)教师任意写出几个分数,让学生说出分数各部分的名称。

  (2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?

  (3)认识分数单位,初步了解分数单位的特点。

  练习:① 的分数单位是,它有个 。

  ② 的分数单位是,它有个 。

  ③个 是。

  ④ 是个 。

  (4)想一想:读、写分数的方法是怎样的?

  读作 ,表示 个 。

  读作 ,表示有 个 。

  三、课堂实践

  1. 表示把平均分成份,表示这样的份的数。

  2. 读作,分数单位是,再添上个这样的单位是整数1。

  四、课堂小结

  1、什么叫做分数?如何理解单位1?

  2、什么是分数单位?分数单位有什么特点?

  五、课堂作业

  练习十八第5、6题。

  课题二:(二)

  教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。

  教学重点 理解。

  教学过程

  一、 创设情境

  1.用分数表示图中阴影部分。

  ▲▲ ▲▲

  △△ ▲▲

  2.口答:什么是分数?如何理解单位1?

  3.填空。

  是个 。 的分数单位是

  7个 是。 的分数单位是

  二、揭示课题

  出示学习内容及学习目标。板书课题:。

  三、探索研究

  1.认识用直线上的点表示分数。

  分数也是一个数,也可以用直线(数轴)上的点来表示。

  (1)认识用直线上的点表示分数的方法。

  ①画一条水平直线,在直线上画出等长的距离表示0、1、2。

  ②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :

  0 1 2

  (2)提问:如果要在直线上表示 ,该怎样画?启发点拨。

  ①先画什么?再画什么?

  ②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?

  ③ 应用直线上的哪一个点来表示?

  (3)如果要在这条直线上表示分母是10的分数,该怎么办?

  这条直线上0~1之间的第七个点表示的分数是多少?

  2.练习。

  (1)教材第87页下面做一做的第2题。

  (2)用直线上的点表示 、 、 、 。

  3.教学例1。

  (1)指名读题,帮助学生理解题意。

  (2)出示讨论题,同桌讨论。

  ①这题中把什么看作单位1?

  ②1人占这个整体的几分之几?

  ③5人占这个整体的几分之几?

  (3)汇报讨论结果,板书答语。

  (4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。

  4、练习。教材第88页的做一做。

  四、课堂实践

  1.教材第87页的做一做。

  2.用直线上的点表示 下面的分数: 、 、 、 、 。

  3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?

  五、课堂小结

  1.用直线上的点表示分数的方法是怎样的?

  2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?

  六、课堂作业

  练习十八第4、7、8题。

  课题三:分数与除法的关系

  教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。

  教学重点 理解和掌握分数与除法的关系。

  教学用具 投影片(教材第89页的饼图)

  教学过程

  一、创设情境

  1.填空。

  (1) 表示。

  (2) 的分数单位是,它有个这样的分数单位。

  2.计算。(1)58 (2)49

  二、揭示课题

  我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)

  三、探索研究

  1.教学例2

  (1)读题后,指导学生根据整数除法的意义列出算式。板书:

  13=

  (2)讨论:1 除以3结果是多少?你是怎样想的?

  (3)教师画出线段示意图,帮助学生理解。

  1米

  ?

  通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。

  (3)写出答语。

  2.教学例3。

  (1)读题后,引导学生列出算式:34。

  (2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  (3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。

  (4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,

  34=(块)。

  由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。

  3、认识分数与除法的关系。

  (1)引导学生观察13=、34=这两道算式,想一想:

  ①两个自然数相除,在不能得到整数商的'情况下,还可以用什么数表示?

  ②用分数表示商时,除式里的被除数、除数分别是分数里的什么?

  ③分数与除法的关系是怎样的?

  (2)教师总结,学生发言,归纳出以下三点:

  ①分数可以表示整数除法的商;

  ②在表示整数除法的商时,要用除数作分母、被除数作分子;

  ③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)

  分数与除法的关系可以表示成下面的形式:

  板书:被除数除数=

  (3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?

  板书:ab=(b0)

  (4)想一想:这里的b能为0吗?为什么?

  启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。

  (5)再想一想:分数与除法有区别吗?区别在哪里?

  着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。

  4、学生阅读教材,质疑问难。

  四、课堂实践

  教材第91页中间的做一做。

  五、课堂小结。

  引导学生回顾全课,说说学到了什么,自我总结,教师作补充。

  六、课堂作业 。练习十九第1~3题。

  课题四:分数与除法关系的应用

  教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。

  教学重点 求一个数是另一个数的几分之几的应用题。。

  教学过程

  一、创设情境

  1.口答:30分米=米 180分=时

  练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

  2.说一说:分数与除法的关系?

  3.用分数表示下面各算式的商。

  (1)79(2)47(3)815(4)5吨8吨

  二、揭示课题

  这节课学习分数与除法关系的应用。(板书课题)

  三、探索研究

  1.出示例4。

  (1)出示例4并审题。

  (2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?

  让全体学生尝试练习。

  (3)集体订正。订正时让学生说说是怎样想的?

  (4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?

  重点说明当两数相除得不到整数商时,其结果可以用分数表示。

  2.练习教材第91页下面的做一做。

  3.教学例5 。

  (1)出示教材第92页复习题,让学生独立列式解答。

  集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?

  板书:3010=3

  答:鸡的只数是鸭的3倍。

  (2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。

  讨论后师生共同评价,主要有两种方法:

  ①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。

  ②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。

  (3)比较复习题与例5异同点。

  通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。

  4、练习。教材第92页做一做第1、2题。

  四、课堂实践

  1.在括号里填上适当的分数。

  8厘米=米 146千克=吨 23时=日

  41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米

  2.五(1)班有女生25人,比男生多4人。

  (1)男生占全班人数的几分之几?

  (2)女生占全班人数的几分之几?

  (3)男生人数是女生人数的几分之几?

  五、课堂小结

  1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?

  2、求一个数是另一个数的几分之几应用题的解答方法是什么?

  六、课堂作业

  练习十九第4~7题。

  七、思考题。

  练习十九第8题及思考题。

  课题五:分数大小的比较

  教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。

  教学重点 掌握比较分数大小的方法。

  教学用具 投影片(教材例6、例7直观图)

  教学过程

  一、创设情境

  1.教材第93页复习题,请一名学生口答。

  2.看图写分数,并比较分数的大小。

  0 1

  二、揭示课题

  以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)

  三、探索研究

  1.同分母分数的大小比较。

  (1)比较 和 的大小。

  出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )

  如果没有直观图,该怎样比较 与 的大小呢?

  因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。

  (2)用类似的方法引导学生比较 和 的大小。

  (3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)

  板书:分母相同的两个分数,分子大的分数比较大。

  2.练习:教材第93页做一做。

  3.同分子分数的大小比较。

  (1)比较 和 的大小。

  ①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。

  ② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。

  (2)比较 和 的大小。

  用类似的方法进行比较并得出结论: < 。

  (3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?

  板书:分子相同的两个分数,分母小的分数比较大。

  4、练习:教材第95页的做一做。

  四、课堂小结

  比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。

  五、课堂实践

  1.练习二十第1题。

  2.练习二十第3题。

  六、课堂作业

  练习二十第2、4题。

  七、思考练习

  在括号里填上合适的数

  < < < > >

分数的意义教案12

  【教学内容】

  教科书第1~2页的例1以及相关的练习。

  【教学目标】

  1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

  2?培养学生的分析能力和归纳概括能力。

  3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

  【教具准备】

  多媒体课件和视频展示台。

  【教学过程】

  一、复习引入

  师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

  等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

  二、教学新课

  1?教学例1,理解单位“1”

  师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

  师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

  等学生分好后,抽一个学生分的小圆在视频展示台上展示。

  师:这时,小华的爸爸又提出了问题。

  课件演示:爸爸对小华说:每个人得的`月饼是这8个月饼的几分之几呢?

  引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

  师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

  多媒体课件演示下面的月饼图:

  引导学生理解两个1/4代表的数量不一样。

  师:为什么会出现这种现象呢?

  引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

  师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

  让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

  师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

  师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

  请分一分,并填空。

  课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

  引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

  师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

  板书单位“1”的含义。

  师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

  2?理解并归纳分数的意义

  师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

  学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

  师:想想自己操作的过程,你能说一说什么是分数吗?

  学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

  师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

  归纳并板书分数的意义,板书课题。

  试一试:涂色部分占整个图形的几分之几?

  师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

  生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

  师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

  3?说生活中的分数

  师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

  学生说生活中的分数。

  三、课堂小结

  (略)

  四、课堂作业

  1?第4页课堂活动第2题。

  2?练习一第1,2,3,4题。

  分数的意义

  师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

  课件出示如下的题目:

  (1)把一个月饼平均分成4份,其中的1份是这个月饼的();

  (2)把一张手工纸

分数的意义教案13

  教学内容:

  课本第25页~66页的例题和做一做,练习七的第1~5题。

  教学目的:

  1、使学生理解分数除法的意义与整数除法的意义相同。

  2、学会分数除以整数的计算方法。

  教学重点:

  理解分数除法的意义;学会分数除以整数的计算方法。

  教学难点:

  分数除法的意义。

  教学方法:

  演示法,讨论法。

  教具准备:

  教师准备10个半块月饼的教具。

  教学过程:

  一、复习(指名回答)

  1、举例说明整数除法的意义是什么?

  2、根据乘法算式13438=5092,写出相应的两个算式。

  3、举例说明分数乘以整数的意义和一个数乘以分数乘法的意义各是什么?

  二、新课

  1、教学分数除法的意义。

  教师出示5个半块月饼的教具,设问

  *每人吃半块月饼,5个人一共吃多少块?怎样列式?

  *两块半月饼,平均分给5个人,每人分得多少块?怎样列式?

  *两块半饼分给每人半块,可以分给多少人?

  让学生观察、比较上面3道题中算式的已知数和得数,再回答下列问题

  *第一个算式山知什么?求什么?用什么方法计算?第二个算式呢?

  *第三个算式跟上面哪一个算式是类似的?

  师:分数除法的意义是什么?它跟整数除法的意义不一样吗?(分数除法的意义与整数除法的'意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。)

  2、做教科书第65页做一做中的题目。

  让学生自己读题、做题,做完后要问学生是怎样应用乘法算式和分数除法的意义来填写除法算式的?

  3、教学分数除以整数。

  ⑴出示例1:把6/7米铁丝平均分成2段,每段长是多少米?师:根据题意需要用什么运算来出得数?并列出算式。再提问:这个算式的含义是什么?米是几个米?应该怎样计算?试试看。

  ⑵师:说一说分数除以整数可以怎样计算?(分数除以整数可以用分数的分子除以整数。)

  引导学生讨论:⑴把6/7米平均分成2段,求每段是多少,还可以怎样求?能不能把它转化为已学过的算法来计算。

  ⑵就这道题来说,肆种方法可行?哪种方法不可行?为什么?(第一种方法不行,因为被除数的分子不能被除数。)

  师小结:分数除以整数可以用分数的分子除以整数,但不是总能得到整数的商,所以通常把分数除以整数转化成分数乘以这个整数的倒数。

  在分数除法中,是不是所有整数都可以作除数?边想边阅读教科书第66页上关于分数除以整数的法则。

  4、课堂练习,做课本第66页中做一做的题目。

  让学生独立做,巡视时,注意学生计算时产生错误的情况。集体订正时,让学生把错误的做法说一说,找出原因。

  估计可能出现的错误:⑴把除号改为乘号后,没有把除数相应地改成它的倒数。

  ⑵把除数改成它的倒数后,没有把除号改成乘号。

  三、巩固练习

  让学生独立完成第1、2题,提醒学生要按照法则来做题,能够口算的,要用口算。巡视时,要注意帮助有困难的学生,发现错误要及时纠正。做完后集体订正。

  作业:练习十七第3、4、5题。

分数的意义教案14

  教学目标:

  1、体会生活中常见的百分数,明确其具体含义。掌握百分数的读、写法。明确分数与与百分数的联系和区别。

  2、通过交流、讨论、辨析等活动,培养学生独立思考、抽象概括的能力。

  3、培养学生敢于提问、善于质疑的学习态度,渗透事物间普遍联系的辩证唯物主义观念。

  教学重点:

  体会生活中常见的百分数,明确其具体含义;抽象百分数的意义

  教学难点:

  明确百分数与分数的联系与区别。

  教学教具:

  “百分数的意义”多媒体课件;课前收集的生活中百分数

  预习案:

  百分数的读、写法。明确分数与与百分数的联系和区别。

  教学过程:

  一、课前预习

  (1)一张衣服上的成分表:面料65.5%羊毛34.5%锦纶里料100%聚酯纤维

  (2)关于A品牌汽车的销售情况:A品牌的汽车1~2月实际销售11000多辆,比去年同期增长120%,其中刚刚过去的2月份销量与去年同期相比增幅甚至达到241%。

  师:同学们,看了这段资料,你发现了什么?你有什么感想?

  引导学生发现百分数的同时,也使学生受到教育,感受到我们国家的经济发展水平在逐步提高。

  问:你知道这些数叫什么数吗?你们还在什么地方见过上面这样的数?

  学生讨论后,教师明确:像上面这样的数,如65.5%、34.5%、120%……叫做百分数。

  二、探究新知

  1.感知百分数的意义。百分数表示一个数是另一个数的百分之几。(板书)2.百分数与分数的联系和区别。①从表达方式上看。

  百分数是把“一个数是另一个数的几分之几”中的“几分之几”转化成“百分之几”的一种特殊表达方式。②从意义上看。百分数也叫百分率或百分比,表示一个数是另一个数的百分之几。③分母是100的.分数就是百分数,对不对?为什么?(4)总结百分数与分数的区别。

  3.探究百分数的读法和写法。

  4.小结。

  三、巩固练习.写出下列百分数。

  百分之四十五 百分之九点六 百分之一百五十 百分之零点二三

  四、课堂总结

  通过本节课的学习,你有哪些收获?

  五、课堂作业

  板书设计:

  百分数的意义和读写法

  百分数表示一个数是另一个数的百分之几。因为百分数表示的是一种倍比关系,所以百分数也叫做百分率或百分比。

  作业布置:

  做教材83页1、2、3题

分数的意义教案15

  教学目标:

  1、理解分数除法的意义,指导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。

  2、使学生理解整数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

  教学重点:

  1、理解分数除法的意义与整数除法的意义相同。

  2、学会分数除以整数的计算法则,并能应用法则正确计算。

  3、一个数除以分数的算理。

  4、掌握分数除法的统一法则。

  教学难点:

  1、学会分数除以整数的计算法则,并能应用法则正确计算。

  2、引导学生推导出整数除以分数的方法。

  3、对于一个数除以分数的算理的理解。

  教学过程:

  一、创设情景导入

  同学们,前面我们学习了分数乘法,掌握了它的'意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。

  二、新知探究

  (一)分数除法的意义

  1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式。

  2、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

  3、100g=1/10kg,你能将上面的问题改成用kg作单位的吗(引导学生将整数乘除法应用题改变成分数乘除法应用题)

  4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义。

  5、练习:课本28页做一做。学生独立练习,订正时让学生说明为什么这样填。

  (二)分数除以整数

  1、小组学习活动

  问题⑴把一张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

  问题⑵把一张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

  [活动要求]

  ①先独立动手操作,再在组内交流,②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?

  2、汇报学习结果

  3、学生独立阅读教材

  4、归纳总结:这节课你们学会了什么?

  指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数。

  三、巩固与提高

  ①把7/8平均分成4份,每份是多少?什么数乘6等于3/17?

  ②如果a是一个不等于0的自然数,1/3a等于多少?1/a3等于多少?你能用一个具体的数检验上面的结果吗

  四、课后作业

  练习八第1、2、3题

  板书设计:

  分数除法的意义和分数除以整数

  例1.1003=300(ɡ)1/103=3/10(㎏)

  3003=100(ɡ)3/103=1/10(㎏)

  300100=3(盒)3/101/10=3(盒)

  例2.4/52=42/5=2/54/52=4/51/2=2/5

  4/53=4/51/3=4/15

【分数的意义教案】相关文章:

《分数的意义》教案07-26

《分数的意义》教案12-18

分数的意义教案12-26

分数产生的意义教案02-23

分数的意义教案【热】03-16

分数的意义教案【精】03-16

分数的意义教案通用05-06

关于分数的意义教案01-24

有关分数的意义教案01-23

《分数的意义》教案范文04-24