《认识方程》数学教案

时间:2022-06-05 04:23:45 教案 我要投稿
  • 相关推荐

《认识方程》数学教案

  作为一名优秀的教育工作者,就难以避免地要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案应该怎么写呢?以下是小编整理的《认识方程》数学教案,仅供参考,大家一起来看看吧。

《认识方程》数学教案

《认识方程》数学教案1

  【课程分析】

  “认识方程”是小学阶段学习方程的起始课,大部分版本的教材都将其安排在五年级,且给出了“含有未知数的等式是方程”这一定义。日常教学中比较普遍的现象是,教师集中比较多的时间和精力去围绕这句话展开,着重引导学生从是否为等式,是否含有未知数这两个限制性条件来判断一个式子是不是方程以及理解方程和等式的关系。应该说,“含有未知数的等式是方程”这句话指出了方程的形式特征,但在形式的背后还隐藏着更为重要的思想意义。学习方程的价值在于会用方程解决问题,逐步学会运用代数的方法思考问题,即培养学生代数思维的能力,这一切离不开方程思想的渗透。

  【学生分析】

  五年级学生学习方程、领悟方程思想还是有一定难度的。一是方程思想本身具有抽象性,二是前面四年的数学学习中,学生已经习惯了用算术思维解决问题。

  【教学目标】

  1、在具体的情境中理解并掌握方程的意义,初步感受议程和等式的关系。

  2、经历观察、语言描述、符号表达、分类、归纳的过程,发展抽象思维能力。

  3、在具体情境中,感受数学与生活的密切联系,体会方程的作用即刻面现实情境中的等量关系,建立方程模型。

  【教学重点】

  在具体情境中理解方程的意义。

  【教学难点】

  用方程表示简单的等量关系,体会方程的意义和作用。

  【教学过程】

  一、激活经验,初步感知

  师:时间过得好快,一转眼我们都上五年级了。你觉得咱们五年级的学习水平跟一年级相比——

  生:水平高多了。

  师:好啊,那就请大家来做小老师。最近,一年级的孩子遇到了这样一个问题:草地上有7人在踢足球,再来几人,就是10人?

  师:有个叫小明的同学是这样做的。(板书7+3=10)对于这种做法,你有什么想说的?

  生:我认为这种做法是错误的。7+3=10,这里的3不知道从哪里来的。应该用10-7=3(板书10-7=3)

  师:你们的意思是,7和10是告诉我们的数,就叫做已知数,而3不是题目中告诉我们的,属于————

  生:未知数。

  师:你们是用已知数求出未知数。

  师:(再次出示7+3=10,在7和10下面打√,3下面打?)现在,你能看出小明是怎么想的吗?

  生:他是想,原来有7人,再来几人就是10人,也就是7加几等于10呢?

  师:小明先想7+()=10,然后想到了3,用一个符号来表示不知道的人数。这样的想法有没有道理呢?

  生:有!

  师:对啊,先不去想结果是多少,而是看看数量之间有怎样的关系。关系理清楚了,再去想结果。

  师:孩子们,这种解决问题的方法蕴含了一个伟大的数学思想———方程思想。那什么是方程思想呢?能说说你的感觉吗?

  生1:就是用一个符号表示未知数。

  生2:就是先想关系,在解决问题。

  师:大家可能一时还说不太明白,没关系,让我们带着这种感觉继续学习。

  师:你还能用其它的式子来表示小明的想法吗?

  《认识方程》教学设计生:7+?=10,7+x=10,7+=10……

  师:总之,你们想到的办法就是用一个符号来代表未知数,你们想的办法和数学家韦达想的办法是一样的,他是第一个想到用符号代表未知的量来进行系统计算的。不过,有另外一个数学家叫笛卡尔,他说,你用这个符号,我用那个符号,多乱啊!不如大家统一用几个固定的字母表示吧,其中x就是他选的字母之一,。我们也选用x表示吧。板书:7+3=10改为7+x=10

  二、对比交流,构建意义

  师:二年级时同学们又遇到了新问题:草地上一年级和二年级的同学们在踢球,二年级有6人,二年级同学的人数是一年级的3倍,一年级有几人?

  生:6÷3=2

  师:你知道小明同学的想法吗?

  生:x×3=6或3x=6

  师:小明怎么想到的?

  生:二年级的人数=一年级的人数×3

  师:****是未知数,***是已知数,看来,未知数和已知数一样,可以写到左边也可以写到右边,两者的地位是同样的。这是这道题中最简单的等量关系式。

  师:一年级人数的3倍和二年级人数相等,这就是它们之间的等量关系。等量关系明确了,式子就能很轻松地写出来了。

  师:转眼小明同学已经三年级了,又遇到了新问题:草地上原来有一些人在踢球,先来了3人,又走了2人后,现在草地上有8人。原来草地上有多少人?

  师:你猜一猜同学们的方法,再猜一猜小明的方法,试着写在练习本上。

  生1板书:8+2-3=7

  生2板书:x+3—2=8

  师:看看这两种方法,说说你们的想法?

  生:8+2-3=7,是倒过来推想,x+3—2=8是顺着想。

  师:说一说想的过程?

  生:8+2-3=7是现在的人数+又走的人数—先来的人数=原来的人数

  生:x+3—2=8是原来的人数+先来的人数—又走的人数=现在的人数

  师:倒着想和顺着想,你觉得哪种关系更简单,更容易理解,为什么?

  生:按照事情发生的顺序,顺着想更容易理解。

  师:同学们,现在对方程思想理解的清楚些了吗?我们们继续学下去,相信大家的感受会更深些。

  师:四年级了,同学们学习的问题更复杂了。出示:某风景区儿童票价的2倍多5元刚好是成人票价145元再加10元,儿童票的价格是多少元?你可以任选一种方法写在练习本上。

  生1板书:(145+10-5)÷2(如果学生写不对,教师集体纠正)

  生2板书:2x+5=145+10

  师:说说你们的想法?

  生1:145+10再减5才正好是儿童票价的2倍,所以再除以2才是儿童票价。

  生2:儿童票价×2+5=145+10

  师:哪种关系更简单?

  生:第二种。

  师:看来,选对方法,找准等量关系可以事半功倍啊。

  师:通过解决这几个问题,观察一下两种方法,你有什么发现?同桌互相说一说。

  师:谁先来说说,有什么不同的地方?

  生1:左边的都是算式。

  生2:右边的方法都含有未知数。(师板书)

  生3:右边的式子都含有未知数,用一个字母代表未知数,顺着想,把题目的意思表达出来,就可以直接写成了一道算式。

  生4:而左边的式子里未知数在等号的后面,需要倒着想才能把式子列出来得到未知数。

  师:我们找到了它们的不同点,它们有一样的.地方吗?

  生:都有等号。

  师:等号的左边和等号的右边都是怎样的?

  生:相等的。

  师:像这样的算式,我们叫等式。(板书:等式)

  师:这些式子都是等式。

  师:像左边的这些等式我们从一年级到四年级一直在用,非常熟悉。而右边的这些等式有什么特别的地方?

  生:都含有未知数。

  师:我们今天认识的这样的含有未知数的等式就叫做方程。(板书)

  师:这就是今天我们要学习的新知识(板书:认识方程)。你现在觉得方程思想是什么?

  生:方程思想就是先找出等量关系,用字母表示未知数,列出含有未知数的等式。

  师:说的真好!方程就是抓住最简单的等量关系,列出含有未知数的等式。

  师:还没学习方程的时候,同学们就列出了这么多的方程。其实方程在很早的时候就有了。

  1、早在三千六百多年前,埃及人就会用方程解决问题了。

  2、在我国古代,大约两千前成书的《九章算术》中,就记载了用一组方程解决问题的史料。

  3、四百多年前法国数学家韦达在他的《分析法入门》著作中,系统使用了符号表示未知量的值进行运算。

  4、一直到三百年前,法国的数学家笛卡尔第一个提倡用排在字母表后面的x,y,z代表未知数,这种用法成为当今的标准用法,形成了现在的方程。

  三、借助天平,强化建构

  师:(出示天平)这是什么?

  生:天平。

  师:和我们玩什么很像?

  生:跷跷板。

  师:如果天平两边这样摆法码?天平会是什么样子?做个手势告诉我。

  师:两边一样高还是一边高一边低?为什么?

  生:因为两边一样重。

  师:如果这样摆法码呢?还会一样高吗?

  生:不会,不一样重。

  师:这样呢?

  生做手势。

  师:现在这个天平是什么样子?

  生:一样了。

  师:当天平两边一样的时候,它和方程等号两边相等的性质是一样的。所以,人们常常借助这样的天平来学习和理解方程。

  师:你会根据这个天平写出一道方程吗?(x4511050)

  生:x+45=110+50

  师:还有其它列法吗?

  师:110+50=x+45,也是可以的,只有我们习惯将含有未知数的式子放在等号的左边。

  师:我这里有四个天平,根据四个天平写出了四个式子,这四个式子里面有没有方程?

  师:你如果认为有一个,可以举一个手,认为有两个可以举两只手,认为有三个可以和同桌合作。

  师:第几个是方程?

  生:第三个是方程。

  师:第4个为什么不是?那1和2都有未知数呀,怎么就不是方程?

  生:必须是等号连接。

  生:还需要有未知数。

  师:不错,不仅有未知数,而且是等式。我们列方程是为了把未知数求出来,1和2能求出准确的数吗?

  生:不能。

  师:像1和2这样的式子,虽然也含有未知数,但是只能求出大概范围。所以它们属于另一类,而不属于方程。

  师:你们真棒,你们已经可以根据天平写方程了,还会根据天平判断方程,那你们能根据方程画天平吗?

  师示范。

  生陆续画出。(投影展示)

  师:同学们们都很棒,都会根据方程画出天平,其中最值得表扬的是你们画的天平都很平,表示左右两边是相等的、平衡的,高难度的是这一道:

  你能根据它,列出方程吗?同桌互相说一说。

  这不是最难的,最难的在这:你能不能根据这个天平,从天平上去掉一点东西列出一个新的方程,你想怎么做?

  生:左边和右边把梨和草莓都去掉。

  师:光去掉一边行吗?

  生:不行,那就不相等了。

  师:那就不是方程了。(师操作)

  师继续追问,一点点的去,最后剩下:x=200

  师:你现在知道苹果有多重了吗?

  生:200克。

  四、师总结(画集合),生谈收获。

  师:同学们刚才还想到了还想到往上面加东西,对吗?时间关系,怎样加课后和我交流。同学们今天学习了方程,你有什么收获?

  生交流后。

  师:小明列出了那么方程怎么来解这些方程呀?其实解方程的秘密就藏在天平里。这节课就上到这儿,下课。

《认识方程》数学教案2

  一、教学目标

  1、知识目标:使学生在具体情境中理解与掌握方程的意义,认识方程和等式之间的关系,使学生初步理解等式的基本性质。

  2、能力目标:使学生在观察、思考、分析、抽象、概括的过程中,经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展学生思维的灵活性。

  3、情感态度与价值观:使学生在积极参与数学活动的过程中,加强数学知识与现实世界的联系,培养学生认真观察、善于思考的学习习惯与数学应用意识,渗透转化的数学思想。

  二、学情分析

  学生对于利用天平解决实际问题较感兴趣,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。

  三、重点难点

  教学重点: 让学生理解并掌握等式与方程的意义,体会方程与等式之间的关系。

  教学难点: 体会方程与等式之间的关系。

  四、教学过程

  活动1【导入】谈话导入 出示,讨论天平的作用及用途,平衡状态和倾斜状态各说明什么情况。平衡状态说明托盘两边质量相等,倾斜状态说明托盘两边质量不相等。

  活动2【讲授】探究授新

  一、 认识等式与方程。

  1、出示(一),天平的两边放上砝码左边20克和30克,右边50克。提问:你看到天平怎样?天平平衡,说明什么?(生:说明两边质量相等。) 你能用式子表示两边物体之间的质量关系吗?(20+30=50)为什么中间用等号? 指出:像这样表示相等关系的式子就是等式。

  2、出示(二),把左边的其中一个20克砝码换成x克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x+30=50)

  3、出示(三),把左边托盘中的一个x克的砝码拿走,右边的50克砝码换成30克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x>30, 30<x)

  4、出示(四)天平图 你能用式子表示两边物体之间的质量关系吗? (X+X =100或 2X=100 )

  5、出示(五)天平图 你能用式子表示两边物体之间的质量关系吗? (10+ X<80或80>10+ X )

  6、出示刚才5道不同的式子。让学生分组讨论对5道式子进行分类。(提示:要按一定的标准进行分类。)指名分类,要求说出分类标准。

  7、对“是等式的”与“含有字母的”式子进行再次分类。 “是等式的”分为“不含有字母的等式”、“含有字母的等式”。 “含有字母的”分为“含有字母的`等式”、“ 含有字母的不等式” 观察“是等式的”中“含有字母的等式”与“含有字母的” 中“含有字母的等式”发现了什么?这些式子有什么共同的特征?

  8、师小结:像这样含有未知数的等式是方程。 你能举出一些方程吗?(先指名说,后同桌互说。)

  9、揭示课题:认识方程。

  二、认识等式与方程关系

  1、认真观察刚才的(1)20+30=50 (2) x+30=50(5) 2X=100,问:(1)是等式吗?是方程吗啊?(2)(5)是方程吗?是等式吗?

  2、小结:是方程一定是等式,是等式不一定是方程。

  3、你能不能用图形表示方程和等式之间的关系吗?

  引入集合圈表示它们之间的关系。

  三、巩固新知

  1、哪些是等式?哪些是方程?为什么?

  ① 35- =12 ( ) ⑥ 0.49÷ =7 ( )

  ② +24 ( ) ⑦35+65=100 ( )

  ③ 5 +32=47 ( ) ⑧-14> 72 ( )

  ④ 28<16+14 ( ) ⑨ 9b-3=60 ( )

  ⑤ 6(a+2)=42 ( ) ⑩+=70 ( )

  2、请同学们自己写出方程与等式各3个。

  3、张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

  4、判断。(正确的打“√”,错误的打“×”。)

  (1)含有未知数的等式是方程( )

  (2)含有未知数的式子是方程( )

  (3)方程是等式,等式也是方程( )

  (4)3=0是方程( )

  (5)4+20含有未知数,所以它是方程( )

  5、列出方程

  (1)x加上42等于56。

  (2)9.6除以x等于8。

  (3)x的5倍减去21,差是14。

  (4)x的6倍加上10,和是20.8。

  6、看图列出方程。

  列方程时,一般不把未知数单独写在等号的一边

  7、先读一读,再列出方程

  (1)一辆汽车的载重是5吨,用这辆汽车运x次,可以运40吨货物?

  (2)一瓶矿泉水的价格是2.5元,一个面包的价格是x元,买2个面包和1瓶矿泉水一共花了11.9元。

  四、 课外小知识,介绍方程的历史,让孩子们体会学习方程的用途。小结,通过今天的学习你有什么收获?你还想学习方程的那些知识?

  板书设计:

  认识方程

  20+30 = 50

  x +30 = 50 含有未知数的等式,叫做方程。

  x > 30 方程一定是等式;

  2 X = 100 等式不一定是方程。

  10 + X < 80

《认识方程》数学教案3

  教学理念:

  让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。

  教学过程:

  一、课前探疑

  学生课前认真预习课文内容,通过自主探究、合作交流,感知本课内容,提出疑难问题。

  二、课始集疑

  1、揭题

  2、集疑:同学们课前都进行认真的预习,现在请同学们把预习中没有解决的、需要在本节课上请老师、同学们帮助解决的问题提出来。

  过渡:刚才这些问题都提的非常好,我们这节课就重点解决这些问题。在解决这些问题之前,先请同学们认识一件物体。

  三、课中释疑

  <一>认识天平:课件出示天平,同学们说天平的作用、用法。

  <二>认识等式

  1、演示课件 写出式子

  在左边放二个40克的物体,右边放一个50克的法码,这时天平怎么样?

  你能用一个数学式子来表示这时候的现象吗? 40+50<100

  再在左边放一个30克的物体,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+50+30>100

  把左边的一个30克的物体换成10克的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+50+10=100

  再把左边的'10克与50克的物体换成未知的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+X<100

  再把左边的未知的物体换成另一个未知的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+X=100

  再把左边的物体换成二个未知的,右边另加上一个50克的砝码,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? X + X=150

  2、分类

  刚才我们写出了这么多的式子,大家能把这些式子按照一个统一的标准分类吗?请小组讨论按照什么样的标准分?并把分类结果写在卡片上。

  展示同学们不同的分类,并说说你们是按照什么标准分的?

  师:按照不同的标准分类,有不同的结果。刚才同学们的分类都是正确的,为了解决刚才同学们所提出的问题,我们今天就研究这一种分法。(分成等式与不等式两类的)

  3、理解概念

  师:为什么这么分?你们发现了这一类式子有什么特点? 左右两边相等

  揭示:像这样表示左右两边相等的式子叫做等式。(板书:等式)

  谁来举一些例子说说什么是等式?

【《认识方程》数学教案】相关文章:

《稍复杂的方程》数学教案12-18

《圆柱的认识》数学教案12-12

《认识时钟》数学教案12-03

数学教案《毫米、分米的认识》09-26

《认识单双数》数学教案12-05

圆柱认识数学教案02-16

认识10以内的数学教案06-15

《6和7的认识》数学教案08-29

《认识年、月、日》数学教案12-15