《小数的意义》教案

时间:2022-07-11 09:22:54 教案 我要投稿
  • 相关推荐

《小数的意义》教案

  作为一名为他人授业解惑的教育工作者,就难以避免地要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的《小数的意义》教案,欢迎大家分享。

《小数的意义》教案

《小数的意义》教案1

  教学目标

  1. 使学生结合具体情境初步体会小数的含义,能认、读、写一位小数,知道小数各部分的名称。

  2. 使学生通过观察、比较、分析、综合和概括等活动,经历小数含义的探索过程,增强与同伴合作的意识,体会数学与生活的密切联系。

  3. 使学生通过了解小数的产生和发展过程,提高学习数学的兴趣。

  教学过程

  一、 创设情境,引入新课

  谈话:星期天,小明和好朋友小红一起到新星文具店购买文具,文具店里的东西可真多啊。(课件出示文具店的情境,图中标明四把三角尺或直尺的价格,分别是:2角、5角、8角、3角。)

  二、 联系实际,探究发现

  1. 教学整数部分是0的小数。

  (1) 提问:小明想买一把尺子,猜猜他可能买哪种价格的尺子?

  根据学生回答板书:2角、5角、8角、3角。

  提问:仔细观察这些尺子的价格,它们都是用什么作单位的?如果用元作单位,怎样表示上面商品的'价格呢?

  学生回答的同时,对应着上面的价格板书:2/10元、5/10元、8/10元、3/10元。

  提问:你能分别说说2/10元、5/10元、8/10元、3/10元表示的意思吗?

  引导:像上面的2/10元、5/10元、8/10元、3/10元,还可以用小数来表示。(边讲解边板书)如:2/10元可以写成0.2元,0.2读作零点二(师生齐读)。也就是说,把1元平均分成10份,其中的2份既可以用2/10元来表示,也可以用0.2元表示。

  提问:你能说说0.2元表示什么意思吗?会写这个小数吗?

  再问:怎样用小数表示5/10元呢?

  追问:0.5元表示什么意思?

  学生回答后练习读、写0.5。

  再让学生说一说怎样用小数表示8/10元、3/10元,并读、写0.8和0.3。

  谈话:小数在我们生活中有着非常广泛的应用,我们再来看一些例子。

  (2) 课件出示例1的情境图。

  提问:图中两个小朋友在做什么?他们量得的结果是多少?

  再问:你能用米作单位分别表示课桌面的长和宽吗?(学生分别用5/10米、0.5米表示课桌面的长,用4/10米、0.4米表示课桌面的宽。)

  (3) 完成想想做做第1题。

  课件出示想想做做第1题的尺子图。

  提问:小明买了这样一把1米长的尺子。它被平均分成了几份?(指1分米的刻度)这里的1份是几分米?如果用分数表示是几分之几?用小数表示呢?

  课件出示相应的填空,谈话:你能在括号里填上适当的数吗?先想一想怎样填,再在书上第101页的第1题中填一填。

  学生练习后,指名汇报。

  (4) 完成想想做做第3题。

  课件出示题目,指名口答。

  提问:仔细观察这些分数,分母都是几?

  小结:十分之几用小数表示都是零点几。

  (5) 游戏:对口令。

  教师说一位小数,学生说表示几分之几,或教师说几分之几,学生说小数。同桌相互做游戏。

  2. 教学整数部分不是0的小数。

  (1) 谈话:我们再到文具店去看一看吧,这里还有两件文具。(出示例2的情境图)圆珠笔多少钱1支?笔记本多少钱一本?

  提问:你能用小数表示圆珠笔的价钱吗?自己先试一试,再和小组里的同学交流。

  全班交流,并读、写1.2元。(着重让学生说一说自己是怎样想的。)

  再问:怎样用小数表示笔记本的价钱呢?

  小结:用小数表示几元几角,可以把几角表示成零点几元,再和几元合起来就是几点几元。

  提问:今天我们认识的小数和以前学过的数有什么不同?

  讲解:我们以前学过的表示物体个数的1、2、3、4是自然数。0也是自然数,它们都是整数。像上面的0.5、0.4、1.2、3.5都是小数。小数中间的点叫小数点,小数点的左边是整数部分,右边是小数部分。(相机板书:小数点、小数部分、整数部分)

  提问:你能写出两个小数吗?读给同座位同学听听,并指出小数的整数部分和小数部分。

  指名汇报。

  三、 应用与拓展

  1. 完成想想做做第2题。(课件出示)

  让学生做在课本上,集体订正。

  2. 完成想想做做第4题。(课件出示)

  先读出这些商品的价钱,再说一说是几元几角。

  3. 找朋友。(把分数和相应的小数用线连起来,题略)

  4. 完成想想做做第5题。

  学生独立练习,并说一说是怎样想的。

  四、 总结延伸

  提问:今天这节课你学会了什么?还有什么不明白的地方?

  延伸:今天我们学习的都是一位小数,以后我们还要进一步学习位数更多的小数,更全面地认识小数。如果感兴趣,同学们可以自己找一些资料看一看。

《小数的意义》教案2

  设计说明

  《数学课程标准》指出:数学教学必须激发学生的兴趣,调动学生的积极性,引发学生的思考,同时要注重培养学生良好的学习习惯,掌握有效的学习方法。针对这一点,本节课的教学设计如下:

  1.重视学生的实践操作。

  在教学中通过估一估、量一量、想一想、说一说等实践活动,探究怎样把用“厘米”作单位的数改写成用“米”作单位的数和把用“克”作单位的数改写成用“千克”作单位的数,培养学生的估测意识、空间观念和动手操作能力,使学生体会到成功的喜悦。

  2.渗透转化思想,积累数学活动经验。

  数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括。在把低级单位的数转化成高级单位的数时,先用分数的形式表示,再转化成小数的形式,渗透了转化思想。转化思想有助于学生学习新的数学知识,分析和解决新的数学问题及积累数学活动经验。

  课前准备

  教师准备 PPT课件

  学生准备 直尺

  教学过程

  ⊙激趣导入

  1.导入:同学们,你们还记得1米有多长吗?用手势表示一下(学生用手势表示1米的长度),再看看我们使用的黑板有多长(学生估测黑板的长度)。要想准确地表示它的长度,需要进行测量。

  2.量一量。

  (1)以小组为单位测量黑板的长度。

  (2)汇报结果。

  组1:黑板长2米多。

  组2:量出2米后还多出36厘米。

  组3:量出是2.36米。

  3.交代学习目标,引出新课。

  师:小数在我们的生活中随处可见,它可以帮助我们解决生活中的问题,有着重要的作用,这节课我们继续学习小数的意义。

  设计意图:通过让学生测量黑板的长度,激发学生的学习兴趣,使学生进一步体会小数的意义。

  ⊙探究新知

  (一)探究把低级单位的数转化成高级单位的数的方法。

  1.引导学生观察上面的结果,你有什么发现或疑问?

  (学生讨论、交流并汇报)

  2.小组合作学习:剩余的36厘米怎样用“米”作单位来表示呢?

  3.交流汇报,说一说自己是怎么考虑的,在探究中运用了什么思想方法。

  4.归纳学生的方法。

  (1)多出36厘米,把1米平均分成100份,1份就是1厘米,即1米=100厘米,1厘米=米。36厘米=米,也就是0.36米。

  (2)在把36厘米转化成0.36米的过程中,先用分数的形式表示,再转化成小数的形式。

  5.师生共同总结把低级单位的数转化成高级单位的`数的方法:根据两个单位间的进率,先把低级单位前的数改写成分母是10,100,1000,…的分数,再把分数改写成小数的形式,并在后面加上所要化成的高级单位的名称。

  6.尝试练习。

  12克=千克=( )千克

  500克=千克=( )千克

  (学生在小组内讨论,并汇报结果)

  设计意图:通过估一估、量一量、想一想、说一说等实践活动,既能使学生获取新知,又能培养学生的分析、推理和概括能力,还使学生感受到合作的快乐,从而使学生学习数学的兴趣更加浓厚。

《小数的意义》教案3

  【第一课时】

  复习内容:小数乘、除法的意义和计算法则。(第16题,练习九第14题。)

  复习要求:

  1.使学生进一步理解小数乘、除法的意义,掌握小数乘、除法的计算法则,并能正确地进行计算。

  2.使学生掌握用四舍五人法取积、商是小数的`近似值。复习重点:进一步提高计算的正确率和熟练程度。

复习过程:

  一、基本练习

  1.口算。05。381。40。20。156800。58。50。21。250。83。910

  3。91。30。630。90。170。42.填表。保留整数保留一位小数保留两位小数

  10。395

  2。047

  0。9292

  二、复习指导

  1.小数乘、除法的意义。(1)填空。①6。53表示()②6。50。3表示()

  ③8。40。4表示()④8。44表示()(2)思考并回答。

  ①小数乘以整数以及一个数乘以小数的意义各是什么?②小数除法的意义与整数除法相同,是什么?2.小数乘、除法的计算法则。

  (1)计算下面各题。(指4名学生板演。)0。677。50。1250。241。890。547。10。125

  ①小数乘法中积的小数点的位置是怎样确定的?点小数点时积的小数位数不够,应怎么办?

  ②怎样把除数是小数的除法转化为除数是整数的除法?怎样确定商的小数点位置?(3)由学生小结出小数乘、除法的计算法则。

  三、课堂练习

  1。练习九第3题:计算下面各题,得数保留两位小数。0。350。20xx。1-0。9091。30。03

  0。78+5。4366。5090。2718。114+9。987589。76160。2532。50。680。95

  先让学生说一说怎样取积、商的近似值,再让学生按要求计算出结果,师辅导有困难的学生,集体订正。

  2。练习九第4题:一个纺织厂平均每小时生产棉纱927。5千克。如果每千克棉纱织布7。2米,这个厂每小时生产的棉纱可以织多少米布?

  生独立审题,分析数量关系并列式计算。

  四、作业

  练习九第1、2题

  【第二课时】

  复习内容:小数的混合运算和简便算法。(第7、8题,练习九第57题。)

  复习要求:

  1.使学生进一步掌握小数混合运算的运算顺序,并能正确地进行计算。

  2.使学生进一步掌握小数乘、除法中的一些简便算法,并能正确地进行小数乘、除法的简便计算。

  复习重点:小数的混合运算和简便计算的正确率及熟练程度。

  复习过程:

  一、基本训练

  练习九第5题:4。5+1。50。75+0。250。25+3。1+1。752。541-0。63

  10-1。8-2。20。46280。1254。80。20。50。71。42。430

  0。30。152根据学生情况限时做在课本上,集体订正。

  二、复习指导

  1.第7题。5。519。50。124。078。6+9。12524。842。7-7。3532。342。10。14

  (1)看题说一说各题的'运算顺序。(2)学生独立计算。(指4名学生板演。)(3)集体订正。

  2.P。34页的第7题:先想想下面各题怎样计算简便,再计算。(1)学生看题说一说每题应该怎样算简便?根据是什么?

  (2)学生独立简算。(指4名学生板演。)(3)集体订正。

  三、课堂练习

  1.练习九第6题。学生独立进行简算,教师进行个别辅导。集体订正时要求学生说出每一题是根据什么简算的。

  2.练习九第8题:下面是某学校买球的发货票,请你把空格填满。数量单位单价总价

  篮球只78。6元

  排球3只145。20元

  总计金额302。40元

  (1)首先让学生讨论怎样才能填出篮球的个数、总价和排球的单价?并选代表发言。(2)学生填写,教师巡视。

  (3)集体订正。

  四、攻破难题

  1.练习九第9题:小华在计算3。6除以一个数时,由于小数点向右点错了一位,结果得24。这道题的除数是多少?

  分析与解:此题先考虑正确商是多少,题中告诉由于小数点向右点错了一位,结果得24,那么正确商应为2。4。再根据除法中各部分之间的关系,用被除数3。6除以商2。4,得到除数是1。5。

  2.练习九第9题:小明和爸爸一起去电动游戏场乘飞机。买票时小明付出20元钱,找回了8元。游戏场的学生票价是成人的一半,算一算学生票和成人票的票价各是多少钱?

  分析与解:先求出小明和爸爸买票一共花了多少钱,然后考虑,学生票价是成人的一半也就是说一章成人票价等于两张学生的票价。因此,小明和爸爸一共花了3张学生票价的钱。解法为:

  (20-8)(2+1)=4(元)学生票42=8(元)成人票五、作业

  练习九第6题、思考题。

《小数的意义》教案4

  教学内容:教科书第111—112页的例1和例2,第111页、113页上面“做一做”中的 题目和练习二十六的第1—2题。

  教学目的:

  1.使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  2.培养学生的迁移类推的能力。

  教学过程:

  一、复习

  1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克。两个小队一共采集了多少克?让学生先解答,再说一说整数加法的意义和计算法则。

  2.笔算。

  4.67十2.5= 6.03十8.47= 8.41—0.75=

  让学生列竖式计算,指名说一说自己是怎样算的,并注意检查学生竖式的书写格式是否正确。

  二、新课

  1.教学例l。

  (1)通过旧知识引出新课。

  教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例l。让学生读题, 理解题意。

  (2)引导学生比较整数加法和小数加法的意义。

  教师:“例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什 么要用加法算?”

  引导学生通过比较说出:从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算;从例1可以看出小数加法的意义和整数加法的意义相同.也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算。

  (3)引导学生理解小数点对齐的道理。

  教师板书横式以后,让学生说一说怎样写竖式,并提问:“为什么要把小数点对齐?”然 后把以千克作单位的小数改写成以克作单位的整数,列出竖式,并提问:“整数加法应该怎样算?”引导学生说出计算时要把相同数位上的数对齐,再从个位加起。

  教师接着再提问:“为什么要把相同数位上的数对齐?”引导学生说出相同计数单位上 的数才能相加。教师告诉学生:小数加法也是相同计数单位上的数才能相加,所以列竖式 时只要把小数点对齐就能使相同数位上的数对齐。

  然后让学生计算,算完后教师提问:“得数7.810末尾的‘0’怎样处理?能不能去掉?为什么能去掉?”引导学生说出根据小数的性质可以把末尾的“0”去掉。并告诉学生以后在计 算小数加法遇到小数末尾有“0”时,通常要把“0”去掉。

  2.让学生做第111页“做一做”中的题目。

  让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。

  3.引导学生比较小数加法和整数加法的计算法则。

  教师:“小数加法与整数加法在计算上有什么相同的地方?”启发学生说出小数加法和 整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐:

  4.教学例2。

  (1)引导学生通过比较得出小数减法的意义。

  教师:“例2的条件和问题与例l比有什么变化?例2的数量关系是什么?”启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数.求第二小队采集 的千克数;可以看出小数减法也是已知两个加数的和与其中的一个加数。求另一个加数的运算,所以它的意义与整数减法的'意义是相同的。

  (2)利用知识迁移使学生理解小数点对齐的算理。

  让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐: 然后教师把千克数改写成克数并列出竖式,提问:“个位上是几减几?”接着让学生看小数减法竖式,提问:“被减数干分位上没有数计算时怎么办?”利用小数的性质使学生理解被减数干分位上没有数可以添“0”再减,也可以不写“0”,把这一位看作“0”再计算,以后 在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是 否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。

  5.比较小数减法与整数减法的计算法则。

  让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数 加法与整数加法在计算上的关系是一样的。

  6.小结。

  教师:“通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?”

  启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法 则,齐读一遍。

  7.做第113页最上面“做一做”中的题目。

  学生做题之前,教师先提问:“整数加减法各部分间的关系是怎样的?整数加减法是怎样验算的?”从而说明小数加减法各部分间的关系及验算方法与整数加减法的一样。再让学生做题.检查竖式的书写及计算有没有错误,得数的小数点点得是否正确,验算的格式 对不对。订正时,让学生说一说是怎样计算并验算的。

  三、巩固练习

  做练习二十六的第1—2题。

  1.做第l题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:“你是根据什么来写减得的差的?”使学生加深对小数减法的 意义和加减法关系的认识;

  2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时, 针对学生易出错的地方重点说一说。

《小数的意义》教案5

  教学目标:

  1.经历小数的认识过程,初步了解小数的含义,会读,写一位小数,知道小数各部分的名称。知道自然数和整数。

  2.进一步认识数的发展,感受数学与现实生活的联系,增强学习数学的兴趣。

  教学资源:

  投影

  教学过程:

  一.创设情境,唤起经验

  谈话:星期天,小兰跟着妈妈去逛超市。超市里东西可真多啊,请大家注意这几种商品的标价:

  圆珠笔笔记本橡皮小刀

  1.2元3.5元0.5元0.8元

  这些数你们见过吗?谁来试着读一读。

  让会读的学生试读。

  谈话:这就是我们要认识的小数。(板书课题)

  二.联系实际,探究发现

  1.认识米做单位的一位小数。

  观察情境图,桌面长5分米,宽4分米。

  谈话:(出示米尺图)5分米,如果用米做单位是几分之几米?4分米呢?

  学生回答。

  讲解:5/10米还可以写成0.5米。0.5读作零点五。

  提问:4/10米可以怎样写?怎样读?(学生回答)

  1分米.2分米.3分米******是几分之几米?用小数表示呢?

  同桌互说,全班交流。

  :十分之几米可以写成零点几米。

  2.做“想想做做”第1题。

  学生各自在书上填写。投影出示答案,共同校对,指导做错的学生纠正错误。

  3.认识元作单位的一位小数。

  (1)电脑出示:小兰在超市买了一些文具。

  铅笔学生尺圆珠笔笔记本

  3角7角1元2角3元5角

  提问:3角以元作单位用分数表示多少元?3/10元如果用小数表示你能写出来吗?你会读吗?7角改写成用元作单位的小数你会写.读吗?

  :十分之几元可以写成零点几元。

  (2)谈话:那么1元2角怎样改写成小数呢?2角写成小数是多少?1元和0.2元合起来就写成1.2元,1.2读作一点二。

  提问:3元5角用小数表示怎样写?怎样读?

  :几元几角写成小数就是几点几元。

  (3)做“想想做做”第2题。

  在书上填写,把答案读给同桌听。

  (4)完成“想想做做”第3题。

  看图先写出分数,在写出小数,在小组里互相校正。

  :十分之几可以写成零点几。

  4.认识整数和小数。

  (1)讲述:我们以前学过的表示物体个数的`1.2.3.*******是自然数,0也是自然数,它都是整数。像上面`的0.5,0.4,1.2和3.5都是小数。小数中间的点叫做小数点,小数点的左边是整数部分,右边是小数部分。

  (2)让学生自己阅读课本第100页最后一段。

  (3)练习。

  A、说一说下列各数中哪些是整数,哪些是小数?

  70..84.2391

  指名口答。

  B、用----画出下面小数的整数部分,用~~~~画出小数的小数部分。

  0.745.2

  学生齐做,指名扮演。

  三.巩固练习

  1.做”想想做做“第4题。

  说给同桌听。

  2.做”想想做做“第5题。

  提问:为什么0右边第一个点上填0.1?1右边第2个点上填1.2?

  各自完成填空,在小组里互相检查。

《小数的意义》教案6

  教学目标:

  1、了解小数的产生和理解小数的意义。

  2、掌握小数的计数单位及单位间的进率。

  教育方面:

  1、培养学生的观察、分析能力和抽象概括能力。

  2、感受数学与生活的联系及其价值,体验数学学习的乐趣。

  教材分析:

  1、教学内容:义务教育课程标准实验教科书数学四年级下册《小数的认识和加减法》中的“小数的意义”问题。

  2、内容分析:教材选用测量黑板、课桌,一方面这两种事物都是教室里学生非常熟悉的,另一方面学生在测量之后除了能够体会小数的产生于实际需要以外,还可以将测量结果作为一般的常识来掌握。考虑到学生对长度单位比较熟悉,教材仍选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过分米(厘米、毫米)改写成米数,三个层次共同说明,把低级单位的数改写成高级单位的数可以用分母是10.100.1000??的分数表示,再进一步用小数表示。教材着重从“小数是十进分数的另一种表现形式”的角度说明小数的含义,最后教材说明小数的计数单位及相邻两个计数单位之间的进率由学生自己填出。

  3、学情分析:小数的意义属于概念教学,比较抽象,在操作中要重过程。根据本课教学内容的特点和学生对概念认知的思维特点,我们在制定本课教学环节时注意联系生活,尽量联系学生身边的事物,充分利用有效资源让学生经历数学知识的探究与发现的过程,使他们在动手、动脑、动口中理解知识、掌握方法,学会思考、获得积极的情感体验。

  4、教学目标:

  (1)使学生在初步认识小数的基础上知道小数的产生,理解小数的意义。

  (2)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

  (3)培养学生的观察、分析、推理能力。

  5、教学重点、难点。

  教学重点:使学生明确小数的产生和意义、小数与分数的联系、小数的计数单位和相邻两个计数单位间的进率。

  教学难点:

  小数意义的探究过程和相邻两个计数单位间的`进率。

  教学准备:

  多媒体课件 、测量工具(米尺)。

  教学过程:

  (一)操作导入:

  1、让两名学生测量黑板、课桌长度。(用米作单位)

  2、交流测量结果,展开讨论。

  3、引导小结:

  在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书课题:小数的产生和意义)

  【设计意图】通过让学生自己动手测量黑板、课桌长度的活动,当让学生用米作单位说出黑板的长时,学生心理产生了矛盾,因为测量黑板时多出的部分不够1米,课桌也不够1米,无法得到整数的结果,需要用其它数来表示,由此引出“小数”。学生通过测量亲自体验了小数产生的必要性。

  (二)引导探究:

  1、认识一位小数。(出示米尺)

  (1)在米尺上找出1分米的地方。

  ①用米作单位,怎样用分数来表示? 为什么?(结合分数的意义说明)②用小数表示是:0.1米。

  ③谁来说说0.1米表示什么?(把1米平均分成10份,每份1分米,是 米,也可以写成0.1米。)

  板书:1分米= 米=0.1米.

  (2)讨论:

  ①用米作单位,3分米怎样用分数和小数表示?7分米呢?

  ②分别说说0.3米、7分米表示什么意思?

  2、认识两位小数。(出示米尺)

  (1)在米尺上找出1厘米的地方。

  ①用米作单位,怎样用分数来表示? 为什么?

  ②用小数表示是:0.01米。

  ③谁来说说0.01米表示什么?(把1米平均分成100份,每份是1厘米,是 米,也可 以写成0.01米。)

  板书:1厘米= 米=0.01米.

  (2)讨论:

  ①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?

  ②分别说说0.03米、0.06米各表示什么意思?

  3、认识三位小数。(出示学生尺)

  (1)在尺上找出1毫米的地方。

  ①用米作单位,怎样用分数来表示? 为什么?

  ②用小数表示是:0.001米。

  ③谁来说说0.001米表示什么?

  板书:1毫米= 米= 0.001米。

  (2)讨论:

  ①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?

  ②说说0.003米和0.006米各表示什么意思?

  照这样分下去,还可以得到万分之一米??也可以写成0.0001米。

  象刚才小圆点后面一位的小数叫一位小数,两位的小数叫两位小数??

  (三)概括:

  1、概括小数与分数的关系。

  (1)什么样的分数可以用一位、两位、三位??小数来表示?

  (2)一位、两位、三位??小数分别表示几分之几?举例说说。

  2、概括小数的意义。

  师:分母是10、100、1000??的分数可以用小数表示。

  【设计意图】小数的意义是十分抽象的概念,学生比较难理解。要改变死记硬背、机械 训练的方式,防止重结论,轻过程的做法。因此,我引导学生进行观察,使学生始终参与 到概念的探究过程中,通过比较、归纳、分析和综合,理解小数、分数之间的关系,最后 抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。

  (四)小数的计数单位和进率

  (1)小数的计数单位是什么?(展开讨论)板书:(十分之一、百分之一、千分之一??,分别写作0.1、0.01、0.001??)

  (2)1米里有几个0.1米?0.1米里有几个0.01米???每相邻两个单位间的进率是多少?

  (3)师:因为整数和分数相邻两个单位间进率都是10,所以这些分数也可以仿照整数的写法,写在个位的右面,用一个小圆点(小数点)隔开,用来表示十分之几、百分之几、千分之几??的数,叫做小数。

  【设计意图】老师没有直接告诉学生小数的计数单位是什么,每相邻两个计数单位间的进 率是10,而是让学生从解决问题中发现、归纳出来。这样能促使学生进行多角度、多方面、多层次的探索,符合学生的认知规律,培养学生应用所学知识解决问题的能力,获得学习 成功的体验,增进学好数学的信心。通过讨论交流和概括总结,培养数学思维能力和合作 精神。

  (五)巩固应用

  1、学生看书并完成例1的空白。

  2、P51 “做一做”用分数、小数表示涂色部分。

  3、闯关练习:

  (1)括号里能填几?你是怎么知道的?

  0.3里面有()个 ,0.09里面有()个 ;0.08里面有()个 。

  (2)下面的括号里能填几?

  0.1米里面有()个0.01米 ;

  0.01米里面有()个0.001米 ;

  0.001米里面有()个0.0001米。

  (3)找朋友:(用线把上下两组数连起来)

  0.045 0.13 0.0001 0.9

  4、说说这些小数的计数单位分别是什么? 它里面含有多少个计数单位?

  0.3 0.18 0.250.036

  【设计意图】使学生明确小数和分数的关系,加深对小数意义的理解和对计数单位的认识,让所学知识得以巩固。

  (六)课堂总结

  这节课我们学习了什么?你知道了什么?你还有什么问题?

  【设计意图】对知识点进行梳理,培养学生概括能力和语言表达能力。

  (七)板书设计:

  小数的产生和意义

  小数的产生:在进行计算和测量时,往往得不到整数的结果。

《小数的意义》教案7

  教学内容:教科书第76页的例1、例2,第76页做一做中的题目和练习十八的第1-2题。

  教学目的:

  1、使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  2、培养学生的迁移类推的能力。

  教学重点:初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  教学难点:培养学生的迁移类推的能力。

  教学过程

  一、复习

  1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克.两个小队一共采集了多少克?

  让学生先解答,再说一说整数加法的意义和计算法则。

  2.笔算。

  4.67+2.5=6.03+8.47=8.41-0.75=

  让学生列竖式计算,指名说一说自已是怎样算的,并注意检查学生竖式的书写格式是否正确。

  二、学习新知

  1、学习例1。

  (1)通过旧知识引出新课.

  教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例1让学生读题;理解题意。

  (2)引导学生比较整数加法和小数加法的意义。

  教师:例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什么要用加法算?

  引导学生通过比较说出从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算,从例1可以看出小数加法的意义和整数加法的意义相同,也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算.

  (3)引导学生理解小数点对齐的道理。

  教师板书横式以后,让学生说一说怎样写竖式,并提出以下问题进行讨论

  (1)为什么要把小数点对齐?

  (2)整数加法应该怎样算?

  然后让学生计算,算完后接着讨论:

  (3)得数7.810末尾的0怎样处理?能不能去掉?为什么能去掉?

  2.让学生做第76页做一做中的题目。

  让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。

  3.引导学生比较小数加法和整数加法的计算法则。

  教师:小数加法与整数加法在计算上有什么相同的地方?启发学生说出小数加法和整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐。

  4.学习例2。

  (1)引导学生通过比较得出小数减法的意义。

  教师:例2的条件和问题与例1比有什么变化?例2的数量关系是什么?启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数,求第二小队采集的千克数;

  可以看出小数减法也是已知两个加数的和与其中的一个加数;求另一个加数的运算,所以它的意义与整数减法的意义是相同的。

  (2)利用知识迁移使学生理解小数点对齐的'算理。

  让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐。

  然后教师把千克数改写成克数并列出竖式,提问:个位上是几减几?接着让学生看小数减法竖式,提问:被减数千分位上没有数计算时怎么办?利用小数的性质使学生理解被减数千分位上没有数可以添0再减,也可以不写0,把这一位看作0来计算,以后在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。

  5.比较小数减法与整数减法的计算法则。

  让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数加法与整数加法在计算上的关系是一样的。

  6、小结。

  教师:通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法则,齐读一遍。

  7、做第78页最上面做一做中的题目。

  订正时,让学生说一说是怎样计算并验算的。

  三、巩固练习

  做练习十八的第1-2题。

  1.做第1题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:你是根据什么来写减得的差的?使学生加深对小数减法的意义和加减法关系的认识。

  2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时,针对学生易出错的地方重点说一说。

  板书设计:小数的加法和减法

  例1:少先队采集中草药,第一小队采集了3.735千克,第二小队采集了

  4.075千克,两个小队一共采集了多少千克?

  3.735+4.075=7.81(千克)

  答:一共采集了7.81千克。

  例2:少先队采集中草药,两个小队一共采集了7.81千克。第一小队采集了3.735千克,第二小队采集多少千克?

  7.81-3.735=4.075(千克)

  答:第二小队采集了4.075千克。

《小数的意义》教案8

  教学内容:

  P32-33

  教学目标:

  1、在升生活情境中了解小数的产生,体会数学与生活的联系,了解数学的价值,增强对数学的理解和应用数学的信心。

  2、探究小数与分数、整数的内在联系,理解小数的意义。

  3、通过分析、对比、概括、小结培养学生的思维能力。

  教学重难点:

  在学生初步认识一位小数、两位小数的基础上,进一步把认识范围扩展到三位小数,分母是10,100,1000的的分数,写成小数是几个0.1,几个0.01,几个0.001,并了解小数的计数单位及单位间的进率。

  教学准备:

  PPT,小软尺,习题纸。

  教学过程

  一、谈话引入新课,激发学习兴趣

  师:同学们,老师给大家准备了一些关于小数和分数的小书签,我想把它们送给上课积极发言的孩子,想得到它吗?想得到就积极发言吧。

  二、创设情境,导入新课

  1、同学们在前面的学习中,我们已经初步的认识了小数和分数,这节课,老师想让大家用小数表示自己所测量的物体,请大家拿出大家准备好的软尺,请第1组的同学测量课桌的长度;请第2,3组的同学测量笔袋的长度;请第4,5组的同学测量数学书的厚度,请将你的测量结果记录在老师发给你的纸里。

  2、每生测量活动。

  3、每组派代表汇报测量结果。

  学生汇报预测:

  学生1:我测量的课桌的长度是0.6米。

  学生2:我测量的笔袋的长度是0.11米。

  学生3:我测量的数学书的厚度是0.01米。

  4、展示学生的汇报结果,有质疑的请举手。

  5、根据同学们的测量结果你有什么发现?(都是小数)

  6、在平常的生活中你还见过哪些这样的小数?请举例说明。

  生例举一些常见的小数,师补充一些常见的小数。观察这些数你有什么发现?

  根据学生的回答,师小结:在进行测量和计算时往往不能正好得到整数,这时候通常用小数来表示。

  这节课我们就来学习《小数的意义》。

  二、尝试探究,理解意义

  1、认识一位小数

  教师:出示一米长的纸条,把它平均分成10份,取其中的一份是多少分米?写成分数是多少米?写成小数的`多少米?说出你的想法。

  师小结:取其中一份1分米,分数表示:米,用小数表示:0.1米。

  师:取其中的3份呢?取其中的6份呢?生独立思考。

  生汇报:取其中的3份是3分米,分数表示:米,用小数表示:0.3米。

  取其中的6份是6分米,分数表示:米,用小数表示:0.6米。

  2、认识两位小数

  我们都知道了一位小数表示十分之几,那么老师现在把这一米长的纸条平均分成100份,取其中的一份是多少厘米?写成分数是多少米?写成小数的多少米?说出你的想法。

  师小结:取其中一份1厘米,分数表示:米,用小数表示:0.01米。

  师:取其中的40份呢?取其中的75份呢?生独立思考。

  生汇报:

  取其中的40份是40厘米,分数表示:米,用小数表示:0.40米。

  取其中的75份是75厘米,分数表示:米,用小数表示:0.75米。

  3、认识三位小数

  我们都知道了一位小数表示十分之几,两位小数表示一百分之一,那么老师现在把这一米长的纸条平均分成1000份,取其中的一份是多少毫米?写成分数是多少米?写成小数的多少米?说出你的想法。

  生汇报:取其中一份1毫米,分数表示:米,用小数表示:0.001米。

  师:取其中的59份呢?取其中的125份呢?

  生汇报:

  取其中的59份是59毫米,分数表示:米,用小数表示:0.059米。

  取其中的125份是125毫米,分数表示:米,用小数表示:0.125米。

  4、对比直观描述,小数的意义

  师:结合我们刚刚学过的一位小数、两位小数、三位小数完成表格

  生独立思考,汇报研究结果,根据学生的回答进行板书。

  通过研究,你有什么发现?

  学生1:我发现,分母是10的可以写成一位小数,用分数表示是十分之几,用小数表示几个0.1.

  师:这位同学总结的非常好,还有谁想来说一说?

  学生2:我发现,分母是100可以写成两位小数,,用分数表示是百分之几,用小数表示几个0.01.

  学生3:我发现,分母是1000的可以写成三位小数,用分数表示是千分之几,用小数表示几个0.001

  师:同学们说的都非常的好,那小数点在这里表示什么意思?(表示想这样的小数和分数还有很多很多,等我们以后再学习)

  5、小数之间的进率

  1毫米→1厘米→1分米→1米,它们之间的进率发生什么变化?

  0.001米→0.01米→0.1米→1米,它们之间的进率发生了什么变化?

  师:在小数中,每相邻两个计数单位之间的进率是10.

  三、课堂练习,巩固深化

  1、把分数化小数(生独立完成,再汇报)。

  2、填一填。

  3、书本33页做一做。

  4、找朋友(将老师发的小书签,根据书签上的小数或分数说出你的朋友小数或分数是几,请起立,展示给全班是不是朋友)。

  5、生活中的数学,让数学贴近生活。

  四、能力提高,聪明屋

  用5,4,0,1,3这五张卡片摆出不同的数。

  1、小于1且小数部分是三位的小数。

  2、小于1且最大的三位小数。

  3、小于1且最小的三位小数。

  五、全课小结,今天你有什么收获?

  板书设计

  教学后记

  本课结合具体的情境,进一步体会小数的意义及其与生活的广泛联系。在创设情境中,我尽量让学生多说说自己在生活中看到过的小数。如测量自己身边物体的长度,自己的身高、体重、物体的大小或长度等。让学生感受到小数实际在生活的应用是非常广的,因此我们有学习小数的必要性和重要性。

  在掌握简单的小数和分数的基础上,体会十进分数与小数的关系并能进行转化,明确小数的计数单位,理解并掌握小数的意义。小数是十进分数的另一种表示形式,十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示。从一位小数入手,让学生经历具体分析一位小数的意义的过程,为后面理解二位、三位小数的意义作铺垫,在此基础上再实现对小数的整体意义的概括,降低了教学难度。

《小数的意义》教案9

  教学目标

  (一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。

  (二)通过归纳整理,提高学生的概括能力。

  教学重点和难点

  熟练掌握小数乘除法的计算法则,提高学生计算的准确率。

  教学过程设计

  (一)归纳整理小数乘除法的意义

  1口算下面各题,并说出各算式的意义。

  15×3 15×3 15×03 15÷3

  28×2 28×2 28×02 28÷2

  25×5 25×5 25×05 25÷05

  12×4 12×4 012×04 012÷04

  2思考:

  ①小数乘法的意义有几种情况,是按什么划分的?分别是什么?

  ②小数除法的意义是什么?

  讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)

  3比较归纳、整理:

  看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?

  讨论完成下表:

  (二)复习小数乘除法的计算法则

  1小数乘法的计算法则。

  (1)说出下面各题的积中各有几位小数。

  23×05 214×07 275×1203 184×0026

  提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的'小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)

  (2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?

  ①04×25=(1);②0075×052=(0039)。

  提问:

  ①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)

  (3)计算并验算:

  67×75= 836×25= 125×24=

  订正后回答:

  067×75= 836×025= 0125×24=

  小结:

  小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?

  讨论得出:

  相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。

  不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

  (4)口算:

  08×4= 4×08= 005×20= 20×005=

  003×9= 9×003= 19×5= 5×19=

  观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)

  练习:在下题的○中填上>,<或=。

  ①16×12○16; ②14×0○14;

  ③024×5○024; ④37×21○37;

  ⑤0×7○0; ⑥0×28○0。

  上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)

  2小数除法的计算法则。

  (1)计算并验算(P34:6):

  189÷054= 71÷0125= 051÷022=

  计算后订正,提问:

  ①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)

  ②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)

  (2)口算:

  42÷06= 15÷5= 32÷08= 2÷4=

  哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?

  (除数大于1时,商小于被除数;除数小于1时,商大于被除数。)

  练习:在下面的○中填上>,<或=。

  30÷06○30 18÷9○18 0÷02○0

  36÷4○36 27÷03○27 0÷12○0

  上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)

  (三)综合练习

  1口算:

  3978×1= 36÷36= 287×0=

  1×056= 78÷1= 0÷287=

  “1”与“0”有什么特性?

  2计算并求近似值:P35:2。

  小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)

  3作业:P35:1,3。

  课堂教学设计说明

  复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。

  通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。

  板书设计

  整数乘法:

  4×25=100

  75×52=3900

  小数乘法:

  小数除法:

《小数的意义》教案10

  教学目标:

  1、结合具体情境,体会生活中存在着大量的小数。

  2、通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义,会正确读写小数。

  重点难点:

  通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。

  教法学法:

  小组合作交流法、讲练结合法。

  教学准备:

  小黑板

  教学过程:

  一、激趣导入

  二、黑板有多长

  1、教师拿出米尺量黑板的'长度。

  2、教师将实际所量长度写在黑板上。课本上黑板长度为2米36厘米。

  3、教师提出问题:黑板长多少米?

  4、学生自己总结方法,先小组交流,各小组选代表汇报。

  5、教师公布答案。

  三、精讲例题

  1、把一米平均分成100份,一份就是1厘米,36厘米就是100分之36米,用小数表示就是0.36米。

  2、黑板总长等于2米+0.36米=2.36米

  3、自学回答,鹌鹑蛋和鸵鸟蛋的质量分别是多少千克?

  4、教师叫学生回答。

  四、当堂训练。

  1、复习导入,判断对错。(小黑板出示)

  (1)把1元平均分成100份,10份是1角。( )

  (2)把1000千克平均分成1000份,5份是0.005千克。( )

  (3)百分之十二就是0.02。( )

  (4)十分之七米用小数表示是10.7米。( )

  (5)0.05表示百分之五。( )

  (6)3.21是三位小数。( )

  (7)0.034写成分数是 ( )

  2、写出下面的小数。(9分)

  (1)蜂房的容积几乎都是零点二五立方厘米。写作: __________

  (2)人的眼睛大约能分辨只有零点零六毫米的物体。 写作:_________

  (3)珠穆朗玛峰是世界最高的山峰,海拔八千八百四十四点四三米。

  写作:____________________

  3、有一个数,十位、十分位、千分位上的数字都是2,其余各位都是0,它是( ),读作( )。(8分)

  4、请你用0、3、6、9四个数字(每个只能用一次)按要求组数。

  (1)整数部分最大,而小数部分的千分位是6的数是( )。

  (2)0不读出来而小数部分是两位小数的是 ( )。

  (3)0读出来,而小数部分只有一位小数且不是0的是( )。

  五、作业布置

  作业本做2、4题,完成相关配套练习。

  1、独立完成课本第4页三道练习题。教师集体订正答案。

  2、独立完成课本练一练第1题。

  板书设计:

  小数的意义(三)

《小数的意义》教案11

  教学目标:

  1、通过练习进一步掌握小数加减法的计算方法。

  2、通过练习进一步掌握小数加减混合运算的方法和简便计算的方法。

  3、通过活动,培养学生自主探索、合作交流的能力,动手操作的能力。培养学生综合运用知识解决现实问题,收集信息、处理信息的能力。

  教学重点:

  小数加减混合运算的方法和简便计算的方

  教学难点:

  小数加减混合运算的方法和简便计算的方

  教法学法:

  主动探究法、练习法。小组合作交流法

  教学准备:

  小黑板

  教学过程:

  一、复习导入新课

  1、复习小数的意义。

  2、怎样比较小数的大小。

  3、怎样进行小数加减的计算。

  二、展示交流。

  专题训练一:完成课本18页第一题、第二题。

  专题训练二:完成课本18页第三题

  专题训练三;完成课本18页第四题。

  专题训练四:完成课本18页第五题

  专题训练五:完成课本18页第六题。

  三、课堂小结

  四、作业布置

  完成相关配套练习。

  五、单元测试

  (一)小小知识窗看谁本领高!(25分)

  1、0.78里面有( )个0.01,3.6里面有( )个0.1。

  2、4个百、5个十、3个十分之一,组成的数是( )。

  3、0.050的计数单位是( ),它含有( )个这样的计数单位。

  4、58厘米=( )米

  540克=( )千克

  7元8角3分=( )元

  9吨40千克=( )吨

  5、小数相邻两个单位之间的'进率是( )。

  6、10.1千克、1000克、1.1吨、1千克10克按从大到小的顺序排列是

  ( )﹥( )﹥( )﹥( )。

  7、在○里填上<、>、=。

  7.9○8.2

  0.09○0.12

  5.7○5.8

  3.61米○362厘米

  284克○0.284千克

  5.3米○532厘米

  8、0.8不改变大小,写成三位小数是( )。

  9、一个小数,整数部分的最低位是( )位,小数部分的最高位是( )位。

  10、□5.□5,使这个数最小是( ),使这个数最大是( )。

  (二)火眼金睛辨对错。(10分)

  1、0.3与0.300大小相同,计数单位也相同。 ( )

  2、小数点的后边添上0或去掉0,小数大小不变。 ( )

  3、4.4时=4时40分。 ( )

  4、整数加法的运算定律同样适用于小数加法。 ( )

  5、2.7和2.9之间只有一个小数。 ( )

  (三)选择。 (10分)

  1、0.9比10少( )

  A、0.1

  B、9.1

  C、9

  2、由2、4、5三个数字组成的最大的两位小数是( )

  A、4.25

  B、2.54

  C、5.42

  3、大于4.35小于5.35的小数有( )个

  A、9

  B、10

  C、无数

  4、8080.80这个数( )位上的零可以去掉。

  A、百

  B、十

  C、百分

  5、小红在计算小数减法时,将减数3.8错看成38,得108,那么正确的结果是( )

  A、66.2

  B、142.2

  C、10.8

  (四)计算。(32分)

  1、口算:(10分)

  6.9-6=

  0.9+0.6=

  1-0.09=

  0.9+0.1=

  2.7+2.2=

  0.2+0.8=

  0.7-0.7=

  5.5+11=

  1.3-0=

  9.7-7=

  2、列竖式计算:(6分)

  27.09-9.28

  22.45-19.156

  9.07+2.88

  3、脱式计算,能简算的就简算:(6分)

  15.89-(5.89+6.98)

  4.9+12.87-5.38

  75.6-10.8-9.2

  4、列式计算。(10分)

  (1)一个数比2.02与3.28的和多1.3,这个数是多少?

  (2)从100.86里减去10.54与20.86的和,差是多少?

  (五)解决问题:(18分)

  1、五月份某运输公司一队运货30.6吨,二队运货35.08吨,三队比二队多运货2.02吨,三个队五月份共运货多少吨?(4分)

  2、妈妈买鞋用去125.4元,买袜子用去13.8元,给了售货员150元,还剩多少元?(用两种方法计算)(6分)

  3、光明小学四二班向灾区的小朋友捐款情况如下表

  小组: 第一小组、第二小组、第三小组

  钱数(元): 50.61、比第一小组少18.29、比第二小组多42.87

  (1)第三小组捐款多少元?(2分)

  (2)三个小组一共捐款多少元?(3分)

  (3)请你提出一个数学问题?并解答。(3分)

  (六)智力大比拼(5分)

  一桶油连桶重55.1千克,用去一半后连桶重30.1千克,这桶油重多少千克?桶重多少千克?

《小数的意义》教案12

  一、设疑激趣

  师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?

  生:小数,从大屏幕上。

  师:小数的意义就是小数表示什么?那你知道吗?

  生:不知道。

  师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?

  生:遇见过。

  师:在哪遇见过?

  生1:在计算器上计算有余数的除法时出现了小数。

  生2:去超市买东西时会遇见小数。(师跟进说标价是小数)

  生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)

  【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】

  二、探究新知

  1、小数的产生

  师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?

  生:(异口同声地回答)60厘米。

  师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?

  生:一百分之六十。

  师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?

  生:0.60。

  师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?

  生:9.58秒。

  师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。

  出示口算:

  10÷10= 1÷10=

  100÷10= 1÷100=

  1000÷10= 1÷1000=

  【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】

  生: 0,赶紧改成1。

  师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。

  师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?

  生:1里面有多少个十。

  师:还可以用那句话来说?

  生:把1平均分成10份,每份是几?都说是十分之一。

  师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)

  师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。

  【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】

  2、教学小数的意义

  师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?

  0.85 9.58 38.2 0.6 39.4 98.5

  生:0.85 9.58是一类,其余是一类。

  师:能不能说说你的分类理由?

  生:后面是两位、一位。

  师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?

  生:三位小数,四位小数,五位小数……

  师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。

  【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】

  【反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】

  教师出示:把 1米平均分成10份。

  师:把1米平均分成10份,每一份是多长?

  生:10厘米。

  1分米。

  师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?

  生:一百分之一。

  生:十分之一。

  师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?

  师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)

  师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)

  擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。

  师:你发现分数与小数的联系了吗?

  分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。

  师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。

  【设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】

  (2)认识两位小数

  师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?

  生:是一百分之一米。

  师:还可以怎样表示呢?

  生:0.01米,1厘米。(补充板书)

  师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。

  【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】

  交流自己写的:

  师:你写的是多少?

  生1: 7厘米,是7/100米,0.07米。

  师:你能猜一猜两位小数与什么样的分数有关系吗?

  (指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)

  生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。

  引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。

  师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。

  (3)认识三位小数

  出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。

  两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道

  三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。

  四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。

  师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)

  1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )

  【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】

  (4)抽象、概括小数的意义

  师:小数是什么?

  补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。

  师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?

  生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。

  师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?

  生:个、十、百、千、万……

  师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。

  3、小数单位间的进率

  师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)

  师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的'一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。

  【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】

  三、巩固练习

  师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)

  1、下面括号里能填几。

  0.1米里有( )个0.01米,0.01米里面有( )个0.001米。

  得出:相邻两个计数单位之间的进率是10。

  师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。

  【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】

  2、(1)用合适的数表示图中的涂色部分。

  (2)用合适的数表示图中的空白部分。

  3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)

  4、找朋友。

  四、课堂总结

  师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?

  生:每相邻的计数单位之间的进率都是十。

  生:小数就是分数。

  生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。

  五、你知道吗

  了解小数的起源、发展史。

《小数的意义》教案13

  教材位置

  人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。

  教学目的

  1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。

  2、培养学生的迁移、类推能力。

  3、渗透数学“来源于生活,又运用于生活”。

  教具准备

  多媒体课件。

  学具准备

  草稿纸若干

  教学重点

  相同数位对齐

  教学难点

  小数点对齐

  教学方法

  探究式学习法

  学情分析

  学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。

  学生在整数加法的计算法则中已有相当的了解,并对其重要性已有较深的认识。

  整数加法笔算时是先将个位对齐以达到相同数位对齐的目的`,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的要求。

  学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。

  教学过程

  一、复习。

  1、谁的竖式最漂亮,计算更准确。

  4235+5478 3251+438

  7621+37543 4320+317

  小组内完成后,讨论下列问题。

  1列竖式时要注意什么?怎样列竖式更快捷?

  2计算时要注意什么?

  2、整数加法的意义是什么?它的计算法则是什么?

  二、激趣导入。

  1、提问:夏天到了,你最喜欢吃什么水果?

  2、听故事,做数学。

  明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?

  3、抽一生列式板演,全班齐练。

  4、继续听,继续算。

  后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?

  你还会求出他们一共重多少千克吗?

  5、揭示课题:

  小数加法的意义和计算法则

  三、新授。

  1、小数加法的意义。

  同整数加法一样,都是把两个数合并成一个数的运算。

  2、小数加法的计算法则。

  刚才有的同学说会,现在各小组一齐完成竖式计算并讨论以下问题:

  (1)小数与整数比较,有什么特征?

  复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。

  为小数加法的意义和法则的类推作理论铺垫。

  设问起疑,引起学生的兴趣,提高学生的注意力。

  体现数学来源于生活,生活中到处存在数学问题。

  进一步复习巩固单位换算的知识,为引出课题作准备。

  类比推理的运用,训练学生知识迁移能力。

  (2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的

  目的?

  (3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?

  3、指导看书P111。

  4、试练。

  完成P111做一做并回答问题。

  四、延伸拓展。

  1、你会用两种方法计算吗?

  1元8角7分+3角2分

  7角6分+3元4角4分

  2、听故事,列算式:

  小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?

  五、巩固训练。

  4235+5748 37251+438

  4.235+5.748 3.7251+4.38

  42.35+5.748 37.251+4.38

  4.235+57.48 372.51+4.38

  六、板书设计。

  小数加法的意义和计算法则

  3 7 3 5克 3. 7 3 5千克

  + 4 0 7 5克 + 4. 0 7 5千克

  7 8 1 07. 8 1 0千克

  7810克=7.81千克 3.735+4.075=7.81(千克)

  在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。

  初步学会对加法法则的运用。

  加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。

  训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。

  加深对计算法则的理解,能运用法则准确计算。

《小数的意义》教案14

  教学目标

  1、知识与技能目标:通过观察、比较、分析和归纳,初步了解小数的含义,会读、会写一位小数,知道小数各部分的名称,知道自然数和整数。

  2、过程与方法目标:在理解小数的过程中,培养学生观察、比较、分析和概括的能力。

  3、情感态度与价值观目标:让学生感受数与现实生活的联系。让学生体会,生活中处处有数学,从而激发他们热爱数学的情感。

  教学重点:

  1、能识别小数,正确读写小数

  2 、知道十分之几用一位小数表示,百分之几用两位小数表示。

  教学难点:

  知道以元为单位,以米为单位的小数的实际含义

  教学过程:

  一、创设情境,诱发兴趣

  同学们,你们去过超市购物吗?(去过)。大家看看这些物品的标价,

  (多媒体展示)

  像48、25、0、6、1、5、这样的数你们见过吗?(见过)。它们有个什么特点呢?(数中间都有一个小圆点)。像这样的数我们把它叫做小数。今天我们就一起来认识小数。(板书:认识小数)

  师:同学们观察一下,这些小数与我们学过的整数有什么不一样?

  生:都有个小圆点。

  师:真聪明,这个小圆点叫小数点,来,一起说说它的名字。(生齐读)你们别看小数点它小小的,圆圆的,它的作用可大了,它把小数点分成了两部分。

  师:小数点的左边是整数部分,右边是小数部分,小数点就写在整数部分个位的右下角的位置。

  二、联系实际,探究新知

  1、试读小数师:你们见过小数,那你们会读吗?(同桌试读)

  7。56 11。11 129。29

  9。05 500。50 1005。007

  2、总结小数的读法

  先让学生自己试试,再由老师总结读小数的方法。读小数的时候,整数部分按照整数部分读法来读,小数点读作点,小数部分通常要顺次读出每一个数位上的数字。(小数的读法学生可能读得不准确,学生在试读的过程中,老师了解情况,反馈时及时加以纠正,最后小结,给学生以准确的读法)

  3、写小数

  师:我们已经会读这些小数了,那这些小数是怎么写的呢?让我们动手来试一试。

  板书:六点七八、零点四九、一百五十点六零

  4、以“元”为单位的小数的现实意义建构

  师:同学已经会读写小数了,那么谁知道,这些以“元”为单位的'小数分别表示多少钱?

  师放课件,学生回答。

  师:你是怎么知道的?

  (设计意图:这里不要求学生尽全尽美地回答,只要学生能提到点自上,就说明他对于小数价格的实际含义有所了解,但也要注意学生表达的逻辑性,培养准确完整的表述能力。)

  小结:这些以元为单位的小数,小数点的左边表示几元,小数点右边第一位表示几角,小数点右边第二位表示几分。

  5、同学们现在翻开书本第88页,把表填一填,填完后,师指名学生想报一报哪种商品的价格。

  6、练习价格之间的转换:

  (5。36)元=()元()角()分(109。06)元=()元()角()分

  (10)元(8)角(2)分=()元(79)元(9)角(9)分=()元

  7.下面我们来看一下这几个同学在干什么?(生答:量身高)

  二、王东身高1米30厘米,只用米作单位怎么表示?我们现在就来探讨一下这个问题。

  你们知道一米有多长吗?用手比画一下,一分米呢?

  1.感知“十分之几”可以用一位小数来表示

  师:这是一张1米长的尺子,把1米平均分成10份,每份是多少分米?每份是1米的几分之几?

  师:1分米是1米的几分之几,也就是几分之几米?(请学生回答)

  师:对了,1分米是1米的,也就是米。米写成小数是0。1米。

  板书:1分米=米=0。1米

  师:这一段是3分米,那3分米等于几分之几米,写成小数是多少呢?

  3分米=米=0。3米

  学生练习分米和米的转换。(口述)

  2、感知“百分之几”可以用两位小数来表示

  师:同学们,1厘米有多长呢,笔画一下,面对同样的事物,我们只要换个角度,就会有新的发现。

  多媒体展示:标有1—100的米尺

  师:现在把1米平均分成了多少份?每份的长度是多少?(1厘米)

  师:1厘米用分数表示是几分之几米?()用小数表示是多少米?(0。01米)

  多媒体展示:1厘米=米=0。01米

  师:3厘米用分数表示是多少米?(米)用小数表示呢?(0。03米)

  多媒体展示:3厘米=米=0。03米

  师:我们出个有点难度的,那18厘米写成小数是多少米呢?(0。18米)

  板书:18厘米=0。18米

  学生练习米和厘米的转化。(口述)

  3、学生交流,探索规律。

  像0、1、0、3中的小数部分只有一个数字(小数点后面含有一位数),这样的小数是一位小数。

  像0、03、0、18小数点后面含有两个数字,这样的小数是两位小数。

  想一想:什么样的分数能用一位小数来表示?什么样的分数能用两位小数来表示?(同桌讨论)

  回答前问。

  王东身高1米30厘米,写成小数是()米。

  全班交流,写成1。30米和1。3米都是对的,(因为30厘米也就是3分米)

  完成89页做一做。

  三、实践应用,巩固提高

  1、判断下列说法是否正确,并说明理由。

  ①76、42读作七十六点()

  ②7厘米用小数表示为0。7米()

  ③5角用小数表示为0。5()

  2、填单位名称。

  8.47元=8()4()7()2.39米=2()3()9()

  20.06元=20()0()6()0.84米=0()8()4()

  2、把日记里的数据改成用小数表示

  叮铃铃!我要迟到了!我赶紧从2米2分米长的床上爬起来,用2分米长的牙刷刷完牙,迅速洗把脸。到校门口商店买了一个6角钱的鸡蛋和1元5角的面包后,飞奔到教室。

  4、仔细看图,说说哪个图中的涂色部分可以用0。3表示,为什么?

  (四)、知识拓展

  1、除了在价格多少,长度多少上,我们可以用到小数,你们还是什么哪里见过小数?(生答)播放多媒体小数的用述。

  你们知道在什么地方不能用小数吗?

  表示人的数量,植物、动物,物品等的数量时不能用小数。

  2、我国古代用小棒表示数,为了表示小数,就把小数点后面的数放低一格。

  在西方,小数出现很晚,最早使用小圆点作为小数点的是德国数学家克拉维斯。

  现在,有一部分国家用小圆点“ 。”表示小数点,还有一部分国家用逗号“,”表示小数点。

  总结:

  1、师:今天我们认识了小数,你有什么收获?

  师:其实,关于小数还有很多奥秘等着我们去发现、去探索,让我们在生活中多观察,挖掘更多关于小数的奥秘吧!

  板书设计

  认识小数

  48、25、 0、6、 1、5这样的数叫做小数。

  48 、 25

  整数部分o(小数点)小数部分

《小数的意义》教案15

  教学内容

  小数的意义

  教学目标

  1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。

  2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

  3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。

  重点难点

  重点:体会十进制分数与小数的关系,初步理解小数的意义。

  难点:能够正确进行十进制分数与小数的互化。

  教具准备

  课件、正方形纸2张。

  教学过程

  一、情境导入。

  1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?

  生:好。

  2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)

  铅笔:0.1元一支圆珠笔:1.11元一支

  猪肉:9.5元一斤黄瓜:5.96元一千克

  教师:上面这些物品的价格有什么特点?

  学生:都不是整元数。(都是小数。)

  教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?

  学生依次读出:零点一、一点一一、九点五、五点九六。

  师:大家知道这些小数是几位小数吗?

  生:......

  2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  生:身高体重跳高跳远

  小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。

  板书:小数的意义

  二、自主探究。

  1.一位小数的意义

  a.那么多的小数,我们今天就从0.1开始入手研究。

  b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?

  学习单元角米分米网格图

  c.生反馈0.1表示什么意思。

  d.思考:我们选用的图都不一样,为什么都可以表示0.1?

  你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。

  生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。

  生:......

  2.两位小数的意义

  师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?

  a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?

  学习单元分米厘米网格图

  b.生反馈0.01表示什么意思。

  c.思考:你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。

  生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。

  生:......

  3.三位小数的意义

  我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的`59份是();也可以表示为()

  小数我们写的完吗?其实呀,小数的位数越多就分的越细。

  大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?

  三、巩固练习

  教师:0.8可以表示成分数吗?可以表示成小数吗?

  学生:分别是和0.7。

  教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)

  同学们在小组内进行游戏交流,教师巡视指导。

  四、探究结果报告。

  教师:通过刚才游戏,你们发现了什么?(出示课件)

  师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)

  2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)

  3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)

  四、教师小结。

  小数中,每相邻两个计数单位间的进率都是10。

  五、课外拓展。

  分享最美数字0.618