相似三角形教案

时间:2024-11-14 15:07:17 教案 我要投稿
  • 相关推荐

相似三角形教案

  作为一名教师,往往需要进行教案编写工作,借助教案可以更好地组织教学活动。教案应该怎么写呢?以下是小编为大家整理的相似三角形教案,仅供参考,欢迎大家阅读。

相似三角形教案

相似三角形教案1

  【课前热身】

  1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.

  2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.

  3.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()

  A.B.

  C.D.

  4.在△ABC与△A′B′C′中,有下列条件:

  (1);(2);(3)∠A=∠A′;(4)∠C=∠C′.

  如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有多少组()A.1B.2C.3D.4

  【考点链接】

  一、相似三角形的定义

  三边对应成_________,三个角对应________的两个三角形叫做相似三角形.

  二、相似三角形的判定方法

  1.若DE∥BC(A型和X型)则______________.

  2.射影定理:若CD为Rt△ABC斜边上的高(双直角图形)

  则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=________,CD2=_______,BC2=______.

  3.两个角对应相等的两个三角形__________.

  4.两边对应成_________且夹角相等的两个三角形相似.

  5.三边对应成比例的两个三角形___________.

  三、相似三角形的性质

  1.相似三角形的对应边_________,对应角________.

  2.相似三角形的对应边的比叫做________,一般用k表示.

  3.相似三角形的.对应角平分线,对应边的________线,对应边上的_______线的比等于_______比,周长之比也等于________比,面积比等于_________.

  【典例精析】

  例1如图在△ABC中,AB=ACAD是中线,P是AD上一点,过点C作CF∥AB,延长BP交AC于点E,交CF与点F,试证明:BP=PEPF

  例2如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?

  例3如图,△ABC中,∠C=90°,BC=8cm,5AC-3AB=0,点P从B点出发,沿BC方向以2m/s的速度移动,点Q从C出发,沿CA方向以1m/s的速度移动。若P、Q同时分别从B、C出发,经过多少时间△CPQ与△CBA相似?

  例4如图,直线y=分别交x、y轴于点A、C,P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,S△ABP=9

  ①求点P的坐标;

  ②设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧。作RT⊥x轴,T为垂足,当△BRT与△AOC相似时,求点R的坐标。

  【中考演练】

  1.2010,宁德)图,在□ABCD中,AE=EB,AF=2,则FC等于_____.

  (2010,甘肃)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为______米.

  2.(2010,黔东南)如图,若为斜边上的高,的面积与的面积比的值是()

  A.B.C.D.

  3.(2010,宁夏)关于对位似图形的表述,下列命题正确的是_________________.(只填序号)

  ①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.

  4.如图,BD、CE为△ABC的高,求证∠AED=∠ACB.

  5.(2010,肇庆)如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.

  (1)求证:△CEB≌△ADC;

  (2)若AD=9cm,DE=6cm,求BE及EF的长.

相似三角形教案2

  课题:相似三角形的判定

  教学目标

  知识与技能目标:

  初步掌握运用两角对应相等的方法来判定两个三角形相似;

  过程与方法目标:

  1、经历三角形相似判定的探索过程,体会类比三角形全等的方法来进行三角形相似的探究的过程,从而体会研究问题的方法;

  2、能利用添加辅助线将三角形相似判定定理的图形转化为预备定理的基本图形。

  情感与态度目标:

  1.在三角形相似判定的探究过程中,培养学生大胆动手、勇于探索和勤于思考的精神.

  2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.

  教学重点:探究运用两角对应相等的方法来判定两个三角形相似,并能简单运用.

  教学难点:三角形相似判定方法的证明。.

  教学方法:采用学生自主探索和合作学习的教学方法;

  教学手段:采用多媒体辅助教学。

  教学过程:

  教师活动学生活动设计意图

  一、复习引入:

  1、两个三角形相似的定义:

  2、我们已经学过的三角形相似的判定方法及各自的适用的范围:(定义及预备定理)

  若使用预备定理,我们发现需要存在平行线截三角形两边的基本图形,而对于任意的两个三角形,我们只能运用定义去判定,我们需准备对应角相等,且对应边成比例,那么是否存在识别三角形相似的简单方法呢?

  3、回忆并叙述三角形全等判定定理的探究过程。(由一个条件到多个条件,逐个按边、角及其组合的顺序去寻找)。

  二、新课探究、巩固新知:

  本节课,我们将类比三角形全等的探究方法来进行三角形相似判定的探究:

  教师给出题目:

  (1)在上面的网格中,已知△ABC,至少需要保证几个角对应相等才能确定出△DEF,使得△ABC∽△DEF;

  (2)利用网格自己作出图形,并用刻度尺和量角器验证作出的图形与原图形相似;

  (3)小组选派代表准备展示本组的成果:图形与判定三角形相似的猜想。

  教师结合学生汇报的结果点评,并适时引导学生小结猜想:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

  教师适时引导:借助辅助线将两个独立的`三角形构造出预备定理的基本图形即可(强调作辅助线思想:平移小三角形到大三角形内部,但语言叙述应为:作线段或角等)。

  教师板书判定定理1的符号语言:

  在△ABC和△DEF中,∵∠A=∠A`;∠B=∠B`(已知)

  ∴△ABC∽△DEF(两角对应相等的两三角形相似)

  教师引导学生与三角形全等进行类比:

  1、判定三角形全等的方法有ASA、AAS、SAS,至少有一组边相等;而判定相似只需两角对应相等即可。

  2、证明三角形全等需要准备3个条件,而证明三角形相似需要2个条件即可。

  例1、判断正误,并说明理由:

  (1)任意等边三角形是相似三角形;

  (2)有一角对应相等的两等腰三角形是相似三角形;

  (3)顶角对应相等的两等腰三角形是相似三角形;

  (4)任意直角三角形都相似;

  (5)有一锐角对应相等的两直角三角形相似。

  练习1:独立编写出一个能运用判定定理1来判断两三角形是否相似的题目,并与同学进行交流。

  练习2:(1)如图:E是平行四边形ABCD的一边BA延长线上一点,CE交AD于点F,请找出图中的相似三角形,并说明理由:

  (2)在Rt△ABC中,CD是斜边上的高,请找出图中相似的三角形,并说明理由。

  教师巡视,并辅导重点学生。

  解答完题目后,教师适时引导学生小结基本图形。

  例2、已知△ABC和△DEF均为等边三角形,点D、E分别在边AB、AC上,请找出一个与△DBE相似的三角形,并说明理由。

  教师适时点拨:由△DBE的角的特点入手,先由特殊角600作为突破口,通过观察确定方向(寻找另外的一组角相等即可),再去证明。

  教师引导学生小结例2的证明思路:当存在一组角相等时,我们需寻找另外一组角相等,从而证明三角形相似。

  三、小结提升:

  谈谈自己的收获:

  1、知识点方面:判定三角形相似的判定方法(定义、预备定理、定理1);

  基本图形:双垂直;A字型、八字型。

  2、学习方法:类比旧知识学习新知识。回忆知识点;

  结合教师给出的探究题目学生小组合作,大胆进行

  尝试。

  派学生代表展示讨论结果;

  结合图形,学生口述该命题的已知与求证,并思考命题的证明过程。

  学生在教师的引导下口述证明过程。

  思考:运用角的条件判定全等与相似的区别。

  学生独立思考并作答。

  学生自编题目练习:三角形相似的判定定理1。

  学生独立解决后,组内交流。

  体会双垂直的基本图形,小结结论。

  独立分析此题目,大胆尝试此证明过程。

  学生回忆本节课教学内容,归纳提升。培养学生及时小结知识点的学习方法

  激发学生探究的欲望;

  为探究相似铺垫思路。

  培养学生探究能力与归纳能力。

  运用网格既可以准确作出图形,又可以为后面两个判定打好基础。

  由于证明过程对学生有一定难度,所以在学生展示完自己的猜想后,教师引导学生进行证明。

  渗透转化的意识。

  加强对学生学法的训练;

  要求:正确的题目需结合定理1简单叙述理由,错误的题目需举出反例

  加强对判定定理1的巩固。

  自编题目,激发学习兴趣。

  结合图形巩固判定定理1

  对于比例线段的结论由学生课下完成。

  总结基本图形为学生解决较复杂题目打基础。

  学生自己小结本节课的知识要点及数学方法以提高学生的学习能力。

  板书设计:

  课题:

  (投影)判定方法:(文字语言、图形语言)例2、

  作业:

  1、课前引例中(在网格中作出与原三角形相似的三角形),除了可以借助两组角对应相等,你还有别的办法得到与原三角形相似的三角形吗?类比本节课知识进行探究;

  2、总结双垂直基本图形的所有结论:边(对应成比例)、角(对应相等)。

相似三角形教案3

  重点、难点分析

  相似三角形的判定及应用是本节的重点也是难点.

  它是本章的主要内容之一,是在学完相似三角形的基础上,进一步研究相似三角形的本质,以完成对相似三角形的定义、判定全面研究.相似三角形的判定还是研究相似三角形性质的基础,是今后研究圆中线段关系的工具.

  它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.

  释疑解难

  (1)全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的3个定理和判定两个三角形相似的3个定理之间有内在的联系,不同之处仅在于前者是后者相似比为1的情况.

  (2)相似三角形的判定定理的选择:①已知有一角相等时,可选择判定定理1与判定定理2;②已知有二边对应成比例时,可选择判定定理2与判定定理3;③判定直角三角形相似时,首先看是否可以用判定直角三角形的方法来判定,如果不能,再考虑用判定一般三角形相似的方法来判定.

  (3)相似三角形的判定定理的作用:①可以用来判定两个三角形相似;②间接证明角相等、线段域比例;③间接地为计算线段的长度及角的大小创造条件.

  (4)三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似;②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似,数学教案-三角形相似的判定。

  (第1课时)

  一、教学目标

  1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.

  2.继续渗透和培养学生对类比数学思想的认识和理解.

  3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

  4.通过学习,了解由特殊到一般的唯物辩证法的观点.

  二、教学设计

  类比学习,探讨发现

  三、重点及难点

  1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.

  2.教学难点:是了解判定定理1的证题方法与思路.

  四、课时安排

  1课时

  五、教具学具准备

  多媒体、常用画图工具、

  六、教学步骤

  [复习提问]

  1.什么叫相似三角形?什么叫相似比?

  2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.

  [讲解新课]

  我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有

  三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们

  来研究能不能用较少的几个条件就能判定三角形相似呢?

  上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.

  我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形

  全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:

  问:判定两个三角形全等的方法有哪几种?

  答:SAS、ASA(AAS)、SSS、HL.

  问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的`判定中应如何说?

  答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.

  问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?

  答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

  强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.

  (2)用类比方法找出的新命题一定要加以证明.

  如图5-53,在△ABC和△ 中, , .

  问:△ABC和△ 是否相似?

  分析:可采用问答式以启发学生了解证明方法.

  问:我们现在已经学习了哪几个判定三角形相似的方法?

  答:①三角形的定义,②上一节学习的预备定理.

  问:根据本命题条件,探讨时应采用哪种方法?为什么?

  答:预备定理,因为用定义条件明显不够.

  问:采用预备定理,必须构造出怎样的图形?

  答: 或 .

  问:应如何添加辅助线,才能构造出上一问的图形?

  此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.

  (1)在△ABC边AB(或延长线)上,截取 ,过D作DE∥BC交AC于E.

  “作相似.证全等”.

  (2)在△ABC边AB(或延长线上)上,截取 ,在边AC(或延长线上)截取AE=,连结DE,“作全等,证相似”.

  (教师向学生解释清楚“或延长线”的情况)

  虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.

  判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

  简单说成:两角对应相等,两三角形相似.

  , ,

  ∽ .

  例1 已知 和 中 , , , .

  求证: ∽ .

  此例题是判定定理的直拉应用,应使学生熟练掌握.

  例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.

  已知:如图5-54,在 中,CD是斜边上的高.

  求证: ∽ ∽ .

  该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.

  即 ∽△∽△.

  [小结]

  1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.

  2.判定定理1的应用以及记住例2的结论并会应用.

  七、布置作业

  教材P238中A组3、4.

  八、板书设计

  数学教案-三角形相似的判定

相似三角形教案4

  一、教学目标

  1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。

  2.掌握“两角对应相等,两个三角形相似”的判定方法。

  3.能够运用三角形相似的条件解决简单的.问题。

  二、重点、难点

  1.重点:三角形相似的判定方法3--“两角对应相等,两个三角形相似”

  2.难点:三角形相似的判定方法3的运用。

  3.难点的突破方法

  (1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法。

  (2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据。

  (3)如果两个三角形是直角三角形, 则只要再找到一对锐角相等即可说明这两个三角形相似。

  三、例题的意图

  本节课安排了两个例题,例1是教材P48的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程。并让学生掌握遇到等积式,应先将其化为比例式的方法。

  例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2 相似三角形的应用举例”打基础。

  四、课堂引入

  1.复习提问:

  (1)我们已学习过哪些判定三角形相似的方法?

  (2)如图,△ABC中,点D在AB上,如果AC2=AD?AB,

相似三角形教案5

  ●教学目标

  (一)教学知识点

  1.掌握相似 三角形的定义、表示法,并能根据定义判断两个三角形是否相似.

  2.能根据相似比进行计 算.

  (二)能力训练要求

  1.能根据定义判断两个三角形是否相似,训练 学生的判断能力.

  2.能根据相似比求长度和角度,培养学生的运用能力.

  (三)情感与价值观要求

  通过与相似多边形有关概念的`类比,渗透类比的教学思想,并领会特殊与一般的关系.

  ●教学重点 相似三角形的定义及运用.

  ●教学难点 根据定义求线段长或角的度数.

  ●教学过程

  Ⅰ.创设问题情境,引入新课

  今天, 我们就来研究相似三角形.

  Ⅱ.新课讲解

  1.相似三角形的定义及记法

  三角对应相等,三边 对应成比例的两个三角形叫做相 似三角形。如△ABC与△DEF相似,记作△ABC∽△DEF

  其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比.

  2.想一想

  如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应 角 有什么关系?对应边呢?

  所以 D、E、F. .

  3.议一议,学生讨论

  (1)两个全等三角形一定相似吗?为什么?

  (2)两个直角三角 形一 定相似吗?两个等腰直角三角形呢?为 什么?

  (3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?

  结论:两 个全等三角形一定相似.

  两个 等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.

  4.例题

  例1、有一块呈三角形形状 的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的 长都是3.5 cm,求该草坪其他两边的实际长度.

  例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

  ACB=40,求(1)AED和ADE的度数。(2)DE的长.

  5.想一想

  在例2的条件下,图中有哪些线段成比例?

  Ⅲ.课堂练习 P129

  Ⅳ.课时小结

  相似三角形的 判定方法定义法.

  Ⅴ.课后作业

相似三角形教案6

  一、教学目标

  1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。

  2.掌握“两角对应相等,两个三角形相似”的判定方法。

  3.能够运用三角形相似的条件解决简单的问题。

  二、重点、难点

  1.重点:三角形相似的判定方法1

  2.难点:三角形相似的判定方法1的运用。

  三、课堂引入

  1.复习提问:

  (1)我们已学习过哪些判定三角形相似的方法?

  (2)△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD与△ABC相似吗?说说你的理由。

  (3)△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?——引出课题。

  (4)教材P48的探究3。

  四、例题讲解

  例1(教材P48例2)。

  分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的.两个三角形相似。由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似。

  证明:略(见教材)。

  例2(补充)

  已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长。

  分析:要求的是线段

  DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长。由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似。

  五、课堂练习

  下列说法是否正确,并说明理由。

  (1)有一个锐角相等的两直角三角形是相似三角形;

  (2)有一个角相等的两等腰三角形是相似三角形。

  六、作业

  1、已知:如图,△ABC的高AD、BE交于点F。

  求证:AF/BF=EF/FD。

  2、已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高。

  (1)求证:

  ACBC=BECD;

  (2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长。

相似三角形教案7

  一、教学目标

  1、使学生了解直角三角形相似定理的证明方法并会应用。

  2、继续渗透和培养学生对类比数学思想的认识和理解。

  3、通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。

  4、通过学习,了解由特殊到一般的唯物辩证法的观点。

  二、教学设计

  类比学习,探讨发现

  三、重点及难点

  1。教学重点:是直角三角形相似定理的应用。

  2。教学难点:是了解直角三角形相似判定定理的证题方法与思路。

  四、课时安排

  3课时

  五、教具学具准备

  多媒体、常用画图工具、

  六、教学步骤

  [复习提问]

  1、我们学习了几种判定三角形相似的方法?(5种)

  2、叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写)。

  其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)

  3、什么是“勾股定理”?什么是比例的合比性质?

  【讲解新课】

  类比判定直角三角形全等的'“HL”方法,让学生试推出:

  直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

  已知:如图,在中,

  求证:

  建议让学生自己写出“已知、求征”。

  这个定理有多种证法,它同样可以采用判定定理1、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。应让学生对此有所了解。

  定理证明过程中的“都是正数……其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。

  例4已知:如图……当BD与、之间满足怎样的关系时。

  解(略)

  教师在讲解例题时,应指出要使∽。应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边。

  还可提问:

  (1)当BD与、满足怎样的关系时?(答案:)

  (2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)

  (答案:或两种情况)

  探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式。”

  这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度。

  [小结]

  1、直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用。

  2、让学生了解了用代数法证几何命题的思想方法。

  3、关于探索性题目的处理。

  七、布置作业

  教材P239中A组9、教材P240中B组3。

相似三角形教案8

  教学目标

  (一)教学知识点

  1、掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。

  2、能根据相似比进行计算。

  (二)能力训练要求

  1、能根据定义判断两个三角形是否相似,训练学生的判断能力。

  2、能根据相似比求长度和角度,培养学生的运用能力。

  (三)情感与价值观要求

  通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的'关系。

  教学重点

  相似三角形的定义及运用。

  教学难点

  根据定义求线段长或角的度数。

  教学方法

  类比讨论法

  教具准备

  投影片三张

  第一张(记作§4。5 A)

  第二张(记作§4。5 B)

  第三张(记作§4。5 C)

  教学过程

  Ⅰ、创设问题情境,引入新课

  [师]上节课我们学习了相似多边形的定义及记法。现在请大家回忆一下。

  [生]对应角相等,对应边成比例的两个多边形叫做相似多边形。

  相似多边形对应边的比叫做相似比。

  [师]很好。请问相似多边形指的是哪些多边形呢?

  [生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括。比如相似三角形,相似五边形等。

  [师]由此看来,相似三角形是相似多边形的一种。今天,我们就来研究相似三角形。

相似三角形教案9

  (一)教材的地位和作用

  《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。

  (二)教学目标

  1、。知识与能力:

  1)进一步巩固相似三角形的知识.

  2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.

  2.过程与方法:

  经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。

  3.情感、态度与价值观:

  1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。

  2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

  (三)教学重点、难点和关键

  重点:利用相似三角形的知识解决实际问题。

  难点:运用相似三角形的判定定理构造相似三角形解决实际问题。

  关键:将实际问题转化为数学模型,利用所学的知识来进行解答。

  【教法与学法】

  (一)教法分析

  为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:

  1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。

  2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。

  3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。

  (二)学法分析

  按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。

  【教学过程】

  一、知识梳理

  1、判断两三角形相似有哪些方法?

  1)定义: 2)定理(平行法):

  3)判定定理一(边边边):

  4)判定定理二(边角边):

  5)判定定理三(角角):

  2、相似三角形有什么性质?

  对应角相等,对应边的比相等

  (通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)

  二、情境导入

  胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。

  古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?

  (数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)

  三、例题讲解

  例1(教材P49例3——测量金字塔高度问题)

  《相似三角形的应用》教学设计分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.

  解:略(见教材P49)

  问:你还可以用什么方法来测量金字塔的高度?(如用身高等)

  解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)

  例2(教材P50练教学设计《相似三角形的应用》教学设计分析:设河宽AB长为x m,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即《相似三角形的应用》教学设计.再解x的方程可求出河宽.

  解:略(见教材P50)

  问:你还可以用什么方法来测量河的宽度?

  解法二:如图构造相似三角形(解法略).

  四、巩固练习

  1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

  2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?

  五、回顾小结

  一)相似三角形的应用主要有如下两个方面

  1测高(不能直接使用皮尺或刻度尺量的`)

  2测距(不能直接测量的两点间的距离)

  二)测高的方法

  测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决

  三)测距的方法

  测量不能到达两点间的距离,常构造相似三角形求解

  (落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)

  六、拓展提高

  怎样利用相似三角形的有关知识测量旗杆的高度?

  七、作业

  课本习题27.2 10题、11题。

  【教学设计说明】

  相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,限度地调动学生学习的积极性和主动性。

相似三角形教案10

  一.教学目标

  1.了解最简二次根式的意义,并能作出准确判断.

  2.能熟练地把二次根式化为最简二次根式.

  3.了解把二次根式化为最简二次根式在实际问题中的应用.

  4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.

  5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.

  6.通过本节的学习,渗透转化的数学思想.

  二 .重点难点

  1.教学重点 会把二次根式化简为最简二次根式

  2.教学难点 准确运用化二次根式为最简二次根式的方法

  三.教学方法

  程序式教学

  四.课时安排

  2课时

  五.教学过程

  1.复习引入

  教师准备本节内容需要的二次根式的性质和与性质相关例题、练习题以及引入材料.

  【预备资料】

  ⑴.二次根式的性质

  ⑵.二次根式性质例题

  ⑶.二次根式性质练习题

  【引入材料】

  看下面的问题:

  已知: =1.732,如何求出 的近似值?

  解法1:

  解法2:

  比较两种解法,解法1很繁,解法2较简便,比例说明,将二次根式化简,有时会带来方便.

  2.概念讲解与巩固

  学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对最简二次根式概念的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.

  【概念讲解材料】

  满足下列条件的二次根式,叫做最简二次根式:

  (1)??? 被开方数的因数是整数,因式是整式;

  (2)??? 被开方数中不含能开得尽方的因数或因式.

  如: 都不是最简二次根式,因为被开方数的因数(或系数)为分数或因式为分式,不符合条件(1),条件(1)实际上就是要求被开方数的分母中不带根号.

  又如 也不是最简二次根式,因为被开方数中含有能开得尽方的因数或因式,不满足条件(2).注意条件(2)是对被开方数分解成质因数或分解成因式后而言的,如 .

  判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.

  【概念理解学习材料1】

  例1 下列二次根式中哪些是最简二次根式?哪些不是?为什么?

  分析:判断一个二次根式是不是最简二次根式的`方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.

  解:最简二次根式有 ,因为

  被开方数中含能开得尽方的因数9,所以它不是最简二次根式.

  说明:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。

  【概念理解巩固材料1】

  正选练习题1

  判断下列各式是否是最简二次根式?

  备选选练习题1

  判断下列各式是否是最简二次根式?

  【概念理解学习材料2】

  例2判断下列各式是否是最简二次根式?

  分析:(1) 显然满足最简二次根式的两个条件.

  (2) 或

  解:最简二次根式只有 ,因为

  或

  说明:最简二次根式应该分母里没根式,根式里没分母(或小数).

  【概念理解巩固材料2】

  正选练习题2

  判断下列各式是否是最简二次根式?

  备选选练习题2

  判断下列各式是否是最简二次根式?

  【概念理解学习材料3】

  例3判断下列各式是否是最简二次根式?

  分析:最简二次根式应该分母里没根式,根式里没分母(或小数)来进行判断发现 和 是最简二次根式,而 不是最简二次根式,因为

  在根据定义知 也不是最简二次根式,因为

  解:最简二次根式有 和 ,因为

  ,

  .

  【概念理解巩固材料3】

  正选练习题3

  判断下列各式是否是最简二次根式?

  备选选练习题3

  判断下列各式是否是最简二次根式?

  题目可根据学生实际情况选择2-3道.

  【概念理解学习材料4】

  例4判断下列各式是否是最简二次根式?

  分析:被开方数是多项式的要先分解因式再进行观察判断.

  (1) 不能分解因式, 显然满足最简二次根式的两个条件.

相似三角形教案11

  一、教学目标

  1.初步掌握三组对应边的比相等的两个三角形相似的判定方法,以及两组对应边的比相等且它们的夹角相等的两个三角形相似的判定方法。

  2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的'过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性。

  3.能够运用三角形相似的条件解决简单的问题。

  二、重点、难点

  1.重点:

  掌握两种判定方法,会运用两种判定方法判定两个三角形相似。

  2. 难点:

  (1)三角形相似的条件归纳、证明;

  (2)会准确的运用两个三角形相似的条件来判定三角形是否相似。

  3. 难点的突破方法

  (1)关于三角形相似的判定方法

  三组对应边的比相等的两个三角形相似,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解。

  (2)判定方法

  的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法。

  (3)讲判定方法

  要扣住对应二字,一般最短边与最短边,最长边与最长边是对应边。

  (4)判定方法

  一定要注意区别夹角相等 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的。

相似三角形教案12

  作为教师怎么处理教材为好?怎么引入新课?怎么展开课堂教学?等等一系列问题,人人都在不断的思考中追求完美,努力求得效果最好。

  我教相似三角形性质的第一课时,主要是导出相似三角形的性质定理1,并进行初步运用,让学生经历相似三角形性质探索的过程,提高数学思考、分析和探究活动能力,体会相似三角形中的变量与不变量,体会其中蕴涵的数学思想。

  本节课本我从复习相似三角形的判定方法入手,由判定与性质的互逆得到:相似三角形对应角相等,对应边成比例。再由全等三角形中对应的特殊线段的比为1,引出思考:相似三角形对应的特殊线段的比与相似比有什么关系呢?

  学生带着疑问,进行分组测量探索,汇报交流。老师引导学生共同证明:一组相似三角形中对应角平分线的比等于相似比,再类比到对应高,对应中线的比也等于相似比。接着对四种“比”间的相互关系加以练习,突出“比”的“同一性”。本节课主要利用相似三角形中的变量与不变量,揭示一组相似三角形中对应边的长度、对应特殊线段的长度都发生变化,但其对应角不变,对应特殊线段的比也不变。以“不变应多变”,在“运动变化”中体会“守恒”!使学生把握数学的本质用“守恒来刻画变化”。最后,“温故而知新”(以前利用平行线的性质可以得出成比例线段;现在又多了一种证明成比例线段的方法),点出“相似三角形的性质定理1”的作用。为了给下节课作好铺垫,“一组相似三角形对应周长的比、面积比与相似比有关吗?如果有,是怎样的关系呢?”从而把学生的学习兴趣延伸到课下,为下节教学活动的开展埋下伏笔!

  这节课基本上做到了

  ㈠目标定位准确,较好地完成教学任务。目标是教学的导向轮、风向标。这节课目标明确,围绕教学任务逐层深入,提起学生思维兴趣,师生配合默契。

  ㈡教学过程流畅,教学设计环环紧扣,把学生思维一步步推向高潮,有效提高学生的思维品质,达到课前预设的“思维步步高”的效果。教学过程的.实施阶段,从类比“全等三角形的性质”入手,进行横向类比,纵向类比,让学生明确新知识的来源。在操作、猜想、证明、运用各阶段,提高了学生的参与性,让人感觉如沐春风,一气呵成,自然流畅。

  ㈢细节很完美。在定理证明、强调注意点、关键点时,言简意赅,表达到位,课堂及时反馈。

  同时也看到自己的不足,本节课在定理的证明阶段,本来是计划教师证明一个,剩下两个由学生说思路,课后完成证明过程,起到复习巩固的目的。但是由于自己放不开手,怕学生不会,在学生说时一再仔细强调导致最后时间不充分。其实回头想想:应该更大胆一些,放开一些,让学生有更大的思维空间;达到“授之以渔”的目的

  今天有关《相似三角形的性质》教案设计讲解的相关内容就介绍到这里了。

相似三角形教案13

  【教学目标】

  1、掌握相似三角形的判定定理1 。

  2、会用三角形相似的判定定理1,来证明有关问题;

  3、通过用三角形全等的判定方法类比得出三角形相似的判定方法,使学生进一步领悟类比的'思想方法。

  【重点和难点】

  理解相似三角形的判定定理1,并能用其来解决有关问题

  【教 具】

  三角板、多媒体设备

  【教学设计】

  一、复习旧知识,运用类比的思想方法引导学生提出问题

  1、什么叫相似三角形?怎么表示?

  (在学生回答完后,教师总结)对应角相等,对应边成比例的三角形,叫做相似三角形。(注意:三角形相似不一定限定在两个三角形之间,可以是两个以上,但不能是一个。)表示:如果?ABC与?DEF相似,则记作?ABC∽?DEF

  ABACBC??用数学符号表示:∵∠A=∠D,∠B=∠E,∠C=∠F,且DEDFEF,∴?ABC∽?DEF. 注意:与三角形全等的书写类似,表示对应角的字母顺序需要一样

  2、上节课我们还学习了一个判定两三角形相似的定理,哪位同学能说说?

  学生回答完之后投影:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.

  AAEDADEBCB图(1)CD图(2)EB图(3)C

  3、除了用定义和上面的定理来判定三角形相似外,还有什么方法可判定两个三角形相似?我们知道判定两个三角形全等的方法有“AAS”、“ASA”、“SAS”、“SSS”、“HL”等,那么类似地,判定两个三角形相似还有哪些方法?今天我们开始来研究这个问题。

  二、讲授新课

  1、观察你和同伴的三角尺,同样角度(30度与60度,或45度与45度)的三角尺,它们相似吗?

  2、任意画两个三角形,使三对角分别对应相等,再量一量对应边,看看是否成比例.

  3、师生共同总结

  4、结论:三角形相似判定方法1:两角分别相等的两个三角形相似

  5、已知:如图(4)所示,在?ABC与?A'B'C'中,若∠A=∠A',∠B=∠B',试猜想:?ABC与?A'B'C'是否相似?并证明你猜的结论。

  三、拓展运用

  图24.3.5

  课本练习1、2

  四、课堂小结:

  本节课你学到了什么?有什么感悟?

  五、作业:

  P75 习题23.3 第1、5题。

相似三角形教案14

  教学建议

  知识结构

  重点、难点分析

  相似三角形的性质及应用是本节的重点也是难点.

  它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究.相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.

  它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.

  教法建议

  1。教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等

  2。教师在知识的`引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答

  3。在知识的巩固中要注意与全等三角形的对比

  (第1课时)

  一、教学目标

  1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

  2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

  3.进一步培养学生类比的教学思想.

  4.通过相似性质的学习,感受图形和语言的和谐美

  二、教法引导

  先学后教,达标导学

  三、重点及难点

  1.教学重点:是性质定理1的应用.

  2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具.

  六、教学步骤

  [复习提问]

  1.三角形中三种主要线段是什么?

  2.到目前为止,我们学习了相似三角形的哪些性质?

  3.什么叫相似比?

  [讲解新课]

  根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

  下面我们研究相似三角形的其他性质(见图).

  建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

  性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

  ∽ ,

  教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

  分析示意图:结论→∽(欠缺条件)→∽(已知)

  ∽ ,

  BM=MC,

  ∽ ,

  以上两种情况的证明可由学生完成.

  [小结]

  本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

  七、布置作业

  教材P241中3、教材P247中A组3.

  八、板书设计

相似三角形教案15

  一、教学目标

  1.掌握相似三角形的性质定理2、3.

  2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.

  3.进一步培养学生类比的教学思想.

  4.通过相似性质的学习,感受图形和语言的和谐美

  二、教法引导

  先学后教,达标导学

  三、重点及难点

  1.教学重点:是性质定理的应用.

  2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具.

  六、教学步骤

  [复习提问]

  叙述相似三角形的性质定理1.

  [讲解新课]

  让学生类比“全等三角形的`周长相等”,得出性质定理2.

  性质定理2:相似三角形周长的比等于相似比.

  同样,让学生类比“全等三角形的面积相等”,得出命题.

  “相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.

  性质定理3:相似三角形面积的比,等于相似比的平方.

  注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.

  (2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.

  例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .

  此题学生一般不会感到有困难.

  例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.

  教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.

  解:设原地块为 ,地块在甲图上为 ,在乙图上为

  学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而

  [小结]

  1.本节学习了相似三角形的性质定理2和定理3.

  2.重点学习了两个性质定理的应用及注意的问题.

  七、布置作业

  教材P247中A组4、5、7.

  八、板书设计

  数学教案-相似三角形的性质

【相似三角形教案】相关文章:

《三角形》教案04-03

三角形小班教案02-11

认识三角形教案02-18

三角形的特性教案01-16

认识三角形的教案03-25

认识三角形教案07-19

三角形的认识教案04-12

小学三角形教案03-05

小学三角形教案01-16

(精选)小学三角形教案01-07