圆的周长教案

时间:2022-03-29 12:20:30 教案 我要投稿

圆的周长教案范文6篇

  作为一名教学工作者,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。那么写教案需要注意哪些问题呢?下面是小编收集整理的圆的周长教案6篇,欢迎大家借鉴与参考,希望对大家有所帮助。

圆的周长教案范文6篇

圆的周长教案 篇1

  教材分析:

  这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。

  教学目标:

  1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

  2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

  3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。

  教学重点:

  通过多种数学活动推导圆的周长公式,能正确计算圆的周长。

  教学难点:

  圆的周长与直径关系的探讨。

  教学准备:

  多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)

  2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)

  3.指名一生说说正方形的周长计算方法:(生:边长×4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)

  二、经历探究全程,验证猜想发现。

  (一)认识圆周长的含义并初步感知圆周长与直径之间的关系。

  1.谈话:那什么是圆的周长呢?(课件出示3个车轮)

  2.师:上面的3个数据是表示什么的?(生:圆的直径)“英寸”是什么意思?(学生看书回答)

  3.将3个车轮各滚动一圈,猜一猜,谁滚动的路程最长?从中你们有什么发现?(生:车轮滚动一周的长度是车轮的周长;直径越长,周长越长,直径越短,周长越短)

  (二)交流测量圆周长的方法

  1.学生拿出课前剪的圆,互相指一指它们的周长。

  2.用什么办法测量它们的周长?(同桌交流方法)

  3.指名到前面投影上展示测量周长的方法

  ①滚动法。明确注意点:做好记号,从零刻度开始滚,滚动到这个记号再次指向这里,圆滚动一周的长就是这个圆的周长。

  ②绕圈法。明确:线贴紧圆周,把多余的部分剪掉,把线拉直,这两点之间线的长就是这个圆的周长。

  ③用软尺测量。明确:用软尺上有厘米刻度的一面测量。从零刻度开始量,绕圆周一圈,然后看看对齐哪个刻度。

  4.小结:这些方法有一个共同的特点:(生:将一条弯曲的线变成一条直的线)这就是数学上所讲的“化曲为直”的方法。

  5.(课件出示摩天轮图片)问:它的周长能用刚才的方法测量吗?(生:不能,很不方便)问:那怎么办?引发学生探究圆的周长与直径之间的关系。

  (三)认识圆周率。

  1.谈话:接下来同学们分4人小组,选择自己喜欢的方法,测量出身边这些圆的周长与直径,完成表格。(学生分组活动,完成书上表格)(课件出示表格)

  2.各小组组长汇报测量结果。(学生说结果,教师在课件上完善)

  3.让学生观察表格中的数据,说说又发现了什么?(学生小组交流后汇报:一个圆的周长总是直径的`3倍多一些)

  4.(课件出示)介绍《周髀算经》这本书及“周三径一”的意思。(圆的周长大约是直径的3倍)

  5.介绍祖冲之在求圆周率中做出的贡献,让学生想象祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(课件播放资料,学生自学)

  6.学生说说从资料的介绍中知道了什么?(学生交流自己的学习所得)

  7.师小结:祖冲之是我们民族的骄傲与自豪,正因为他杰出

  的成就,月球上有一座环形山就被命名为祖冲之山,宇宙中第1888号小行星也是以他的名字命名的。希望同学们以后也能像他那样刻苦钻研,将来也做一个不平凡的人。

  (四)推导公式

  1.当学生弄清了圆周长与直径之间的关系后,让学生说说圆的周长怎么计算?(生:圆的周长=圆周率×直径)

  2.谈话:如果圆的周长用大写字母C表示,那么这个公式用字母怎么表示?

  3.谈话:还可已知什么条件求周长?(生:半径)为什么?(生:在同一个圆中,圆的直径是半径的两倍)那这个公式还可怎么变换?

  4.齐读公式,加深印象。

  三、刷新应用能力,总结巩固新知。

  1.(课件出示第1题)学生口答两个圆的周长。

  2.计算例4中三个自行车车轮的周长大约各是多少英寸?(课件出示3个车轮)通过计算,比一比谁的周长最长?这再一次说明了什么?(生:圆的周长与它的直径有关)

  3.(课件出示一个喷水池)一个圆形喷水池的周长是12米,它的周长是多少米?(学生独立完成在作业本上,投影仪展示答案)

  4.(课件出示摩天轮图)它的半径是10米,坐着它转动一周,大约在空中转过多少米?(学生独立完成在作业本上,后在全班交流)

  四、交流学习收获,课后拓展延伸

  1.通过这节课研究圆的周长,你有什么收获?(学生全班交流)

  2.谈话:现在如果老师问喜羊羊和灰太狼谁走的路程长一些?同学们可怎么做?(学生独立完成,后全班交流)有没有其它方法?(学生可通过计算解决,也可直接观察两个图比较)

  3.师:种种方法都可以帮助我们来确定谁走的路程长,所以当喜羊羊得知这一结果后,直喊比赛不公平,于是老村长为它们又重新设计了一种新的赛跑路线:问:如果喜羊羊和灰太狼沿这样的路线赛跑,谁走的路程长一些呢?(学生课后思考,下节课交流。)

  教学反思:

  一、“情境”与“知识”两条主线相互交融。

  结合本节课的教学内容和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们知道,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此非常感兴趣,也有一定的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一起,形成一个完整的统一体,激发了学生的学习兴趣,时学生积极主动地投入到学习活动中。

  二、动手操作让学生亲身经历知识的形成过程。

  动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们提供了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的学习活动中,使学生的操作活动有目的、有思考、有选择、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践能力,获得积极的情感体验。

  三、数学阅读让学生感受数学的厚实的文化。

  在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。

圆的周长教案 篇2

  教学内容:

  义教六年制小学数学第十一册第110-112页例1。

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想:

  新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的.局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

圆的周长教案 篇3

  教学目标

  1.使学生认识圆的周长,初步理解圆周率的意义。

  2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。

  3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点和难点

  推导圆周长的计算公式。理解圆周率的意义。

  教学过程设计

  (一)复习准备

  上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?

  (二)学习新课

  我们这节课就来研究圆的周长。(板书:圆的周长)

  我想问问同学,你们都带了哪些圆形实物?

  两人互相指指圆的周长在哪儿?

  谁愿意到前面来指一指老师手里这个圆的周长。

  谁跟他指得不一佯?为什么这样指不行?

  老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?

  老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?

  哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。

  请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。

  (学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)

  请小组代表汇报本组的实验过程和实验结果。

  同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)

  (师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。

  看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。

  想一想,以前我们学过哪些几何图形的周长?

  长方形的周长和谁有关系?有什么关系?

  正方形的周长和谁有关系?有什么关系?

  圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。

  (用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)

  我们得出了圆的周长和直径有关系。

  (板书:圆的周长 直径)

  这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?

  (学生分小组讨论。)

  通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)

  是不是这样呢?我们来验证一下。

  (电脑演示:圆的周长是直径的3倍多一些。)

  这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)

  谁能说说圆周率是怎么得来的?

  请同学们看书上是怎么说的?

  早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。

  (出现祖冲之的'画像,同时放配乐录音,介绍祖冲之。)

  约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。

  我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)

  圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)

  既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)

  现在我们能不能计算黑板上这个圆的周长?

  什么条件不知道?(直径。)

  谁来测直径,用分米作单位。(板书:分米)

  如果直径是2分米,半径就是几分米?

  用半径能不能求圆周长?

  现在我们试着用直径或半径来求黑板上圆的周长。

  谁用直径求出圆的周长?

  (板书:3.142=6.28(分米))

  为什么这样列式?

  (板书:圆的周长=直径圆周率)

  如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?

  (板书:C=d)

  谁能用半径求圆的周长?为什么这样做?

  如果用字母r表示半径,字母公式怎么表示?

  (板书:C=2r)

  (三)巩固反馈

  1.求出下面各圆的周长。(单位:厘米)

  2.判断,你认为正确画,错误画。

  (1)一个圆的周长总是它的直径的倍。( )

  (2)圆的周长是6.28厘米,它的半径是2厘米。 ( )

  (3)圆周长的一半与半个圆的周长相等。( )

  3.选择:你认为哪个答案正确就举几号卡片。

  (1)车轮滚动一周,所行路程是求车轮的[ ]

  ①半径

  ②直径

  ③周长

  (2)圆形水池的直径是4米,绕池一周长 [ ]

  ①25.12米

  ②12.56米

  ③12.56平方米

  (3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]

  ①A圆大

  ②B圆大

  ③一样大

  4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?

  (四)总结全课

  这节课你学会了什么?(引导学生总结本课所学的知识。)

  课堂教学设计说明

  本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。

圆的周长教案 篇4

  教学目标:

  ⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

  ⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

  ⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

  教学重点、难点

  教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

  教学过程设计

  一、创设情境,引发探究

  ⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

  ⒉揭示课题

  ⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

  ⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

  板书课题:圆的周长

  二、人人参与,探究新知

  (一)教具演示,直观感知,认识圆周长。

  教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

  (二)理解圆周率的意义

  活动一:测量圆的周长

  ⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

  ①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

  然后各组分工同桌合作,量出圆片的周长。

  ②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

  ⒉用"几何画板"《小球的轨迹》演示形成一个圆。

  提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

  ⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

  活动二:探究圆周长与直径的关系,认识圆周率。

  ⒈圆的周长与什么有关。

  ⑴启发思考

  正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

  ⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

  得出结论:圆的周长与它的直径有关。

  ⒉圆的周长与直径有什么关系。

  ⑴学生动手测量,验证猜想。

  学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ⑵观察数据,对比发现。

  提问:观察一下,你发现了什么呢?

  (圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  ⑶出示"几何画板"《周长与直径的关系》演示。

  ⑷比较数据,揭示关系。

  正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的.第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

  ⒊认识圆周率

  ⑴揭示圆周率的概念。

  这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

  现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

  ⑵介绍π的读写法

  ⑶指导阅读,了解中国人引以为自豪的历史。

  提问:你知道了什么?

  (三)推导圆的周长计算公式。

  ⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

  请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

  ⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

  提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?

  学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

  三、应用新知,解决问题

  1、和自己的伙伴一起解答例1和做一做

  2、说出这两题用哪个公式比较好?

  四、实践应用,拓展创新。

  ⒈基础性练习:

  (1)求下列各圆的周长(几何画板)

  r=3厘米 d=4厘米

  (2)、我们现在有办法求唐老鸭跑的路程吗?

  ⒉、判断

  ①圆的周长是直径的π倍。( )

  ②大圆的圆周率小于小圆圆周率。( )

  3、提高练习

  在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

  五、总结评价,体验成功

  1、你学到了什么? 2、你是怎么学到的?

圆的周长教案 篇5

  教学目标:

  ⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题;

  ⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。

  教学流程:

  一、揭示课题

  ⑴猜测这节课的学习内容。

  ⑵揭示课题--圆的周长。

  二、确定探索新知的方向。

  ⑴观察课前画在黑板上的两幅图。

  分别指出正方形、圆形和正六边形的周长。

  ⑵沟通联系。

  找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。

  ⑶比较周长的长短。

  以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的周长比它长;所以,圆形的周长在直径的3倍与4倍之间。

  ⑷确定探究方向。

  量出圆的周长和直径,算出它们之间的倍数。

  ⑸准备数据采集。

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  三、合作探究新知。

  ⑴学生操作活动。

  小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。

  教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的.;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。

  教师在分组活动中采集到的数据。(是后加的,时加的)

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  ⑵合理,得出公式,

  看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。

  ⑶介绍祖冲之。

  四、利用新知解决简单的数学问题。

  ⑴说出计算周长的算式。

  ⑵口答练习十八1~2。

  ⑶作业练习十八3~4。

圆的周长教案 篇6

  【教学内容】

  《义务教育课程标准实验教材 数学》六年级上册第62~64页。

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义。

  2.通过对比分析掌握圆周长的计算公式。

  3.能用圆的周长的计算公式解决一些简单的数学问题。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:推导圆的周长的计算公式,准确计算圆的周长。

  难点:理解圆周率的意义。

  【教学过程】

  一、情景引入

  出示一块钟表

  问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?

  学生猜想。

  教师演示小秒针的运动过程,证实学生的猜想是否正确。

  问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?

  生:先计算出走一圈的路程有多长,在计算出走60圈的长度。

  师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)

  (设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  二、动手量一量

  学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。

  物品名称

  周长

  直径

  1号圆

  2号圆

  3号圆

  4号圆

  教师评价学生小组合作的情况。

  (设计目的:强调学生的小组合作意识)

  师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。

  学生展示小组的成果。

  (设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)

  三、对比分析

  师:观察一下我们得到的几组数据,你发现什么规律了吗?

  学生自由谈。

  学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。

  师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。

  课件展示圆的周长的测量方法。

  (设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)

  课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。

  (设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)

  小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。

  你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?

  学生自由谈。

  我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计目的':通过学生讲故事渗透爱国主义思想)

  小结2:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  圆的周长(用字母C表示)计算公式:C=πd或C=2πr

  四、动手做一做

  下面我们来看看怎样应用圆的周长计算公式来解决问题。

  1.计算圆的周长

  实物投影展示学生的解题过程

  (设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)

  2.一个圆形喷水池的半径是5m,它的周长是多少米?

  (设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)

  3.小组交流错误原因。(可让其他学生避免同样的错误)

  (设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)

  4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。

  (设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)

  五.你能说说在这一节课中你有什么收获吗?

  可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。

  六、课外合作:

  小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。

  (设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

【圆的周长教案】相关文章:

《圆的周长》教案02-26

圆的周长教案06-23

关于圆的周长教案01-15

圆的周长教案(精选24篇)05-06

《圆的周长》数学教案12-11

圆的周长教案15篇11-18

圆的周长教案(15篇)11-18

圆的周长教案(精选14篇)05-09

《圆的周长》教学反思 圆的周长教学反思简短的04-18

圆的周长教案汇总六篇04-28