小学六年级反比例教案

时间:2022-04-27 11:39:08 教案 我要投稿

小学六年级反比例教案(通用15篇)

  作为一名人民教师,就有可能用到教案,教案有助于学生理解并掌握系统的知识。那么大家知道正规的教案是怎么写的吗?下面是小编收集整理的小学六年级反比例教案,欢迎阅读与收藏。

小学六年级反比例教案(通用15篇)

  小学六年级反比例教案 篇1

  教学内容:教材第99~102页例1~例3。

  教学要求:

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:认识反比例关系的意义。

  教学难点:掌握成反比例量的变化规律及其特征。

  教学过程:

  一、铺垫孕伏:

  1.正比例关

  系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、自主探究:

  1.教学例2。

  出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

  每天运的数量(吨)1020304050

  所需的天数

  在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

  指名学生口答讨论的结果,得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的`积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例1

  出示例1。

  请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

  3.概括反比例的意义。

  (1)综合例1、例2的共同点。

  提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

  4.具体认识。

  (1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,例2里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3)判断。

  现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

  5.教学例3。

  出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

  三、巩固练习

  用刚才我们说的判断方法来做几道题。

  1.做练一练。

  指名学生口答,说明理由。(可以写出数量关系式看一看)

  2.下题两种相关联量成不成反比例?为什么?

  一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  3.做练习十二第1题。

  四、课堂小结

  这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

  五、课堂作业

  练习十二第2~4题。

  小学六年级反比例教案 篇2

  教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。

  教学过程:

  一、引入

  教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?

  二、课堂练习

  1.分析、研究第3题。

  让学生先说出长方形的长、宽、面积三个量中,其中一个量与另外两个量的关系,教师板书出来:长宽=面积=长=宽

  提问:

  当面积一定时,长和宽成什么比例关系?

  当长一定时,面积和宽成什么比例关系?

  当宽一定时,面积和长成什么比例关系?

  教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,。

  2.第4题,让学生仿照第3题的.方法做。订正后,教师板书如下:

  每次运货吨数运货次数=运货的总吨数(一定)每次运货吨数与运货次数=运货次数(一定)成反比例关系。

  运货的总吨=每次运货吨数(一定)数与运货次数成正比例关系

  3.第5题,让学生独立做,教师巡视,注意个别辅导。

  4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。

  5.第7题,学生独立解答后,选一题说说是怎样解的。

  6.学有余力的学生做第8题。

  小学六年级反比例教案 篇3

  教学目标:

  1、理解反比例的意义。

  2、能根据反比例的意义,正确判断两种量是否成反比例。

  3、培养学生的抽象概括能力和判断推理能力。

  教学重点:

  引导学生理解反比例的意义。

  教学难点:

  利用反比例的意义,正确判断两种量是否成反比例。

  教学过程:

  一、复习铺垫

  1、成正比例的量有什么特征?

  2、下表中的两种量是不是成正比例?为什么?

  二、自主探究

  (一)教学例1

  1.出示例1,提出观察思考要求:

  从表中你发现了什么?这个表同复习的表相比,有什么不同?

  (1)表中的两种量是每小时加工的数量和所需的加工时间。

  教师板书:每小时加工数和加工时间

  (2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。

  教师追问:这是两种相关联的量吗?为什么?

  (3)每两个相对应的数的乘积都是600

  2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

  教师板书:零件总数

  每小时加工数×加工时间=零件总数

  3.小结

  通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。

  (二)教学例2

  1.出示例2,根据题意,学生口述填表。

  2.教师提问:

  (1)表中有哪两种量?是相关联的量吗?

  教师板书:每本张数和装订本数

  (2)装订的本数是怎样随着每本的张数变化的?

  (3)表中的两种量有什么变化规律?

  (三)比较例1和例2,概括反比例的意义。

  1.请你比较例1和例2,它们有什么相同点?

  (1)都有两种相关联的量。

  (2)都是一种量变化,另一种量也随着变化。

  (3)都是两种量中相对应的'两个数的积一定。

  2.教师小结

  像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

  3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?

  教师板书:xy=k(一定)

  三、课堂小结

  1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

  2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?

  四、课堂练习

  完成教材43页做一做

  五、课后作业

  练习七6、7、8、9题。

  六、板书设计

  成反比例的量xy=k(一定)

  每小时加工数×加工时间=零件总数(一定)

  每本页数×装订本数=纸的总页数(一定)

  小学六年级反比例教案 篇4

  教学内容:教材第53~54页练习十第4~13题,练习十后的思考题。

  教学要求:使学生进一步掌握正、反比例关系的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断、分析和推理等思维能力。

  教学重点:进一步掌握正、反比例关系的意义。

  教学难点:正确应用比例知识解答基本的正、反比例应用题。

  教学过程:

  一、基本训练

  1.揭示课题。

  我们已经学习了正、反比例关系的意义和正、反比例应用题,根据成正、反比例量的关系,可以应用比例的知识解答相应的应用题。这节课,我们练习正、反比例应用题。(板书课题)

  2.基本训练。

  小黑板出示练习十第4题,让学生口答并说明理由。结合第(1)题判断说明:在一个乘法表示的式子里(板书:ab=c),如果积一定,另两个量就成反比例;如果一个因数一定,根据乘、除法的关系,另两个量就成正比例。

  二、基本题练习

  1.做练习十第5题。

  (1)学生读题。

  提问:按过去的算术解法,第(1)题要先求什么数量,第(2)题要先求什么数量?用比例的知识怎样解答呢,请大家自己做一做。指名两人板演,其余学生做在练习本上。集体订正。

  (2)提问:第(1)题是怎样想的?第(2)题是怎样想的,提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?

  2.练习小结。

  解答正、反比例应用题,都要先判断两种相关联的量成什么比例,找出两种相关联量的对应数值,再列等式解答。解题时,正比例应用题要根据比值一定列等式解答;反比例应用题要根据乘积一定列等式解答。

  三、综合练习

  1.做练习十第11题。

  让学生默读题目。提问:第一个圆柱的`高是第二个圆柱高的还可以怎样说?(第一个圆柱的高和第二个圆柱高的比是4:5,或者第一个圆柱的高看做4份,第二个圆柱的高就是这样的5份)请大家思考两个问题,当两个圆柱底面积相等时,(1)圆柱体积与高成什么比例?(2)两个圆柱体积的比与对应高的比有怎样的关系?为什么?想一想,你能用几种方法解答,自己在练习本上列出式子。指名学生口答式子,老师板书(包括用分数应用题的方法解答)。让学生根据不同的式子,说说各是怎样想的。说明:按照分数与比之间的联系,有些应用题可以根据数量之间的联系,用分数和比例知识,采用不同的方法解答。

  2.做练习十第13题。

  (1)提问:这是一道什么应用题?可以怎样列式解答?(老师板书)这样解答是怎样想的?(把树苗总棵数看做单位1,单位1的94%是470棵,所以列方程解)

  (2)把树苗总数看做单位l,成活棵数是94%,你还能用比例知识解答吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说明列式理由。

  四、讲解思考题

  学生默读题目。提问:增加铅以后,铅与锡的比是5:3,有怎样的关系式?根据这样的关系式可以怎样解答呢?请大家课后想一想、做一做。

  五、课堂小结

  通过练习,你进一步明确了哪些内容?指出:过去我们学过的先求单一量和先求总数量的应用题,可以用比例知识来解答。解答正、反比例应用题,要先判断成什么比例,找出数量之间对应数值,然后根据比值相等或乘积相等的等量关系,列等式解答。解答应用题,还可以根据数量之间的联系,用不同的方法做。

  六、布置作业

  课堂作业:练习十第8、9、10题

  家庭作业:练习十第6、7、12题。

  小学六年级反比例教案 篇5

  教学目标:

  1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;

  2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;

  3、利用多媒体动画的演示,让学生体验到反比例的变化规律。

  教学重点:感受反比例的变化,概括反比例的意义;

  教学难点:正确判断两种相关联的量是否成反比例;

  教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)

  每次拿的支数

  10

  5

  4

  2

  1

  拿的次数

  总支数

  教学过程:

  一、复习

  1、什么叫做“成正比例的量”?

  2、判断两种量是否成正比例关键是什么?

  3、练习:课本表中的两种量是不是成正比例?为什么?

  二、小组协作概括“成反比例的`量”的意义

  (一)活动一

  师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!

  1、学生汇报观察记录单的填写结果。

  2、引导观察:在填、拿的过程中,你发现了什么?

  3、师:你能根据表格,写出这三个量的关系式吗?

  4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。

  5、揭示反比例的意义(阅读课本,明确反比例关系)

  6、如果用x、y表示两种相关联的量,用k表示积,反比例关系式怎样表示?

  (二)活动二:(例3)

  1、课件出示例3,指名读题,学生独立完成

  2、总结归纳出正比例和反比例的相同点和不同点

  三、强化练习发展提高

  1判定两个量是否成反比例,主要看它们的()是否一定。

  2全班人数一定,每组的人数和组数。

  ()和()是相关联的量。

  每组的人数×组数=全班人数(一定)

  所以()和()是成反比例的量。

  3判断下面每题中的两种量是不是成反比例,并说明理由。

  糖果的总数一定,每袋糖果的粒数和装的袋数。

  煤的总量一定,每天的烧煤量和能够烧的天数。

  生产电视机的总台数一定,每天生产的台数和所用的天数。

  长方形的面积一定,它的长和宽。

  4机动练习:

  想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?

  四、全课总结

  1、你能不能结合日常生活举一些反比例的例子。

  2、今天这节课,你有什么收获?还有什么遗憾?

  小学六年级反比例教案 篇6

  教学内容:

  教材第106、107页例1,例2。

  教学要求:

  1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

  2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

  教学重点:

  认识正、反比例应用题的特点。

  教学难点:

  掌握用比例知识解答应用题的解题思路。

  教学过程:

  一、铺垫孕伏:

  1.判断下面的量各成什么比例。

  (1)工作效率一定,工作总量和工作时间。

  (2)路程一定,行驶的速度和时间。

  让学生先分别说出数量关系式,再判断。

  2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

  (1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  (2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

  指名学生口答,老师板书。

  3.引入新课。

  从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

  二、自主探究:

  1.教学例1。

  (1)出示例1,让学生读题。

  提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?

  (2)说明:这道题还可以用比例知识解答。

  提问:题里再买几个同样的篮球说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次篮球个数与总价对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?

  (3)小结:

  提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。

  2.教学改编题。

  出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

  3.教学例2。

  (1)出示例2,学生读题。

  提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:效率时间=总量)这道题里哪个数量是不变的量?

  (2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

  (3)提问:按过去的方法是先求什么再解答的`?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。

  4.小结解题思路。

  请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)

  三、巩固练习

  1.做练一练。

  指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

  2.做练习十三第1题。

  先自己判断,小组交流,再集体订正。

  四、课堂小结

  这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?

  五、布置作业

  完成练习十三第2~6题的解答。

  小学六年级反比例教案 篇7

  教学目标

  1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

  2.通过观察、比较、归纳,提高学生综合概括推理的能力.

  3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.

  教学重难点

  理解正反比例的意义,掌握正反比例的变化的规律.

  教学过程

  一、导入新课

  (一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

  (二)教师提问

  1.你为什么马上能想到还剩多少呢?

  2.是不是因为吃了的和剩下的是两种相关联的量?

  教师板书:两种相关联的量

  (三)教师谈话

  在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

  数量也是两种相关联的量.你还能举出一些例子吗?

  二、新授教学

  (一)成正比例的量

  例1.一列火车行驶的时间和所行的路程如下表:

  时间(时):路程(千米)

  1:90

  2:180

  3:270

  4:360

  5:450

  6:540

  7:630

  8:720

  1.写出路程和时间的比并计算比值.

  (1)2表示什么?180呢?比值呢?

  (2)这个比值表示什么意义?

  (3)360比5可以吗?为什么?

  2.思考

  (1)180千米对应的时间是多少?4小时对应的路程又是多少?

  (2)在这一组题中上边的.一列数表示什么?下边一列数表示什么?所求出的比值呢?

  教师板书:时间、路程、速度

  (3)速度是怎样得到的?

  教师板书:

  (4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

  (5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

  3.小结:有什么规律?

  小学六年级反比例教案 篇8

  教学内容:

  成反比例的量。

  教学目的:

  使学生理解反比例的意义,会正确判断两种相关联的量是否成反比例,培养学生判断能力。

  教学重点、难点:

  反比例的意义和正确判断成反比例的量。

  教具准备:

  小黑板、投影片。

  教学过程

  一、复习

  1、口答正比例的意义。

  2、怎样判断两种量成正比例?

  3、写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?

  (1)已知每小时加工零件数和加工时间,求加工零件总数。

  (2)已知每本书的价钱和购买的本数,求应付的钱。

  (3)已知每公亩产量和公亩数,求总产量。

  二、引新

  在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)

  三、新授

  1、教学例4。

  (1)出示例4。

  引导学生观察上表内数据,然后回答下面的问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、加工的时间是否随着每小时加工的个数的变化而变化?怎样变化?

  C、表中两个相的数的比值是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律?

  D、这个积表示什么?写出表示它们之间的数量关系式。

  学生口答,师板书

  小结:

  2、教学例5

  用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系?请你先填写下表。

  每本的页数152025304060

  装订的本数40

  (1)先填表,然后观察上表,回答下列问题:

  表中有哪两种量?

  装订的本数是怎样随着每本的页数变化而变化的?

  表中相对应的每两个数的乘积各是多少?

  你从中发现什么规律?写出它们的数量关系式?

  学生回答,教师板书如下:

  每本页数装订的本数=纸的总页数(一定)

  (2)小结:

  从上表可以看出:每本的页数和装订的本数也是两种相关联的量,装订的本数是随着本页数的变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。它们扩大、缩小的规律是:每本的页数和装订的本数的积总是一定的。

  (3)归纳反比例的意义及关系式。

  (1)请你比较一下上面的例4、例5,它们有什么共同特点?(教师引导学生归纳概括出反比例的意义)

  (2)判断成反比例量的方法:根据反比例的'意义判断两种量是否面反比例的量要具备的条件:

  a两种相关联的量。

  b一种量变化,另一种也随着变化。

  C两种量中相对应的两个数的积一定。

  (3)例4中,加工的时间随着每小时加工数量的变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量。想一想:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?(指名几个学生口述,教师帮助纠正)

  (4)概括关系式。

  如果用字母X和Y表示两种相关联的量,用R表示它们的积(一定),反比例关系可以用下面的式子表示:

  XY=R(一定)

  3.教学例6。

  播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

  师:大家能不能根据反比例的意义判断一下?

  指名口述,师讲评。

  (每天播种的公顷数和要用的天数是两6种相关联的量,每天播种的公顷数天数=播种的总公顷数,已知播种的总公顷数一定,也就是每天播种的公顷数和天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。)

  四、小结

  判断两种相关联的量是否成反比例,关键是看两种相关联的量中相对应的两个数的积是否一定,积一定这两种量成反比例。

  讨论:想一想:播种总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?

  五、巩固练习

  课本第16页的做一做练后讲评。

  六、课内外作业

  完成练习三的第4――7题。

  小学六年级反比例教案 篇9

  教学内容:

  P47~48,例7、正、反比例的比较。

  教学目的:

  进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

  教学过程:

  一、复习

  判断下面两种理成不成比例,成什么比例,为什么?

  (1)单价一定,数量和总价。

  (2)路程一定,速度和时间。

  (3)正方形的边长和它的'面积。

  (4)工作时间一定,工作效率和工作总量。

  二、新授。

  1、揭示课题

  2、学习例7

  (1)认识:“千米/时”的读法意义。

  (2)出示书中的问题要求学生逐一回答。

  (3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

  (4)填空:用下面的形式分别表示两个表的内容。

  当()一定时,()和()成()比例关系。

  还有什么样的依存关系?

  (5)教师作评讲并。

  (6)用图表示例7中的两种量的关系。

  指导学生描点、连线

  观察:在表里路程和时间成什么比例?表示正比例关系的是一条什么线?A点表示什么?B点呢?

  在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?

  用同样的方法观察右表。

  3、正、反比例的特点(异同点)

  由学生比、说

  三、巩固练习

  1、练一练第1、2题

  2、P49第1题。

  四、课堂:

  正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

  五、作业

  P49第2题(1)(4)(5)(6)(9)

  六、课后作业

  1、P49第2题(2)(3)(7)(8)(10)

  2、收集生活中正、反比例关系的量并分析。

  小学六年级反比例教案 篇10

  教学目标

  1.经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

  2.理解反比例函数的概念,会列出实际问题的反比例函数关系式。

  3.使学生会画出反比例函数的图象。

  4.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

  教学重点

  1、使学生了解反比例函数的表达式,会画反比例函数图象

  2、使学生掌握反比例函数的图象性质

  3、利用反比例函数解题

  教学难点

  1、列函数表达式

  2、反比例函数图象解题

  教学过程

  教师活动

  一、作业检查与讲评

  二、复习导入

  1.什么是正比例函数?

  我们知道当

  (1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

  (2)当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)

  创设问题情境

  问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

  分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式.

  设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:

  1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大

  2.自变量v的取值是v>0.

  问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.

  分析根据矩形面积可知

  xy=24,即

  从这个关系中发现:

  1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;

  2.自变量的取值是x>0.

  三、新课讲解

  上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportionalfunction).

  说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系.

  2.反比例函数的解析式又可以写成:(k是常数,k≠0).

  3.要求出反比例函数的解析式,只要求出k即可.

  实践应用

  例1下列函数关系中,哪些是反比例函数?

  (1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;

  (2)压强p一定时,压力F与受力面积s的关系;

  (3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

  (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.

  例2当m为何值时,函数是反比例函数,并求出其函数解析式.

  例3将下列各题中y与x的函数关系与出来.

  (1),z与x成正比例;

  (2)y与z成反比例,z与3x成反比例;

  (3)y与2z成反比例,z与成正比例;

  例4已知y与x2成反比例,并且当x=3时,y=2.求x=1.5时y的值.

  分析因为y与x2成反比例,所以设,再用待定系数法就可以求出k,进而再求出y的值.

  例5已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

  小结

  一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportionalfunction).

  要求反比例函数的解析式,可通过待定系数法求出k值,即可确定.

  练习2

  1.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数?

  (1)小红一分钟可以制作2朵花,x分钟可以制作y朵花;

  (2)体积为100cm3的长方体,高为hcm时,底面积为Scm2;

  (3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2;

  (4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米.

  2.已知y与x-2成反比例,当x=4时,y=3,求当x=5时,y的值.

  3.已知y=y1+y2,y1与成正比例,y2与x2成反比例.当x=1时,y=-12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值.

  4.已知一个长方体的体积是100立方厘米,它的长是ycm,宽是5cm,高是xcm.

  (1)写出用高表示长的函数式;

  (2)写出自变量x的取值范围;

  (3)当x=3cm时,求y的值.

  5.试用描点作图法画出问题1中函数的图象.

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质.

  二、探究归纳

  1.画出函数的图象.

  解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.

  3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

  上述图象,通常称为双曲线(hyperbola).

  提问这两条曲线会与x轴、y轴相交吗?为什么?

  画出反比例函数的图象

  1.这个函数的图象在哪两个象限?和函数的图象有什么不同?

  2.反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

  注1.双曲线的两个分支与x轴和y轴没有交点;

  2.双曲线的两个分支关于原点成中心对称.

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.

  在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.

  三、实践应用

  例1若反比例函数的图象在第二、四象限,求m的值.

  分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值.

  解由题意,得解得.

  例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx-k的.图象经过的象限.

  例3已知反比例函数的图象过点(1,-2).

  (1)求这个函数的解析式,并画出图象;

  (2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

  例4已知函数为反比例函数.

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当-3≤x≤时,求此函数的最大值和最小值.

  例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象.

  说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

  小结

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

  1.反比例函数的图象是双曲线(hyperbola).

  2.反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

  五、课堂练习

  1.在同一直角坐标系中画出下列函数的图象:

  2.已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.

  4.已知反比例函数经过点A(2,-m)和B(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0<x2,试比较y1和y2的大小

  四、课后作业布置

  课后练习卷一份

  六、课后教学反思

  小学六年级反比例教案 篇11

  教学目标

  (一)教学知识点

  1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  (二)能力训练要求

  结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.

  (三)情感与价值观要求

  结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.

  教学重点

  经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  教学难点

  领会反比例函数的意义,理解反比例函数的概念.

  教学方法

  教师引导学生进行归纳.

  教具准备

  投影片两张

  第一张:(记作5.1A)

  第二张:(记作5.1B)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b,其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式,如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t=中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘。

  Ⅱ.新课讲解

  [师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?

  1.复习函数的定义

  [师]大家还记得函数的定义吗?

  [生]记得.

  在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.

  [师]大家能举出实例吗?

  [生]可以.

  例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.

  等腰三角形的顶角的`度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.

  [师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.

  2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.

  [师]请看下面的问题.

  电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表:

  R/Ω20406080100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  请大家交流后回答.

  [生](1)能用含有R的代数式表示I.

  由IR=220,得I=.

  (2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.

  从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大。

  (3)变量I是R的函数.

  由IR=220得I=x,当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.

  [师]这位同学回答的非常精彩,下面大家再思考一个问题.

  舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.

  [生]根据I=,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.

  投影片:(5.1A)

  京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  [师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.

  [生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.

  [师]从上面的两个例题得出关系式

  I=和t=

  它们是函数吗?它们是正比例函数吗?是一次函数吗?

  [生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数,但是从表达式来看,它们既不是正比例函数,也不是一次函数.

  [师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?

  [生]可以.由I=与t=可知关系式为y=(k为常数且k≠0).

  [师]很好.

  一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.

  从y=中可知x作为分母,所以x不能为零.

  3.做一做

  投影片(5.1B)

  1.一个矩形的面积为20cm2,相邻的两条边长分别为xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  3.y是x的反比例函数,下表给出了x与y的一些值:

  x-2-1

  13

  y

  2-1

  (1)写出这个反比例函数的表达式;

  (2)根据函数表达式完成上表.

  [生]由面积等于长乘以宽可得xy=20,则有y=x,变量y是变量x的函数,因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数。

  [生]根据人均占有耕地面积等于总耕地面积除以总人数得m=x,给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m=符合反比例函数的形式,所以是反比例函数。

  [师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件。同理,在求反比例函数的表达式时,实际上是要确定k的值,因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察,由x=-1,y=2确定k的值,然后再根据求出的表达式分别计算x或y的值。

  [生]设反比例函数的表达式为

  y=.

  (1)当x=-1时,y=2;

  ∴k=-2.

  ∴表达式为y=-.

  (2)当x=-2时,y=1.

  当x=-时,y=4;

  当x=时,y=-4;

  当x=1时,y=-2.

  当x=3时,y=-;

  当y=时,x=-3;

  当y=-1时,x=2.

  因此表格中从左到右应填

  -3,1,4,-4,-2,2,-.

  Ⅲ.课堂练习

  随堂练习(P131)

  Ⅳ.课时小结

  本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.

  Ⅴ.课后作业

  习题5.1

  Ⅵ.活动与探究

  已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?

  分析:由y与x成反比例可知y=,得y-1与成反比例的关系式为y-1==k(x+2),由x=1、y=4确定k的值.从而求出表达式.

  解:由题意可知y-1==k(x+2).

  当x=1时,y=4.

  所以3k=4-1,

  k=1.

  即表达式为y-1=x+2,

  y=x+3.

  由上可知y是x的一次函数。

  小学六年级反比例教案 篇12

  教学目标:

  经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  教学程序:

  一、导入:

  1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。

  2、U=IR,当U=220V时,

  (1)你能用含R的代数式表示I吗?

  (2)利用写出的关系式完成下表:

  R(Ω)20406080100

  I(A)

  当R越来越大时,I怎样变化?

  当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  答:①I=UR

  ②当R越来越大时,I越来越小,当R越来越小时,I越来越大。

  ③变量I是R的'函数。当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数。

  二、新授:

  1、反比例函数的概念

  一般地,如果两个变量x,y之间的关系可以表示成y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函数。

  反比例函数的自变量x不能为零。

  2、做一做

  一个矩形的面积为20cm2,相邻两条边长分别为xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?

  解:y=20x,是反比例函数。

  三、课堂练习:

  P133,12

  四、作业:

  P133,习题5.11、2题

  小学六年级反比例教案 篇13

  【授课内容】

  《反比例》

  【教材理解】

  《反比例的意义》是新课标人教版小学数学六年级下册第47-48页的内容。本节课的内容是在教学了成正比例的量的基础上进行教学的,是前面“比例”知识的深化,是后面学习“用它解决一些简单正、反比例的实际问题”的基础,它起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。为此,教学时先引导学生回忆已学过的数量关系,通过举例、交流,知识迁移,体会生活中存在着大量的反比例的关系,在此基础上探求新知,最后深化新知。

  【设计理念】

  在教学过程的设计上,首先通过对正比例的复习,直接导入新课教学,揭示课题“反比例”,例题学习,引导学生观察表中的三种量中的变化规律,通过学生讨论交流、自主探究,在教师的引导概括出反比例的意义,然后进一步抽象概括反比例关系式:xy=k(一定),接着运用反比例的知识,判断两种量是不是成反比例的量,然后让学生自己举例说说生活中的反比例,进一步加深对反比例关系的认识。

  【学情简介】

  这节课是在学生学习正比例的基础上进行教学的。教学时充分相信学生、尊重学生,改变传统的教学模式,学生由被动学习转化为主动学习,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观主动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。同时采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。

  【教学目标】

  知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

  能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。

  情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。

  【教学重难点】

  重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

  难点:掌握反比例的特征,能够正确判断反比例关系。

  【教学方法】

  小组合作,归纳推理,探究交流

  【教学准备】

  多媒体课件

  【课时安排】

  1课时

  【教学过程】

  (一)复习猜想导入,引出问题。

  1、成正比例的量有什么特征?什么叫正比例关系?

  2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。

  达成目标:猜想导课,激发探究愿望

  (二)共同探索,总结方法。

  1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的'学习方法。

  2、情境导入,学习探究。

  (1)我们先来看一个实验。

  高度(厘米) 30 20 15 10 5

  底面积(平方厘米) 10 15 20 30 60

  体积(立方厘米)

  提问:根据列表,你从中你发现了什么?

  (2)学生讨论交流。

  (3)引导学生回答:表中的两个量是高度和底面积。

  高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

  每两个相对应的数的乘积都是300.

  (4)计算后你又发现了什么?

  每两个相对应的数的乘积都是300,乘积一定。

  教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。

  教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)

  (5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)

  小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?

  (6)归纳总结反比例的意义。

  (7)比较归纳正反比例的异同点。

  达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。

  (三)运用方法,解决问题。

  1、生活中,哪些相关联的量成反比例关系,举例说一说。

  2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?

  3、出示反比例图像,与正比例图像进行比较学习。

  达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。

  (四)反馈巩固,分层练习。

  判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。

  (五)课堂总结,提升认识

  总结:今天我们学习了什么?(揭示课题—反比例)你有什么收获?学习中,你要提示大家注意什么?你对今天的学习还有什么疑问吗?

  【板书设计】 反比例

  高度(厘米) 30 20 15 10 5

  底面积(平方厘米) 10 15 20 30 60

  体积(立方厘米) 300 300 300 300 300

  高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

  高×底面积=水的体积(一定)

  反比例关系式:x×y=k(一定)

  小学六年级反比例教案 篇14

  教学目标

  1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。

  2、过程与方法:为学生营造一个经历知识产生过程的情境。

  3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。

  教学重点:

  理解反比例的意义。

  教学难点:

  两种相关联的量的变化规律。

  教学过程

  一、谈话引入,激发兴趣。

  1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的`量的?这节课我们用同样的学习方法来研究比例的另外一个规律。

  2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。

  二、创设情景引新

  (出示:十二个小方块)

  师:同学们,这十二个小方块有几种排法?

  (生答后,老师板书下表的排列过程)

  每行个数 1 2 3 4 6 12

  行 数 12 6 4 3 2 1

  师:请你观察上表中每行个数与行数成正比例关系吗?为什么?

  生:……

  师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。

  (出示课题:反比例的意义)

  三、合作自学探知

  1、学习例4。

  (1)出示例4。

  师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。

  A、表中有哪两种量?

  B、怎样随着每小时加工的数量变化?

  C、每两个相对应的数的乘积各是多少?

  学生讨论……

  生反馈:……

  师:能不能举出三个例子

  生:10×20=600 20×30=600 30×20=600……

  师:这里的600是什么数量?你能说出这里的数量关系式吗?

  生: ……

  [板书出示: 每小时加工数×加工时间=零件总数(一定)]

  2、自学例5:

  (1)出示例5:

  师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?

  生: ……

  师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)

  生: ……

  3、讨论准备题:

  (1)请你根据例4的方法,四人小组内说一说。

  (2)请你举例说明表中每行个数与行数是什么关系?为什么?

  四、比较感知特征

  综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?

  生: ……

  五、引导概括意义

  1、概括反比例意义。

  学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。

  师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?

  生: ……

  师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。

  学生互相练习……

  师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?

  生: ……

  师:例4、例5和准备题中的两种量成不成反比例?为什么?

  生: …… (学生回答后,老师及时纠正)

  师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?

  生: …… [板书出示:x×y=k(一定) ]

  2、教学例6。

  (1) 课件出示例6。

  (学生读题、思考)

  师:怎样判断两种量成不成反比例?

  师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?

  生: 因为每天播种的公顷数×要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。

  六、小结:

  这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?

  小学六年级反比例教案 篇15

  教学目标:

  1、通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例

  2、培养学生的逻辑思维能力

  3、感知生活中的数学知识

  重点难点

  1、通过具体问题认识反比例的量。

  2、掌握成反比例的量的变化规律及其 特征

  教学难点:

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学过程:

  一、课前预习

  预习24---26页内容

  1、什么是成反比例的量?你是怎么理解的?

  2、情境一中的两个表中量变化关系相同吗?

  3、三个情境中的两个量哪些是成反比例的量?为什么?

  二、展示与交流

  利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律

  情境(一)

  认识加法表中和是12的直线及乘法表中积是12的曲线。

  引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

  情境(二)

  让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定

  情境(三)

  把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系

  写出关系式:每杯果汁量×杯数=果汗总量(一定)

  5、以上两个情境中有什么共同点?

  反比例意义

  引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

  活动四:想一想

  二、 反馈与检测

  1、判断下面每题是否成反比例

  (1)出油率一定,香油的质量与芝麻的质量。

  (2)三角形的面积一定,它的底与高。

  (3)一个数和它的.倒数。

  (4)一捆100米电线,用去长度与剩下长度。

  (5)圆柱体的体积一定,底面积和高。

  (6)小林做10道数学题,已做的题和没有做的题。

  (7)长方形的长一定,面积和宽。

  (8)平行四边形面积一定,底和高。

  2、教材“练一练”P33第1题。

  3、教材“练一练”P33第2题。

  4、找一找生活中成反比例的例子,并与同伴交流。

  板书设计: 反比例

  两个相关联的量,乘积一定,成反比例

  关系式:X×Y=K(一定)

  课后反思:

  本课时教学设计特点:一是情景设置和几个表格的设计,都注重从现实题材出发,让学生感受到反比例在现实生活中的广泛应用。二是通过让学生自己去分类整理、自主探究、合作交流得出反比例的意义,有利于发展学生的数学思维。

【小学六年级反比例教案】相关文章:

《反比例》教案03-07

反比例函数教案01-15

小学六年级数学《反比例》教案(精选10篇)03-23

《反比例》数学教案08-29

《反比例》数学教案11-19

反比例函数教案(精选10篇)11-27

《正比例反比例》教案03-07

六年级正反比例的教学反思12-14

反比例意义教学反思01-09