圆的周长教案

时间:2022-06-23 11:16:56 教案 我要投稿

圆的周长教案

  在教学工作者实际的教学活动中,就有可能用到教案,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?下面是小编收集整理的圆的周长教案,希望能够帮助到大家。

圆的周长教案

圆的周长教案1

  教学目标:

  1.生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

  2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

  3.合圆周率的.学习,对学生进行爱国主义教育。

  教学重点:

  探究圆周长与直径之间的关系,掌握圆周长公式。

  教学难点:

  理解圆周率的意义,能运用圆的周长公式解决一些简单的实际问题。

  课前准备:

  多媒体课件、大小不同的圆、线、小尺。

  教学过程:

  一、教学例4。

  1.话交流:同学们,我们经常听人们说:“我买了一个28的自行车。”“我买了一个24英寸的彩电”。这里的“28”和“24英寸”都是表示物体规格的数字。

  2.件出示例4题目及图示,全班交流:你从图中了解哪些信息?

  3.组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

  4.件演示车轮滚动,验证学生的发现。

  5.班交流:

  你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

  二、教学例5。

  1.件出示例5,全班交流:这样的实验你们课前做了吗?

  2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

  3.名汇报,全班交流。

  ⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

  ⑵ 纵观各组的实验结果,你们有什么发现?

  圆的周长总是直径的3倍多一些。

  4.生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

  5.括圆周长公式。

  ⑴ 圆周率用字母π表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说π、C、d之间有什么关系?

  学生先在小组内交流再全班交流。

  (板书:C÷d=π,C÷π=d ,C=πd)

  ⑵ 求圆的周长用哪个公式?(C=πd或C=2πr)

  三、巩固拓展

  1.成“试一试”⑴ 学生独立计算。⑵ 全班展示交流。

  2.成“练一练”。

  3.成练习十四第1题。学生独立计算,再全班交流。

  4.成练习十四第2题。

  ⑴ 学生独立计算。⑵ 全班展示交流。⑶ 学生订正。

  5.成练习十四第3题。指名口头列式,学生集体计算。

  6.成练习十四第4题。学生独立计算后再汇报交流。

  四、总结延伸

  本节课,你有哪些收获?还有什么疑问?

  板书设计:

  圆的周长

圆的周长教案2

  教材内容:例1及“做一做”中的题目。

  教学目标:

  ⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

  ⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

  ⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

  教学重点:理解和掌握求圆周长的计算公式。

  教学难点:对圆周率π的认识。

  教学过程:

  一、创设情境,导入新课。

  ⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

  ⒉揭示课题

  ⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

  ⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

  板书课题:圆的周长

  二、引导探索,展开新课。

  ㈠引出圆周长的概念

  教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

  ㈡测量圆的周长

  ⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

  ①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

  然后各组分工同桌合作,量出圆片的周长。

  ②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

  ⒉用“几何画板”《小球的轨迹》演示形成一个圆

  提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

  ⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

  ㈢探讨圆的周长与直径的关系

  ⒈圆的周长与什么有关。

  ⑴启发思考

  正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

  ⑵学生拿出自备的三个大小不同的圆。

  组织学生观察比较,A.哪个圆的周长长?B.圆的周长与它的什么有关?

  得出结论:圆的周长与它的直径有关。

  ⒉圆的周长与直径有什么关系。

  ⑴学生动手测量,验证猜想。

  学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ⑵观察数据,对比发现。

  提问:观察一下,你发现了什么呢?

  (圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  ⑶出示“几何画板”《周长与直径的关系》演示。

  ⑷比较数据,揭示关系。

  正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的'直径的商填入书中表格的第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”《周长与直径的关系》中C1、C2、C3分别与直径的倍数关系,最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

  ⒊认识圆周率

  ⑴揭示圆周率的概念。

  这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

  现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

  ⑵介绍π的读写法

  ⑶指导阅读,了解中国人引以为自豪的历史。

  提问:你知道了什么?

  ⒋推导圆的周长计算公式。

  ⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

  请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

  ⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

  提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?

  三、初步运用,巩固新知

  ⒈完成教科书92页第1题的(1)、(3)题。

  ⒉判断

  ①圆的周长是直径的π倍。()

  ②大圆的圆周率小于小圆圆周率。()

  ⒊例1和“做一做”任选一题。

  ⒋看书质疑

  四、新知小结

  小结:要求圆的周长,一般需要它的直径或半径。知道圆的直径,怎样求周长?知道圆的半径,怎样来计算周长?

  五、新知运用,迁移拓展

  ㈠基础练习

  ⒈求下列各圆的周长(几何画板)

  ⒉一个圆形花坛,直径是8米,花坛的周长是多少?

  ⒊我们再来判断米老鼠、唐老鸭谁跑的路程多?为什么?

  ㈡提高练习

  在我们永和小学的校园外,有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

  六、反馈回授,课堂总结

  师:通过今天这节课学习,你有什么新的收获?

圆的周长教案3

  教学设想:

  利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。

  教学内容:

  小学数学义务教育教材十一册第137~138页“圆的周长”

  教学目标:

  1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2. 培养学生的观察、比较、分析、综合及动手操作能力;

  3.通过学习圆周率的历史发展,对学生进行爱国主义教育。

  教学重点:

  推导总结出圆周长的计算公式。

  教学难点:

  深入理解圆周率的意义。

  教学准备:

  电脑课件,圆形实物以及直尺、绸带,测量结果记录表。

  教学过程:

  一、创设情境,引起猜想

  (一)教师播放课件 激发学生兴趣

  黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周

  1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?

  师:围成圆的一周的曲线长度叫做圆的周长。(出示课题 圆的周长)

  3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。

  4.反馈:你是用什么方法测出来的?

  生1:“滚动”——把实物圆沿直尺滚动一周;

  生2:“缠绕”——用绸带缠绕实物圆一周并打开;

  5.小结各种测量方法:(板书)化曲为直

  6.创设冲突,体会测量的局限性

  教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方

  (三)合理猜想,强化主体

  1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?

  生:我猜圆的周长跟直径有关。

  2.师课件演示:直径越大,周长越长;直径越小,周长越小。

  3.请同学们想一想,正方形的.周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?

  (生1:我猜3倍。 生2:我猜3.5倍 生3 :…… )

  4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  二、实际动手,发现规律

  (一)分组合作

  1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。

  2.反馈数据

  生1:我们小组算出圆的周长大约是直径的3.4倍。

  生2:我们小组算出圆的周长大约是直径的3.2倍。

  生3:我们小组算出圆的周长大约是直径的4倍。

  师:课件演示:圆的周长总是直径的三倍多一些。

  (二)介绍祖冲之

  这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  板书 :圆周率=圆的周长÷直径

  早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?

  这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4.理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  (三)总结圆周长的计算公式

  1. 如果知道圆的直径,你能计算圆的周长吗

  板书:圆的周长 = 直径× 圆周率

  C = πd

  2. 如果知道圆的半径,又该怎样计算圆的周长呢?

  板书: C = 2πr

  3.应用

  (1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。

  生:我选 C = 2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。

  (2)课题外的圆的直径是20厘米,用哪个公式计算?

  生:我用 C = πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米

  (3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?

  三、巩固练习,形成能力

  1.判断

  (1)圆的周长是直径的π倍。 ( )

  (2)大圆的圆周率大于小圆的圆周率。( )

  (3)π=3.14 ( )

  2.出示例1,学生自己计算。

  3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?

  四、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  五、课外引申,拓展思维

  一个茶杯口的直径你有什么方法知道?

圆的周长教案4

  【教学内容

  教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。

  【教学目标

  1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。

  2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。

  【教学重、难点

  掌握并理解圆的周长计算公式及其推导过程。

  【教具、学具准备

  圆规、直尺、课件、圆纸片、线。

  【教学过程

  一、导入新课

  出示情境图:谁的铁环滚一圈的距离长一些?为什么?

  教师:铁环滚动一周的距离我们就叫做铁环的周长。

  教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。

  板书课题:圆的周长。

  二、感知圆的周长与直径的关系

  1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?

  学生指出并回答。(略)

  2.观察。

  课件演示右图:

  问题:这两个圆周长有什么关系?你是怎么知道的?

  小结:直径相等,圆的周长就相等。

  3.课件演示右图:

  问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。

  4.小结。

  问题:通过刚才的观察,你有什么发现?

  学生:圆的周长和直径有关系。

  三、探究圆的周长与直径的倍数关系

  圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。

  1.小组讨论,制定探究步骤。

  出示探究建议:

  (1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。

  2.说明活动要求。

  每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。

  圆的直径圆的周长周长除以直径的商(保留两位小数)

  3.小组合作,进行探究。

  4.汇报交流。

  (1)交流测量的方法。

  提问:谁来介绍一下,你们组是怎样测量圆的周长的?

  学生汇报测量的方法。(绳绕法、滚动法……)

  教师:在这些方法中,最欣赏哪个组的方法?

  小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)

  (2)交流计算方法和结论。

  提问:观察这些计算结果,你有什么发现?你还有哪些了解?

  学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。

  5.介绍圆周率。

  圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的`内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到20xx亿位。

  6.总结圆周长的计算方法。

  问题:你怎样理解周长/直径=π?你还能知道什么?

  结论:c=πd,d=c/π,c =2πr,r=c/2π。

  说明:为了计算方便,我们把π近似的取为3.14。

  7.教学例2。

  让学生独立列式计算,提示用估算检查计算结果。

  [评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

  四、巩固练习

  (一)判断。

  1.π=3.14。()

  2.计算圆的周长必须知道圆的直径。()

  3.只要知道圆的半径或直径,就可以求圆的周长。()

  (二)选择。

  1.较大的圆的圆周率()较小的圆的圆周率。

  a.大于b.小于c.等于

  2.半圆的周长()圆周长。

  a.大于b.小于c.等于

  (三)实践操作。

  请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。

  五、课堂小结

  通过这堂课的学习,你有什么收获?你还有什么问题?

  六、课堂作业

  1.课堂活动第1、2题。

  将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。

  2.练习五第1~5题。

  在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。

  七、课后作业

  1.求下面各圆的周长。

  (1)d=2米(2)d=1.5厘米(3)d=4分米

  2.求下面各圆的周长。

  (1)r=6分米(2)r=1.5厘米(3)r=3米

  [评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]

圆的周长教案5

  教学内容:九年义务教育人教版第11册

  教学目标:

  1、使学生认识圆的周长,知道圆周率的意义,理解和掌握圆的 周长计算公式;

  2、发展学生空间观念,培养学生抽象思维和解决简单实际问题的能力;

  3、培养学生情感,使学生受到爱国主义教育。

  教学重点:推导圆周长的计算公式。

  教学难点:理解圆周率的意义。

  教具准备:多媒体课件、直尺、剪刀、绳子、圆形纸片等。

  教学过程:

  一、启发

  1、创设情境:(课件出示动画故事:小白兔和兰精灵进行跑步锻炼,争论谁最先到达原来的起点。(正方形和圆形跑道,正方形边长20米,圆形直径20米、跑步的速度相同。)

  2、讨论:小白兔和兰精灵到底谁最先跑回原来的出发点?

  揭示课题。(板书:圆的周长)

  二、探究

  1、观察:看屏幕上的圆,说一说什么叫圆的周长?

  2、摸一摸:拿出一个圆形纸片,指出:拿的这个周长是指哪一部分长?

  3、比一比:拿出两个大小不同的圆形纸片。

  哪个圆的周长长一些?

  4、量一量:(分小组合作)

  学生用剪刀、直尺和绳子测量出手中圆形纸片的周长。

  5、信息反馈: ① 小组汇报所测量的圆的周长是多少?

  板书: 周长

  ○ 12cm多一些

  ○ 31cm多一 些 ○ 47cm多一些

  ② 生说一说是怎样测出圆的周长的?(绳测法、滚动法)

  ③(课件演示)绳测法和滚动法的操作过程;

  ④讨论:能用这方法测量出这个圆的周长吗?

  (教师演示)拿一根栓了重物的绳子在空中抡了一圈。。

  如何才知道它的周长呢 ?

  6、①猜一猜: 圆的周长和圆的什么有关系?

  ②(课件演示)三个直径不同的圆,分别滚动一周,得到三条线段的长分别是三个圆的周长。 发现了什么?说明了什么 ?(圆的周长和它的直径有关系)

  7、①再猜 一猜,圆的周长和它的直径有什么样的关系?

  ②学生分成四人小组,测量、计算、讨论圆和直径的关系。

  ③小组汇报测量结果。

  板书: 周长 直径

  ○ 12cm多一些 4cm

  ○ 31cm多一 些 10cm ○ 47cm多一些 15cm

  结论:圆的周长是直径的3倍多一些。

  ④课件出示:验证学生发现的规律是否具有普遍性。

  ⑤小结:无论圆的.大小、圆的周长总是它直径的3倍多一些。

  6、介绍圆周率,结合进行爱国主义教育。

  ①教师引出“圆周率”,介绍用字母“∏”来表示,并介绍读法。

  ②出示祖冲之画像,配音介绍祖冲之及圆周率知识(∏≈3。14)

  ③对学生进行爱国主义思想教育。

  7、讨论:如果知道了一个圆的直径或半径,怎样求圆的周长?

  (圆的周长=直径×圆周率)(C=∏D或C=2∏r)

  三、知

  1、让学生把测量的三个圆用公式计算出三个圆的周长来。

  2、让学生把老师在空中用绳子甩一圈的圆的周长计算出来。

  (绳子的长度就是圆的半径)

  3、抢答:①D=1分米,C= ?

  ②r=1厘米,C=?

  ③C=12。56米,D=?

  4、出示例1,让学生独立计算。

  5、裁定原来兰精灵和小白兔的争论。谁先到达起点?知道是为什么了吗?(课件演示跑的过程)

  四、评议

  1、本节课你学到了什么?有什么体会?有何感受?

  2、本节课学习主要采用了什么方法?

  3、本节课学习后对你生活有什么帮助?

  4、在学习中你认为自己表现如何?谁表现最好?为什么?你准备在以后学习中怎样做?

圆的周长教案6

  教学内容:

  圆的周长的综合练习

  教学目标:

  通过练习,使学生加深对圆的认识,能正确计算圆的周长,并能根据圆的周长求这个圆的半径或直径。

  教学重点:

  理解圆的半径、直径、周长之间的关系

  教学难点:

  能运用知识解决一些实际问题

  教学过程:

  一、揭示课题

  今天这节课,我们把学习圆的有关知识进行整理一下,并通过一些练习来巩固这方面的知识。

  板书课题:圆的周长

  二、练习指导

  基本练习(口答)

  ⑴在同一个圆内,所有的半径(),所有的直径(),直径是半径的(),半径是直径的'()。

  ⑵()决定圆的位置,()决定圆的大小。

  ⑶什么是半径?什么是圆的直径?

  ⑷圆的周长总是它直径的()倍,它是一个固定不变的数,用字母()表示。

  练习指导

  1、求下面各圆的周长

  d=2米d=1.5厘米r=6分米

  2、求下面各圆的直径

  C=28.26厘米C=50.24米

  3、求下面各圆的半径

  C=12.56米C=314厘米

  以上几题均由学生板演,其余齐练

  全班讲评,订正

  三、解决实际问题

  1、一根绳子长6.28米,在一根圆木上,正好绕了5圈,这根圆木的直径是多少?

  2、一面钟的分针长14厘米,经过一小时,分钟针尖可划过多少厘米?

  3、小明的自行车轮胎的直径是0.6米,小明骑一分钟车轮转动了100圈。

  ①他一分钟可行驶多少米?

  ②他要通过2180米长的大桥,大约需要几分钟?

  四、课终小结

  今天我们练习了什么?你有什么收获?

圆的周长教案7

  教材分析:

  这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。

  教学目标:

  1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

  2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

  3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。

  教学重点:

  通过多种数学活动推导圆的周长公式,能正确计算圆的周长。

  教学难点:

  圆的周长与直径关系的探讨。

  教学准备:

  多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)

  2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)

  3.指名一生说说正方形的周长计算方法:(生:边长×4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)

  二、经历探究全程,验证猜想发现。

  (一)认识圆周长的含义并初步感知圆周长与直径之间的关系。

  1.谈话:那什么是圆的周长呢?(课件出示3个车轮)

  2.师:上面的3个数据是表示什么的?(生:圆的直径)“英寸”是什么意思?(学生看书回答)

  3.将3个车轮各滚动一圈,猜一猜,谁滚动的路程最长?从中你们有什么发现?(生:车轮滚动一周的长度是车轮的周长;直径越长,周长越长,直径越短,周长越短)

  (二)交流测量圆周长的方法

  1.学生拿出课前剪的圆,互相指一指它们的周长。

  2.用什么办法测量它们的周长?(同桌交流方法)

  3.指名到前面投影上展示测量周长的方法

  ①滚动法。明确注意点:做好记号,从零刻度开始滚,滚动到这个记号再次指向这里,圆滚动一周的长就是这个圆的周长。

  ②绕圈法。明确:线贴紧圆周,把多余的部分剪掉,把线拉直,这两点之间线的长就是这个圆的周长。

  ③用软尺测量。明确:用软尺上有厘米刻度的一面测量。从零刻度开始量,绕圆周一圈,然后看看对齐哪个刻度。

  4.小结:这些方法有一个共同的特点:(生:将一条弯曲的线变成一条直的线)这就是数学上所讲的“化曲为直”的方法。

  5.(课件出示摩天轮图片)问:它的周长能用刚才的方法测量吗?(生:不能,很不方便)问:那怎么办?引发学生探究圆的周长与直径之间的关系。

  (三)认识圆周率。

  1.谈话:接下来同学们分4人小组,选择自己喜欢的方法,测量出身边这些圆的周长与直径,完成表格。(学生分组活动,完成书上表格)(课件出示表格)

  2.各小组组长汇报测量结果。(学生说结果,教师在课件上完善)

  3.让学生观察表格中的数据,说说又发现了什么?(学生小组交流后汇报:一个圆的周长总是直径的3倍多一些)

  4.(课件出示)介绍《周髀算经》这本书及“周三径一”的意思。(圆的周长大约是直径的3倍)

  5.介绍祖冲之在求圆周率中做出的贡献,让学生想象祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(课件播放资料,学生自学)

  6.学生说说从资料的介绍中知道了什么?(学生交流自己的学习所得)

  7.师小结:祖冲之是我们民族的骄傲与自豪,正因为他杰出

  的成就,月球上有一座环形山就被命名为祖冲之山,宇宙中第1888号小行星也是以他的名字命名的。希望同学们以后也能像他那样刻苦钻研,将来也做一个不平凡的人。

  (四)推导公式

  1.当学生弄清了圆周长与直径之间的关系后,让学生说说圆的周长怎么计算?(生:圆的周长=圆周率×直径)

  2.谈话:如果圆的周长用大写字母C表示,那么这个公式用字母怎么表示?

  3.谈话:还可已知什么条件求周长?(生:半径)为什么?(生:在同一个圆中,圆的`直径是半径的两倍)那这个公式还可怎么变换?

  4.齐读公式,加深印象。

  三、刷新应用能力,总结巩固新知。

  1.(课件出示第1题)学生口答两个圆的周长。

  2.计算例4中三个自行车车轮的周长大约各是多少英寸?(课件出示3个车轮)通过计算,比一比谁的周长最长?这再一次说明了什么?(生:圆的周长与它的直径有关)

  3.(课件出示一个喷水池)一个圆形喷水池的周长是12米,它的周长是多少米?(学生独立完成在作业本上,投影仪展示答案)

  4.(课件出示摩天轮图)它的半径是10米,坐着它转动一周,大约在空中转过多少米?(学生独立完成在作业本上,后在全班交流)

  四、交流学习收获,课后拓展延伸

  1.通过这节课研究圆的周长,你有什么收获?(学生全班交流)

  2.谈话:现在如果老师问喜羊羊和灰太狼谁走的路程长一些?同学们可怎么做?(学生独立完成,后全班交流)有没有其它方法?(学生可通过计算解决,也可直接观察两个图比较)

  3.师:种种方法都可以帮助我们来确定谁走的路程长,所以当喜羊羊得知这一结果后,直喊比赛不公平,于是老村长为它们又重新设计了一种新的赛跑路线:问:如果喜羊羊和灰太狼沿这样的路线赛跑,谁走的路程长一些呢?(学生课后思考,下节课交流。)

  教学反思:

  一、“情境”与“知识”两条主线相互交融。

  结合本节课的教学内容和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们知道,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此非常感兴趣,也有一定的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一起,形成一个完整的统一体,激发了学生的学习兴趣,时学生积极主动地投入到学习活动中。

  二、动手操作让学生亲身经历知识的形成过程。

  动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们提供了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的学习活动中,使学生的操作活动有目的、有思考、有选择、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践能力,获得积极的情感体验。

  三、数学阅读让学生感受数学的厚实的文化。

  在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。

圆的周长教案8

  教学目标:

  1、通过猜测、测量、观察、分析及动手操作等数学活动,使学生经历圆周长公式的推导过程,理解圆周率的意义。

  2、使学生理解和掌握圆周长公式,并能运用公式解决现实生活中的问题,培养学生的应用意识。

  3、通过对圆周率有关数学史料的介绍,结合学生对其中数字的感知,使学生体验到数学家对真理的锲而不舍的追求精神和严谨的科学态度,以及中国古代科技的兴盛。

  4、通过合作探究,使学生体验到实验对猜测的验证作用以及对问题的探索过程,并掌握学习方法,感受“转化”的数学思想。

  教学重点:经历探索圆周长公式的过程

  教学难点:理解圆周率的意义

  教学用具:多媒体课件

  学习用具:圆形学具、直尺、计算器、记录单

  教学过程:

  一、情境导入

  (课件:圆形喷水池图片)

  师导语:同学们,你们看,这是一个圆形喷水池。设计师想在喷水池最外圈每间隔0.5米安装一盏地面灯。现在,设计师急切地想知道至少要准备多少盏地面灯就够用了。谁愿意帮助设计师解决这个问题?

  师追问:喷水池外圈一圈的长度叫什么?

  (圆的周长又如何计算呢?)

  引出课题:看来,咱们要想帮助设计师,就要先学习“圆的周长”了。(板书课题:圆的周长)

  二、探究新知

  1、引出定义:赶快拿出你手中的圆形纸片,指着它说说什么是圆的周长?同桌交流。(指名回答,教师板书:围成圆的曲线的长)

  2、猜想:你能猜猜圆的周长可能与圆的哪部分有关系吗?会有什么样的关系呢?说说你为什么这样猜?(随着回答板书:圆的周长直径)

  师导语:同学非常勇敢,积极大胆地进行了猜测,这是我们成功的第一步。但这仅仅是猜测,还不能确定为准确的结论,需要我们做个试验探索,验证一下大家的想法。

  3、指导学习方法:那好,看学习要求。(课件)(指名读)

  师提问:学习要求中提示我们要怎么做?(测量、填记录单、计算、找倍数)

  交流测量方法:你准备用什么方法测量圆的`周长,快跟大家说一说。

  滚动法:在尺子上滚动圆,注意在圆上做个标记,正好滚动一周到标记的那一点就能测量出圆的周长了。

  绕绳法:将线绳绕圆一周,再将线绳拉直,测量线绳的长度就是圆的周长。

  师导语:下面,就请你选用你喜欢的测量方法,测量出你手中的圆的周长和它的直径,并填好记录单,然后找到它们的倍数,得出结论。希望同学们在操作中将误差减少到最小。比一比哪个组合作得最愉快!开始合作!!!

  4、小组合作:教师巡视合作学习情况,参与有困难的组,进行个别的指导。

  5、反馈:请各组选一名代表汇报你们的学习情况,其他同学看大屏幕,观察数据特点,让我们共同总结出结论。(实物投影反馈信息,教师填表,学生观察。)

  圆的周长

  圆的直径

  圆的周长是直径的几倍

  (得数保留两位小数)

  师提问:如果我继续填下去,会出现什么情况?

  那就用字母代替吧。填(C d三倍多一些)

  6、介绍圆周率:经过大家共同努力,发现圆周长是直径的三倍多一些。这是一个固定的数,我们把这个固定的倍数叫做圆周率。用字母“π”来表示(板书:圆周率π)指导读:π(pai)。圆周率就是圆的周长与直径的商,(圆的周长÷直径=圆周率c÷d=π)它的值在3.1415926-3.1415927之间,是一个无限不循环小数。(板书:3.1415926-3.1415927)在小学阶段,我们计算时一般取两位小数,π≈3.14(板书)

  7、介绍祖冲之:每当提到圆周率,人们会自然的想到一个人物——祖冲之。(课件)现在运用计算机可以将圆周率的值计算到小数点后上亿位。

  8、推导圆周长公式:同学们,根据圆周长与直径的倍数关系,你能推导出圆周长公式吗?(板书:c=πd)

  要想求圆的周长,必须告诉大家什么条件?(直径)

  知道半径怎么样求圆的周长?(板书:c=2πr)

  9、课堂小结:在全体同学的共同努力下,我们终于得到了圆周长的计算公式,接下来就要帮助设计师解决问题了。

  10、解决实际问题:

  (1)有了求圆周长公式,只要告诉你什么条件就能够帮助设计师计算出至少准备多少地面灯的问题了?

  (2)你能算出人们围绕这个圆走一圈大约是多少米吗?(课件)

  三、巩固练习:

  1、口算:在计算圆周长时,我们发现,3.14成为了我们的好朋友。既然这样,就请1——10也来和它交朋友吧!(课件)比比谁的口算能力强?

  2、判断:你能根据今天所学知识进行判断吗?

  3、解答实际问题:生活中处处有数学问题,你们知道自行车车轮转动一周大约是多少米吗?

  4、同学们,你们看。这几位小朋友围坐在一起,正在商量着怎么样才能得到这个大树干的直径是多少米?你能帮他们解决这个问题吗?说说你解决问题的思路。

  四、谈学习收获:

圆的周长教案9

  第一课时 圆周长计算

  教学内容:

  圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。

  教学目标:

  1、认识圆的周长,理解圆周率的意义。

  2、掌握圆周长的计算公式,会用公式正确计算圆的周长。

  3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。

  教学重难点:

  1、圆的周长公式推导及运用公式计算圆周长是重点。

  2、通过实验找出圆的周长与直径的关系—圆周率是难点。

  3、关键是让学生动手操作测周长与直径。

  教学准备:

  学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。

  老师准备:小黑板

  教学过程:

  一、复习铺垫(5分钟)

  1、小黑板出示

  (1)

  (2)

  10厘米 6分米

  2、提出问题:

  同学们,老师要用铁丝分别做成上面两个图形的框架,

  (1)请同学们帮助老师算一算每个图形需要用多长的铁丝?

  (2)、每个图形需要用多长的铁丝,是求什么的?

  (3)什么是周长?周长的单位有哪些?

  (4)、要求图(1)、图(2)的周长应该知道什么条件?

  二、探索新知(25分钟)

  (一)认识圆的周长(3

  1、出示:圆的图形 和其他实物圆。

  2、提问:

  (1)这是一个什么形实物?

  (2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?

  3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。

  4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。

  (二)提示课题

  在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。

  板书课题------圆周长计算

  (三)圆的公式推导

  1、猜一猜,想一想,动手操作(8分钟)

  (1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:

  圆的周长与它的什么条件有关?

  、独立思考后,前后桌四人交换意见。

  、学生汇报:圆的周长和直径(或半径)有关。

  继续提问:它们之间到底有什么的关系呢?

  故事激趣

  我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。

  (2)、动手实验:(四人一组,合作完成) (一组测一个)

  a、取出圆形纸板,量出圆形纸板的直径。

  b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。

  d、算出周长和直径的'比值。

  e、 汇报,老师把表画在小黑板上,并填表。

  2、观查数据,发现规律:(5分钟)

  观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)

  小组汇报:

  同一个圆,它的周长是它的直径的3倍多一些。

  3、认识圆周率(2分钟)

  (1)、在学生发现圆周长与它的直径关系的基础上,老师明确:

  刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径

  (2)、让学生读一读( Pài )写一写。

  (3)了解π的值。

  A、π是一个无限不循环小数,π=3.1415926535..........

  B、在实际应用中一般只取它的近似值,即π≈3.14.

  4、圆周长公式推导:(5分钟)

  老师:如果已知圆的直径,如何计算圆的周长。

  圆周长= π×直径

  如果周长用C表示:字母公式C=πd

  知道半径,怎样求周长C=2πr

  ( 四)应用公式(2分钟)

  教学例1:

  (1)出示例题:圆形花坛的直径是20米,它的周长是多少米?

  (2)学生读题并尝试列式计算。

  (3)学生板演:3.14×20=62.8(米)

  说明:、解题时可以不写计算公式

  、π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。

  三、巩固练习(8分钟)

  1、 完成课本64页做一做。

  2、完成练习十五第1题。

  3、补充作业。判断题:

  (1)圆的周长刚好是直径的3.14倍。

  (2)大圆的圆周率大,小圆的圆周率就小。

  (3)、π是两位小数。

  (4)、圆的周长等于它的半径的2π倍。

  (5)、求周长,直径是唯一条件。

  四、课堂小结(2分钟)

  本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比

  值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。

  五、布置作业:课堂作业

  六、板书设计圆周长计算

  圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径

  因为d=2r 圆周长=π×半径 ×2

  π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr

  注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。

  (2)π在计算的应用中,结果不用“≈”号,而用“=”号。

  3.14×20=62.8(米)

  答:圆形花坛的周长是68.2米

  七、课后记

  《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的周长公式应用到练习中。

  本节课中,我觉得比较成功的是:

  首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。

  本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。

  在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。

圆的周长教案10

  教学目标:

  1.生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。

  2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

  3.学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。

  教学重点:

  探索已知圆的周长,求这个圆的直径或半径的方法。

  教学难点:

  能熟练运用圆的周长公式解决实际问题。

  课前准备:

  多媒体课件

  教学设计:

  一、教学例6。

  ⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)

  ⑵ 课件出示测量的`结果:花坛的周长是251.2米。

  小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

  ① 在小组中说说自己的想法。

  ② 展示自己是怎么解答的。

  ⑶ 全班展示、交流。

  ① 根据圆周长公式C=πd列方程解答。

  解:设这个花坛的直径是x米。

  3.14x=251.2

  x=251.2÷3.14

  x=80

  ② 直接用除法计算。

  251.2÷3.14=80(米)

  ⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

  小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间

  的关系计算。

  2.习“试一试”。

  二、巩固拓展

  1.成“练一练”。

  提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

  2.成练习十四第5题。

  3.成练习十四第6题

  4.成练习十四第7题。

  5.生完成练习十四第8题。

  6.成练习十四第9、10题。

  三、总结延伸

  本节课,你有哪些收获?还有什么疑问?

  板书设计:

圆的周长教案11

  教学目的:

  1.让学生知道什么是圆的周长.

  2.理解圆周率的意义.

  3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

  教学重点:

  推导圆的周长计算公式.

  教学难点:

  理解圆周率的意义.

  教具学具:

  1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

  2.电脑软件及演示教具.

  教学过程:

  一、复习:

  上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

  二、导入:

  这节课我们继续研究圆的周长(板书课题).

  1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

  2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

  问:什么是圆的周长?

  板书:围成圆的曲线的长是圆的周长.

  3.你能测量出这个圆的周长吗?(能)

  4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

  5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

  回答:不能.

  想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

  三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

  四、学生动手测量、教师巡视指导.

  五、统计测量结果.

  观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

  六、电脑演示

  (几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.

  七、看书后回答问题:

  1.是谁把圆周率的值精确计算到6位小数?

  2.什么叫圆周率?

  3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

  4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?

  现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)

  八、出示例1:

  一种矿山用的`大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

  (得数保留两位小数)

  请同学们想一想:车轮滚动一周的距离实际指的是什么?

  解:d=1.95 单位:米

  c=πd

  =3.14×1.95

  =6.123

  ≈6.12(米)

  答:车轮滚动一周约前进6.12米.

  九、课堂练习:

  1.投影:计算下面图形的周长.

  2.判断下面各题(正确的出示“√”,错误的出示“×”)

  (1)圆周率就是圆的周长除以它的直径所得的商. ( )

  (2)圆的直径越大,圆周率越大. ( )

  (3)圆的半径是3厘米,周长是9.42厘米. ( )

  3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)

  如果速度相同,两人同时出发,谁先回到出发地点?为什么?

  小明的路线长:20×3.14+20×3.14

  =62.8+62.8

  =125.6(米)

  爷爷的路线长:3.14×(20+20)

  =3.14×40

  =125.6(米)

  两条路线一样长,两人应同时回到出发点.

  4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.

  结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.

  小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.

圆的周长教案12

  教学内容:

  教材62—63页。

  教师准备:

  课件

  学生准备:

  硬币、茶叶筒、易拉罐等实物

  教学目标:

  1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.

  2.培养学生的观察、比较、分析、综合及动手操作能力.

  3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.

  4.结合圆周率的学习,对学生进行爱国主义教育.

  教学重点:

  推导并总结出圆周长的计算公式。

  教学难点:

  深入理解圆周率的意义。

  教学过程:

  一、创设情景,生成问题

  小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  二、探索交流,解决问题

  (一)认识周长

  1.小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  (二)圆周长的测量方法

  1、讨论方法:请同学们结合我们手里的圆想一想,有没有办法来测量它们的.周长?

  2、反馈:(基本情况)

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绸带缠绕实物圆一周并打开;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  (4)初步明确运用各种方法进行测量时应该注意的问题。

  3、小结各种测量方法

  4、创设冲突,体会测量局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

  (三)探索圆的周长与直径的关系。

  1、猜想:正方形的周长与它的边长有关,你认为圆的周长与什么有关?

  2、自学提示

  3、初步认识圆周率

  ①看了几组同学的测算结果,你有什么发现?

  ②虽然倍数不大一样,但周长大多是直径的几倍?

  ③小结:圆的周长总是直径的三倍多一些。

  (四)认识圆周率,总结公式。

  1、圆的周长与直径的比值叫做圆周率,用希腊字母π表示.

  2、介绍祖冲之。(课件)

  3、理解误差:看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  4、总结公式:如果用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  板书:C=πd提问:圆的周长还可以怎样求?

  板书:C=2πr 5、圆的周长分别是直径与半径的几倍?

  (五)学习例1

  学生独立解答后交流汇报,共同订正。

  三、巩固应用,内化提高

  1.课本64页做一做1、2题

  2.判断

  (1)圆周率就是圆的周长除以直径所得的商。()

  (2)圆的直径越长,圆周率越大。()

  (3)π=3.14()

  3.李伯伯菜园里有一个半径为3.5米的圆形水池。绕这个水池走一周,要走多少米?

  四、回顾整理,反思提升

  通过学习,你有什么收获?还有什么问题吗?

圆的周长教案13

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:

  求圆的直径和半径。

  教学难点:

  灵活运用公式求圆的直径和半径。

  教学过程:

  一、复习。

  1、口答。

  4 5 8

  2、求出下面各圆的周长。

  C=d c=2r

  3.142 23.144

  =6.28(厘米)=83.14

  =25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=d C=2r

  (3)根据上两个公式,你能知道

  直径=周长圆周率半径=周长(圆周率2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的'直径是多少米?(得数保留一位小数)

  已知:c=3.77m求:d=?

  解:设直径是x米。

  3.773.14 3.14x=3.77

  1.2(米)x=3.773.14

  x1.2

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米R=c(2)求:r=?

  解:设半径为x米。

  3.142x=1.2 1.223.14

  6.28x=1.2 = 0.191

  x=0.191 0.19(米)

  x0.19

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。

  (1)3.148

  (2)3.1482

  (3)3.1482+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20xx.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?20xx.14=125.6(厘米)

  45分钟走了多少厘米?125.6 =94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  四、作业。

  P65-66第3、6、7、9题

  教学追记:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对的含义就理解得特别透彻,也学得有兴趣。

圆的周长教案14

  教学目标:

  1、通过教学使学生理解并掌握圆的周长和面积计算方法。

  2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

  3、灵活解答几何图形问题。

  教学重点:

  认真审题,分辨求周长或求面积。

  教学过程:

  一、复习。

  1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

  C=r2

  3.1473.1432

  =21.98(厘米)=3.149

  =28.26(平方厘米)

  2、分辨面积与周长有什么不同?

  (1)概念

  圆的周长是指圆一周的长度

  圆的面积是指圆所围成的平面部分的大小。

  (2)计算公式

  求圆的周长公式:C=d或C=2r

  求圆的面积公式:S=r2

  (3)使用单位

  计算圆的周长用长度单位

  计算圆的面积用面积单位

  二、练习。

  1、判断下面各题是否正确,对的打,错的打3。

  (1)计算直径为10毫米的圆的面积的列式是3.14(102)?。()

  (2)半径为2厘米的圆的周长和面积相等。()

  (3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()

  (4)面积:3.1462=3.1412=37.68()

  2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

  ⑴半圆的周长是多少厘米?(2)半圆的面积:

  3.14223.142+22

  r=2cm=3.144=6.28+4

  =12.56(平方厘米)=10.28(cm)

  3、一个圆的周长是25.12米,它的.面积是多少:

  已知:C=25.12米求:S=?

  r=25.12(23.14)S=r2

  =4(米)=3.1442

  =50.24(平方米)

  4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

  已知:R=7厘米=0.7分米r=0.5分米求:S=?

  S环=(R2-r2)

  3.14(0.72-0.52)

  =3.140.24

  =0.7536(平方分米)

  三、巩固发展.

  一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

  (1)围成长方形:31.42=15.7(m)(长和宽的和)

  长宽=面积

  当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.

  (2)围成圆形

  直径:31.43.14=10(m)

  半径:102=5(m)

  面积:3.1452=78.5(m2)

  (3)比较:长方形面积:61.6m2正方形面积:61.6225m2圆面积:78.5m2

  围成圆的面积最大。

  四、作业。

  课本P71第6、7题。

  教学追记:

  学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:

  (1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。

  (2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。

  (3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。

圆的周长教案15

  教学内容:教材第62-64页圆的周长。

  教学目标:

  1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

  2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

  3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

  教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

  教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

  教学设计:

  创设情境,揭示课题

  创设情境,认识圆的周长。

  师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

  师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

  设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的'学习兴趣和学习热情,自然而然地引出新知。

  引导探究,展开新课

  1.情境导入,借助教具直观感知,认识圆的周长。

  (1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

  (2)你知道圆的周长指的是什么吗?

  让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?

  (3)围成圆周长的是一条什么线?

  明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

  2.测量圆的周长。

  (1)滚动法。

  拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

  滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。

  小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

  (2)绕绳法。

  课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

  绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:①一定要将绳子拉直再测量;②绳子是无弹性的。

  (3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?

  教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?

  经过对比,感受滚动法和绕绳法两种测量方法的局限性。

  3.操作实验,探究圆的周长和直径的关系。

  (1)观察猜想:圆的周长与它的什么有关呢?

  学生猜想:可能与它的直径或半径有关。

  课件演示:圆的周长随着直径或者半径的变化而变化。

  (2)动手操作,找出规律。

  四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。例如:

  周长c(cm)直径d(cm)的比值(保留两位小数)

  3.14213.14

  9.533.17

  12.643.15

  15.853.16

  31.4103.14

  (3)观察表中记录的测量数据和计算结果。

  ①你发现周长与直径的比值有什么特点?(比值都是三点几)

  ②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的周长总是直径的3倍多一些)

  (4)进一步验证圆的周长总是直径的3倍多一些。

  下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)

  (5)认识圆周率。

  ①圆的周长与直径的比值是一个固定的数,有谁知道它叫什么?(圆周率)

  ②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)

  ③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)

  ④感受文明,激发情感。

  结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。

  (6)总结圆的周长的计算公式。

  ①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)

  ②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)

  ③小结:圆的周长总是它直径的π倍。

  (7)进一步明确复习题答案。

  结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。

  4.学以致用。

  课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?

  学生读题后自己完成。让学生板演。

  c=2πr

  2×3.14×33=207.24(cm)≈2(m)

  1km=1000m

  1000÷2=500(圈)

  答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

  设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。

  巩固练习,提升能力

  1.完成教材64页1题。

  2.判断。

  (1)圆的周长是直径的3.14倍。( )

  (2)圆的周长等于圆周率与直径的乘积。( )

  (3)当半径为3cm时,圆的周长为18.84cm。( )

  (4)半圆的周长是圆周长的一半。( )

  3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?

  4.完成教材66页7、8题。

  课堂总结,评价拓展

  本节课你有什么收获?

  布置作业,巩固新知

  教材66页9、10题。

  板书设计:

  圆的周长

  圆周率:圆的周长和它直径的比值。π是一个无限不循环小数,通常取3.14。

  圆的周长总是直径的3倍多一些。

  圆的周长=圆的直径×圆周率=圆的半径×2×圆周率。

【圆的周长教案】相关文章:

《圆的周长》教案02-26

关于圆的周长教案01-15

圆的周长教案(精选24篇)05-06

《圆的周长》数学教案12-11

圆的周长教案15篇11-18

圆的周长教案(15篇)11-18

圆的周长教案(精选14篇)05-09

圆的周长教案汇总六篇04-28

【热门】圆的周长教案(精选10篇)09-16