- 圆周角教案 推荐度:
- 圆周角教案 推荐度:
- 相关推荐
关于圆周角教案(通用7篇)
作为一无名无私奉献的教育工作者,可能需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。我们该怎么去写教案呢?以下是小编为大家整理的圆周角教案3篇,欢迎阅读与收藏。
圆周角教案 篇1
教材依据
圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。
设计思想
本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精选例题及习题对本节内容进行迁移应用。
在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水平,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。
教学目标
1.知识与技能
(1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。
(2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。
2.过程与方法
采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。
3.情感、态度与价值观
通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。
教学重点
圆周角的概念、圆周角定理及应用。
教学难点
圆周角定理的探究过程及定理的应用。
教学准备
学生:圆规、量角器、尺子
教师:多媒体课件、活动教具
教学过程
一、创设情景,引入新课
大屏幕显示学生熟悉的画面(足球射门游戏)
足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。”其中蕴藏了一定的数学道理,学习了本节课,我们就可以解释其中的道理。
二、实践探索,揭示新知
(一)圆周角的概念
在射门游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角∠ABC有关.(教师出示图片,提出问题)
图中∠ABC是圆心角吗?什么是圆心角?图中∠ABC有什么特点?
(学生通过与圆心角的类比、分析、观察得出∠ABC的特点,进而概括出圆周角的概念,教师引导并板书)
定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
概念辨析:
判断下列各图形中的角是不是圆周角,并说明理由。(图略)
(通过概念辨析,让学生理解圆周角的定义,提高学生的语言表达能力,教师强调知识要点)
强调:圆周角必须具备的两个条件:①顶点在圆上;②两边都与圆相交.
(二)圆周角定理
1.提出问题,引发思考
类比圆心角的结论:同弧或等弧所对的圆心角相等。提出本节课研究的问题:同弧或等弧所对的圆周角相等吗?为了搞清这个问题,我们可以先研究:同弧所对的圆心角和圆周角的关系。
2.活动与探究
画一个圆心角,然后再画同弧所对的圆周角。你能画多少个圆周角?用量角器量一量这些圆周角及圆心角的度数,你有何发现呢?
(教师提出问题,学生作图、度量、分析、归纳出发现的结论。)
结论:(1)同一条弧所对的圆周角有无数个,同弧所对的任意一个圆周角都相等。
(2)同一条弧所对的圆周角等于它所对的圆心角的一半.
由上述操作可以看出:同一条弧所对的任意一个圆周角都等于该条弧所对的圆心角的一半。
(学生通过实践探究,讨论概括出结论,教师点评)
3.推理与论证
(1)教师演示活动教具,一条弧所对的圆心角只有一个,所对的圆周角有无数个,我们没有办法一一论证,提出本节课研究方法:分类讨论法。
(教师演示,引导学生观察圆心与圆周角的位置关系,学生观察、小组交流,最后得出结论,教师出示圆心和圆周角的三种位置关系图片)
(2)分类讨论,证明结论①当圆心在圆周角的一条边上时,如何证明?(从特殊情况入手,学生通过观察、分析、讨论,证明所发现的结论,教师鼓励学生看清此数学模型。)
②另外两种情况如何证明,可否转化成第一种情况呢?
(学生采取小组合作的学习方式进行探索发现,教师巡视指导,启发并引导学生,通过添加辅助线,将问题进行转化,学生写出证明过程,并讨论归纳出结论,教师做出点评)
结论:在同圆中,同弧所对的圆周角相等,都等于该条弧所对圆心角的一半
4.变式拓展,引出重点
将上述结论改为“在同圆或等圆中,等弧所对的'圆周角相等吗?
(学生思考、推理、讨论、总结出圆周角定理,教师板书)
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
强调:(1)定理的适用范围:同圆或等圆(2)同弧或等弧所对的圆周角相等(3)同弧或等弧所对的圆周角等于它所对圆心角的一半
(教师强调圆周角定理的内容,学生思考、默记、熟悉定理,加深对定理的理解)
三、应用练习,巩固提高
1.范例精析:
例:如图,在⊙O中,∠CBD=30°,∠BDC=20°,求∠A(图略)
(鼓励学生用多种方法解决问题,发散学生的思维,培养学生良好的思维品质,让学生书写推力计算过程,教师补充、点评、并和学生一起归纳解法。两种解法分别应用了圆周角定理中的两个结论,进一步对本节课的重点知识熟练深化,同时又培养了学生规范的书写表达能力)
2.应用迁移:
(1)比比看谁算得快:(图略)
(本小题既可巩固圆周角定理,又可培养学生的竞争意识以适应时代的要求,同时对回答问题积极准确的学生提出表扬,激发学生的学习积极性)
(2)生活中的数学
如图.在足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经冲到B点,这时甲是直接射门好,还是将球传给乙,让乙射门好﹙仅从射门角度考虑﹚(图略)
(选用学生熟悉的生活材料,让学生通过合作交流,讨论找出合理的解答方法,通过本小题的练习,使学生体味到生活离不开数学,从而激发学生应用数学的意识)
四、总结评价,感悟收获
通过本节课的学习你有哪些收获?(学生归纳总结,老师点评)
知识:(1)圆周角的定义;
(2)圆周角定理。
能力:观察、操作、分析、归纳、表达等能力.
思想方法:分类讨论思想、转化思想、类比思想、数形结合思想、
五、作业设计,查漏补缺
1.课本习题:P88.1,2,3,P89.5,P124.11
2.在⊙O中,圆心角∠AOB=70°,点C是⊙O上异于A、B的一点,求圆周角∠AOB的度数。
3.生活中的数学:监控器的监控范围是65度,圆形的博物馆内需要安装几盏才能全方位监控?(图略)
(设计课本习题与课外拓展作业,不仅可以使学生对本节课的知识加以巩固、提高和查漏补缺,而且让学生会用数学的眼光和头脑去观察和思考世界,达到学以致用)
教学反思
成功之处:本节课内容丰富,结构合理,设计精细。教学时能根据学生实际遵循认知规律,由浅入深,循序渐进,及时了解学生的学习情况,灵活调整教学内容。能适时的用教材又不拘泥于教材,挖掘教材的多种功能,在教学结构的安排上也体现了新课标、新理念,重视学生自主学习、自主探究、合作交流、主动地观察与思考,各个环节衔接紧密、合理、流畅,教学效果比较理想。
不足之处:学生不易理解用分类讨论思想证明圆周角定理,在后面的教学中逐步让学生了解分类讨论思想在解题时的应用。另外学生语言表达的准确性还需不断加强。
圆周角教案 篇2
教材分析
1本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索。
2.圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,在对圆与其他平面图形的研究中起着桥梁和纽带的作用。
学情分析
九年级的学生虽然已具备一定的说理能力,但逻辑推理能力仍不强,根据数学的认知规律,数学思想的学习不可能“一步到位”,应当逐步递进、螺旋上升。在具体的问题情境下,引导学生采用动手实践、自主探究、合作交流的学习方法进行学习,充分发挥其主体的积极作用,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发挥潜能,使知识和能力得到内化,体现“主动获取,落实双基,发展能力”的原则。
教学目标
(1)知识目标:
1、理解圆周角的概念。
2、经历探索圆周角与它所对的弧的关系的过程,了解并证明圆周角定理及其推论。
3、有机渗透“由特殊到一般”、“分类”、“化归”等数学思想方法。
(2)能力目标:
引导学生从形象思维向理性思维过渡,有意识地强化学生的推理能力,培养学生的实践能力与创新能力,提高数学素养。
(3)情感、态度与价值观的目标:
1、创设生活情境激发学生对数学的'好奇心、求知欲,营造“民主”“和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验。
2、培养学生以严谨求实的态度思考数学。
教学重点和难点
探索并证明圆周角与它所对的弧的关系是本课时的重点。
用分类、化归思想合情推理验证“圆周角与它所对的弧的关系”是本课时的难点。
圆周角教案 篇3
教学目标:
(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.
教学重点:
圆周角的概念和圆周角定理
教学难点:
圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.
教学活动设计:(在教师指导下完成)
(一)圆周角的概念
1、复习提问:
(1)什么是圆心角?
答:顶点在圆心的角叫圆心角.
(2)圆心角的度数定理是什么?
答:圆心角的度数等于它所对弧的度数.(如右图)
2、引题圆周角:
如果顶点不在圆心而在圆上,则得到如左图的新的`角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)
定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角
3、概念辨析:
教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.
学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.
(二)圆周角的定理
1、提出圆周角的度数问题
问题:圆周角的度数与什么有关系?
经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.
(在教师引导下完成)
(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.
提出必须用严格的数学方法去证明.
证明:(圆心在圆周角上)
(2)其它情况,圆周角与相应圆心角的关系:
当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.
证明:作出过C的直径(略)
圆周角定理:一条弧所对的
周角等于它所对圆心角的一半.
说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)
(三)定理的应用
1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.
求证:∠ACB=2∠BAC
让学生自主分析、解得,教师规范推理过程.
说明:①推理要严密;②符号“”应用要严格,教师要讲清.
2、巩固练习:
(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?
(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?
说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.
(四)总结
知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.
思想方法:一种方法和一种思想:
在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.
(五)作业教材P100中习题A组6,7,8
圆周角教案 篇4
[教学目标]:
知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。
能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。
情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。
[教学过程]:
一、以旧引新,看谁连的快
屏显三个与圆有关的几何图形:
(1)顶点在圆上,两边都和圆相交的角。
(2)顶点在圆心的角。
(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。
二、动手游戏,看谁找得多
屏显游戏规则:
1、拿出准备好的纸板,在圆上固定四个点A、B、C、D。
2、用橡皮筋两两连接A、B、C、D四个点。
3、在连结的图形中一共有多少个圆周角?
4、比一比看哪个小组连得快,连得多,请各小组作好记录。
5、完成后进行展示,持不同意见的小组可随时补充。
(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)
三、提出问题,引入新课:
问题1:这四大类12个圆周角中,弧所对的圆周角有多少个?
问题2:弧ADC所对的圆周角又有几个?分别是什么?
问题3:为什么弧所对的圆周角有两个?而弧ADC所对的圆周角却只有一个?
学生活动:学生进行小组讨论、交流
教师活动:巡视、点拨、评价、板书
[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。
四、动手实验,看谁猜得对
1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)
学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。
教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。
(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠AOB和∠ACB的度数,进一步验证学生的猜想。
五、细心观察,初步探索:
师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。
电脑演示:固定圆周角的一边,使另一边绕着圆周角的.顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。
(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)
六、合作探索,突破难点
这是本节课大段时间的学生活动,在这个过程中引导学生达到以下目标:
1、尝试从不同角度寻求解决方法,提高解决问题能力。
2、鼓励学生在小组内敢于表达自己的想法和观点。
3、尊重学生在解决问题过程中表现出来的水平差异。
4、教师不断加入学生中间,成为他们学习的合作者,让学生感到师生共同探索的快乐。
七、证明猜想,得出结论
引导学生证明猜想,逐步渗透由特殊到一般,分类讨论等数学思想,充分展示学生的证明过程。
[师板书]:性质2:圆周角等于它所对的弧所对的圆心角的一半。
八、进一步探索,完善结论
性质3:同弧或等弧所对的圆心角相等。
九、巩固定理,初步应用
[电脑展示]:例如:OA、OB、OC都是⊙O的半径,∠AOB=∠BOC,求证:∠ACB≌2∠BCA(图形略)
证明:∵∠ACB=1∕2∠AOB,∠BAC=1/2∠BOC
∠AOB=1/2∠BOC∴∠ACB=2∠BAC
(使学生在从复杂的图形中分解出基本图形的训练中,培养空间识图能力。)
十、引导小结,进行反思
引导学生谈一谈本节课自己的学习体会。
十一、设计作业
1、书面作业:课本第165页练习第2题,第166页习题24。1复习巩固1、2、3、4题
2、探究作业:课后同学互助总结圆心角与圆周角的区别和联系(列表或语言叙述)。
圆周角教案 篇5
教学目标:
(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;
(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;
(3)培养添加辅助线的能力和思维的广阔性.
教学重点:
圆周角定理的三个推论的应用.
教学难点:
三个推论的灵活应用以及辅助线的添加.
教学活动设计:
(一)创设学习情境
问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?
问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?
(二)分析、研究、交流、归纳
让学生分析、研究,并充分交流.
注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.
老师组织学生归纳:
推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.
重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.
问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)
问题3:(1)一个特殊的圆弧——半圆,它所对的圆周角是什么样的角?
(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?
学生通过以上两个问题的解决,在教师引导下得推论2:
推论2:半圆(或直径)所对的.圆周角是直角;90°的圆周角所对的弦直径.
指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.
启发学生根据推论2推出推论3:
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.
指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.
(三)应用、反思
例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.
求证:AB·AC=AE·AD.
对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.
交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).
解(略)
教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.
指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.
变式练习1:如图,△ABC内接于⊙O,∠1=∠2.
求证:AB·AC=AE·AD.
变式练习2:如图,已知△ABC内接于⊙O,弦AE平分
∠BAC交BC于D.
求证:AB·AC=AE·AD.
指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.
例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;
求BC,AD和BD的长.
解:(略)
说明:充分利用直径所对的圆周角为直角,解直角三角形.
练习:教材P96中1、2
(四)小结(指导学生共同小结)
知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.
能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.
(五)作业
教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.
探究活动
我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.
提示:(1)连结BC,可得∠E=(的度数—的度数)
(2)延长AE、CE分别交圆于B、D,则∠B=的度数,
∠C=的度数,
∴∠AEC=∠B+∠C=(的度数+的度数).
圆周角教案 篇6
教学目标:
1、通过本节课的教学使学生能够系统地、掌握圆周角这大节的知识点.并能运用它准确地判断真假命题。
2、熟练地掌握圆周角定理及三个推论,并能运用它们准确地证明和计算。
3、结合本节课的教学培养学生准确地计算问题的能力;
4、进一步培养学生观察、分析、归纳及逻辑思维能力.教学重点:圆周角定理及推论的应用.教学难点:理解圆周角定理及推论及辅助线的添加。
教学过程:
一、新课引入:本节课是圆周角的第三课时,是引导学生在掌握圆周角定义、圆周角定理及三个推论的基础上,进行的一节综合习题课.
二、新课讲解:由于是一节综合习题课,教学一开始由学生总结本大节知识点,教师板书知识网络图,给学生一个完整的知识结构,便于学生进一步理解和掌握
提问:
(1)什么叫圆周角?圆周角有哪些性质?教师提出问题,学生回答问题,教师板书出知识网络图:
(2)出示一组练习题(幻灯上).通过这组选择题巩固本节课所要用到的知识点,通过师生评价,使知识掌握更准确
1、选择题:①、下列命题,是真命题的'是[]a.相等的圆周角所对的弧相等b.圆周角的度数等于圆心角度数的一半c.90°的圆周角所对的弦是直径d.长度相等的弧所对的圆周角相等②下列命题中,假命题的个数
(1)、顶点在圆上的角是圆周角
(2)、等弧所对的圆周角相等
(3)、同弦所对的圆周角相等
(4)、平分弦的直径垂直于弦a.1.b.2.c.3.d.4.为了遵循素质教育的学生主体性、层次性的原则,题目的设计和选择要根据学生的实际情况,做到因材施教.教师在提问学生回答问题中分三个层次进行,使得不同层次的学生有所得.这组选择题是比较容易出错的概念问题,教师为了真正使学生理解和准确地应用,教师有意利用电脑画面演示,从生动而直观再现命题的正、反例子,把知识学习寓于趣味教学之中,大大激发学生的兴趣,从而加深对知识的深化.接下来和学生一起来分析例3.
已知在⊙o中,直径ab为10cm,弦ac为6cm,∠acb的平分线交⊙o于d,求bc,ad和bd的长.分析,所要求的三线段bc,ad和bd的长,能否把这三条线段转化为是直角三角形的直角边问题,由于已知ab为⊙o的直径,可以得到△abc和△adb都是直角三角形,又因为cd平分∠acb,所以可得=,可以得到弦ad=db,这时由勾股定理可得到三条线段bc、ad、db的长.学生回答解题过程,教师板书:解:∵ab为直径,∴∠acb=∠adb=90°.在rt△abc中,∵cd平分∠acb,∴=.在等腰直角三角形adb中,接下来练习:练习1:教材p.96中1题.如图7-44,ab为⊙o的直径,弦ac=3cm,bc=4cm,cd⊥ab,垂足为d.求ad、bd和cd的长.分析第一种方法时,主要由学生自己完成.分析1:要求ad、bd、cd的长,
①ab的长,由于ab为⊙o的直径,所以可得到△abc是直角三角形,即可用勾股定理求出.
②求cd的长,因cd是rt△abc斜边ab上的高,所以可以根据三角形面积公式,得到cd×ab=ac·cb来解决.
③求db的长,用线段之间关系即可求出.方法二由教师分析解题过程:分析2:①求ab的长.(勾股定理)(cm).
④求bd的长,可用相似三角形也可以用线段之间关系解决.这道练习题的目的,教师引导学生对一些问题思维要开朗,不能只局限于一种,要善于引导学生发散性思维,一题多解.练习2:教材p.96中2题。
已知:cd是△abc的中线,ab=2cd,∠b=60°.求证:△abc外接圆的半径等于cb.学生分析证明思路,教师适当点拨.证明过程由学生写在黑板上:证明:(法一)△abc外接圆的半径等于cb法。
二:略
三、课堂小结:师生共同从知识、技能、方法等方面进行
小结:
1、知识方面:
2、技能方面:根据题意要会画图形,构造出直径上的圆周角,同弧所对的圆周角等。
3、方法方面:①数形结合.
②一题多解.
四、布置作业教材
p.101中14题;p.102中3、4题。
圆周角教案 篇7
知识技能
1、了解圆周角与圆心角的关系。
2、掌握圆周角的性质和直径所对圆周角的特征。
3、能运用圆周角的性质解决问题。
数学思考
1、通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力。
2、通过观察图形,提高学生的识图能力。
3、通过引导学生添加合理的辅助线,培养学生的创造力。
解决问题
在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题。
情感态度
引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
重点
圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征。
难点
发现并论证圆周角定理。
教学流程安排
活动流程图
活动内容和目的
活动1:创设情景,提出问题。
活动2:探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系。
活动3:发现并证明圆周角定理。
活动4:圆周角定理应用。
活动5:小结,布置作业。
从实例提出问题,给出圆周角的定义。
通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系。
探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理。
反馈练习,加深对圆周角定理的理解和应用。
回顾梳理,从知识和能力方面总结本节课所学到的东西。
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
问题
演示课件或图片(教科书图24.1—11):
(1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?
(2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?
教师演示课件或图片:展示一个圆柱形的海洋馆。
教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物。
教师出示海洋馆的横截面示意图,提出问题。
教师结合示意图,给出圆周角的定义。利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧、所对的圆心角与圆周角、同弧所对的圆周角等之间的大小关系。教师引导学生进行探究。
本次活动中,教师应当重点关注:
(1)问题的提出是否引起了学生的兴趣;
(2)学生是否理解了示意图;
(3)学生是否理解了圆周角的定义。
(4)学生是否清楚了要研究的数学问题。
从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学。
将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法。
引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
[活动2]
问题
(1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?
(2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?
教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论。
由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半。
教师再利用几何画板从动态的角度进行演示,验证学生的发现。教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:
(1)拖动圆周角的顶点使其在圆周上运动;
(2)改变圆心角的度数;3。改变圆的半径大小。
本次活动中,教师应当重点关注:
(1)学生是否积极参与活动;
(2)学生是否度量准确,观察、发现的结论是否正确。
活动2的设计是为引导学生发现。让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论。激发学生的求知欲望,调动学生学习的积极性。教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系。
[活动3]
问题
(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?
(2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?
(3)另外两种情况如何证明,可否转化成第一种情况呢?
教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论。
教师巡视,请学生回答问题。回答不全面时,请其他同学给予补充。
教师演示圆心与圆周角的三种位置关系。
本次活动中,教师应当重点关注:
(1)学生是否会与人合作,并能与他人交流思维的过程和结果。
(2)学生能否发现圆心与圆周角的三种位置关系。学生是否积极参与活动。
教师引导学生从特殊情况入手证明所发现的结论。
学生写出已知、求证,完成证明。
学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动。启发并引导学生,通过添加辅助线,将问题进行转化。教师讲评学生的证明,板书圆周角定理。
本次活动中,教师应当重点关注:
(1)学生是否会想到添加辅助线,将另外两种情况进行转化。
(2)学生添加辅助线的合理性。
(3)学生是否会利用问题2的结论进行证明。
数学教学是在教师的引导下,进行的再创造、再发现的教学。通过数学活动,教给学生一种科学研究的方法。学会发现问题,提出问题,分析问题,并能解决问题。活动3的安排是让学生对所发现的'结论进行证明。培养学生严谨的治学态度。
问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题。培养学生思维的深刻性。
问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般。学会运用化归思想将问题转化。并启发培养学生创造性的解决问题
[活动4]
问题
(1)半圆(或直径)所对的圆周角是多少度?
(2)90°的圆周角所对的弦是什么?
(3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?
(4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
(5)如图,点在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?
(6)如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。
学生独立思考,回答问题,教师讲评。
对于问题(1)教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数。
对于问题(2)教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径。
对于问题(3)教师应重点关注学生能否得出正确的结论,并能说明理由。教师提醒学生:在使用圆周角定理时一定要注意定理的条件。
对于问题(4)教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等。
对于问题(5)教师应重点关注学生是否准确找出同弧上所对的圆周角。
对于问题(6)教师应重点关注。
(1)学生是否能由已知条件得出直角三角形ABC、ABD。
(2)学生能否将要求的线段放到三角形里求解。
(3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD。
活动4的设计是圆周角定理的应用。通过4个问题层层深入,考察学生对定理的理解和应用。问题1、2是定理的推论,也是定理在特殊条件下得出的结论。问题3的设计目的是通过举反例,让学生明确定理使用的条件。问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移。问题5、6是定理的应用。即时反馈有助于记忆,让学生在练习中加深对本节知识的理解。教师通过学生练习,及时发现问题,评价教学效果。
[活动5]
小结
通过本节课的学习你有哪些收获?
布置作业。
(1)阅读作业:阅读教科书P90—93的内容。
(2)教科书P94习题24.1第2、3、4、5题。
教师带领学生从知识、方法、数学思想等方面小结本节课所学内容。
教师关注不同层次的学生对所学内容的理解和掌握。
教师布置作业。
通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感。
增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解。
课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展。
【圆周角教案】相关文章:
精选圆周角教案3篇07-16
圆周角教案(精选10篇)05-18
圆周角教学反思05-17
圆周角的教学反思12-01
圆周角3教学反思12-20
中班教案教案10-11
教案幼儿中班教案02-15
中班安全教案教案04-04
小班教案小班教案05-17