椭圆的性质教案

时间:2022-08-11 15:26:20 教案 我要投稿
  • 相关推荐

椭圆的性质教案

  作为一名专为他人授业解惑的人民教师,就不得不需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。写教案需要注意哪些格式呢?以下是小编整理的椭圆的性质教案,希望对大家有所帮助。

椭圆的性质教案

椭圆的性质教案1

  教学内容解析

  “椭圆的简单几何性质”是人教A版《普通高中课程标准实验教科书·数学》(选修2—1)中的第二章第二节第一课时的内容。解析几何是高中数学重要的分支,是在直角坐标系的基础上,利用代数方法解决几何问题的一门学科。

  本课是在学生学习了曲线与方程、椭圆的定义和标准方程的基础上,根据方程研究椭圆的几何性质。椭圆是生活中常见的曲线,研究它的几何性质,对于后续学习圆锥曲线有重要的指导作用,也为研究双曲线和抛物线奠定了基础。解析几何的意义主要表现在数形结合的思想上。研究椭圆几何性质的过程中,几何直观观察与代数严格推导互相结合,处处是形与数之间的对照//翻译和互相转换,这也正是辩证法的反映。

  方程研究曲线性质,即用代数方法解决几何问题,将对复杂的几何关系的研究转化为对曲线方程特点的分析,代数方法可以程序化地进行运算,代数法研究曲线的性质有较强的规律性, 这也正是创立解析几何的最直接目的。

  教学重点:

  椭圆的简单几何性质;用方程研究椭圆上点的横纵坐标范围及对称性。

  教学目标设置

  (1)学生通过先对给定具体椭圆方程研究,然后对一般椭圆标准方程的共同探究,使其对给定标准方程的椭圆,能说出其范围、对称性//顶点坐标和离心率等性质;

  (2)通过方程和图形的转化与认识,感受椭圆性质的几何意义,能够清晰解释椭圆标准方程中a,b,c,e的几何意义及其相互关系;

  (3)通过解析法研究对椭圆性质的运用,使学生感受用代数方法研究几何问题的思想,能初步运用方程研究相应曲线的简单几何性质。

  学生学情分析

  学生已有认知基础:学生学习了曲线与方程,已熟悉和掌握椭圆定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力;学生用函数图像研究过相应函数的性质,有用方程求直线和圆的特殊点的经历。

  达成目标所需认知基础:解析法的数形结合思想和解析法的步骤;利用方程形式特点,推导相应曲线的性质。

  教学难点及突破策略

  1.本节课的教学难点

  (1)用方程研究椭圆的范围和对称性;

  (2)离心率的引入。

  2.突破策略

  (1)用方程研究椭圆的范围时,教师引导学生注意观察方程形式特点,学生独立思考与小组合作相结合;

  (2)研究对称性时,教师引导学生注意观察方程形式特点,并回归图形对称的定义;

  (3)离心率引入时,设置明确而开放的问题,引发学生思考,结合几何画板动态演示。

  教学策略分析

  1.为了充分调动学生学习数学的积极性,促进学生主动思考,采用问题串引导探究式法,活动和探究相结合,以问题作先行者,诱发学生积极思考;

  2.利用现代教育手段,关注教学内容与现代教育手段的合时及合理整合。学生实物投影展示和板演相结合,利用几何画板软件感受动态过程,提高课堂效益;

  3.在研究范围和离心率时,学生自主探究与合作讨论相结合突破重、难点。

  教学过程

  1.回顾引入

  (1)知识回顾。

  【设计意图】

  (1)让学生在作曲线的时候,通过动手能发现椭圆上点的坐标取值有范围限制,即椭圆的范围;发现椭圆具有对称性,从而为引出对称性作铺垫;发现特殊点(与对称轴的交点),即椭圆的顶点。

  (2)学生联系到函数描点法作图时,认识到函数和方程的区别与联系,有利于学生更好地理解数学知识间的关系,但此处不作为教学重点。

  该椭圆关于x轴和y轴轴对称,是不是所有椭圆都关于x轴和y轴轴对称?所有椭圆是不是都有两条对称轴?同样的,是不是所有的椭圆都像该椭圆一样都关于原点中心对称呢?是不是所有的椭圆都有一个对称中心呢?

  以上问题均有学生作答。最终总结出椭圆的对称中心叫做椭圆的中心。

  【设计意图】用代数法判断对称性具有一定难度,教师适当引导,突出“任意取一点”。学以致用能让学生体会到利用方程判断曲线对称性的好处。研究该椭圆对称性时,指出一般椭圆的对称性,体现特殊与一般的区别。

  探究3

  师:研究曲线上某些特殊点,可以确定曲线的位置。要确定曲线在坐标系中的

  位置,这常常需要求出其与x轴和y轴的交点坐标。

  问题1:该椭圆与x轴和y轴的.交点坐标分别是什么?

  指出长轴长,短轴长和长半轴长,短半轴长;x轴和y轴为该椭圆的对称轴,椭圆与坐标轴的4个交点为椭圆的顶点。

  问题2:椭圆的顶点如何定义?

  预案:学生可能会回答椭圆与x轴和y轴的交点称为椭圆的顶点。

  【设计意图】让学生理解研究特殊点的意义;明确特殊与一般的区别

  收集有关笛卡儿与解析几何,费马与解析几何的资料,结合本节课学习,

  写一篇小论文。

  【设计意图】理清知识结构,关注探究过程中的活动体验;加强课堂中数学思想和数学文化的渗透。

  5.分层作业

  必做:教材第48页练习2,3,4,5。

  选做:教材第49页习题2.2,A组:9。

  【设计意图】必做题为椭圆几何性质的应用;选做题需用方程研究椭圆性质。

  教学反思

  本课是在学生学习了曲线与方程、椭圆的定义和标准方程的基础上,根据方程研究椭圆的几何性质。椭圆是生活中常见的曲线,研究它的几何性质,对于后续学习圆锥曲线有重要的指导作用,也为研究双曲线和抛物线奠定了基础。

  1.创设合理问题情境

  指出长轴长,短轴长和长半轴长,短半轴长;x轴和y轴为该椭圆的对称轴,椭圆与坐标轴的4个交点为椭圆的顶点。

  问题2:椭圆的顶点如何定义?

  预案:学生可能会回答椭圆与x轴和y轴的交点称为椭圆的顶点。

  在离心率的引入中,笔者之前的问题是椭圆的扁平程度不一,用什么量可以刻作椭圆的扁平程度?现在问题是用a,b,c中的哪两个量的比值可以刻作椭圆的扁平程度?问题更加明确和开放,同时也更有价值。

  在以问题串引领的四次探究中,学生独立思考与小组合作相结合,通过多种方法探求椭圆的范围,使学生既经历了用方程研究曲线性质的过程,又理解了数学知识间的密切联系;通过方程判断曲线对称性使学生体会到解析法的好处;离心率的引入既开放又明确,使学生理解得更加自然透彻。

  3.及时反馈增进知识理解

  例题教学是数学课堂中重要的环节,是把知识,技能和思想方法联系起来的一条纽带。笔者注重学生对习题的规范解答,鼓励学生从多个角度发现和解决问题,同时也注意引导学生关注不同方法的区别与联系;在课堂总结环节中,不但要引导学生理清知识结构,关注探究过程中的活动体验,更要加强在课堂中对数学思想和文化的渗透。

  4.多媒体合理应用

  在探究过程中,笔者用幻灯片及时地展示出图形和问题;学生的探究结果用投影仪清晰直接地展示,提高了课堂效率;离心率引入时,用几何画板软件动态演示,学生理解得更形象生动。

椭圆的性质教案2

  【学情分析】:

  学生对于解析几何部分“利用方程来解决曲线公共点的问题”有一定的认识,对椭圆的性质比较熟悉的情况下,进一步提高学生的运算水平。

  【三维目标】:

  1、知识与技能:

  ①进一步掌握“利用方程组求解来解决曲线公共点”的方法、步骤。

  ②理解求公共点的过程中△对于公共点的个数的影响。

  ③进一步提高学生的运算能力,培养学生的总结能力。

  2、过程与方法:

  通过学生研究直线与椭圆的交点问题,掌握“数形结合”的方法。

  3、情感态度与价值观:

  通过“数形结合法”的学习,培养学生辨证看待问题。

  【教学重点】:

  知识与技能③

  【教学难点】:

  知识与技能①②

  【课前准备】:

  课件

  【教学过程设计】:

  教学环节

  教学活动

  设计意图

  一、复习、引入

  1、在平面直角坐标系中,求出直线与的交点坐标。(3,2)

  2、引入。在平面直角坐标系中,两条曲线的公共点问题,可以转化为解方程组问题。今天,我们就重点学习直线与椭圆的公共点问题。

  1、通过练习由学生回味解析几何中解决问题的方法。为引入做铺垫。

  二、例题、练习

  1、请画出一个椭圆和一条直线,你能否讲出直线与椭圆有哪几种位置关系?(没有公共点——相离;有且只有一个公共点——相切;有两个公共点——相交)

  例1、已知椭圆

  (1)判断直线与椭圆是否有公共点,若有公共点,请求出公共点的坐标。

  (2)判断与椭圆是否有公共点,若有公共点,请求出公共点的坐标。

  (3)判断与椭圆是否有公共点,若有公共点,请求出公共点的坐标。

  分析:联立椭圆与直线的方程,组成方程组,若方程组有解,则有公共点,方程组的解就是公共点的坐标。注意体会在解方程组过程中,解的个数怎样判断?

  1、通过图形,先让学生对直线与椭圆的'位置关系有一个直观上的认识。

  2、通过例题的三种情况,使学生在求公共点的坐标过程里,体会求解过程的相同之处、不同之处。

  3、尽可能地让学生自己发现在求解过程当中△的用法。

  三、小节

  本节课主要学习了直线与椭圆的三种位置关系:

  1、相交

  2、相切

  3、相离

  解析几何中,求直线与椭圆的公共点问题,可以转化为求解方程组的问题。若只是判断有没有公共点,有多少个公共点,可以不求出公共点的坐标,通过△来判断。

  一般情况下,△>0,有两个公共点;

  △=0,有且只有一个公共点;

  △<0,没有公共点;

  尽可能地引导学生,由学生总结出规律来。

  四、作业

  书本P42 8

  五、补充训练

  1求直线与椭圆的焦点坐标。(答略)

  2、经过椭圆+=1的右焦点做倾斜角为135°的直线,与椭圆相交于A,B两点,则=

  3、直线l过点M(1,1),与椭圆+=1相交于A、B两点,若AB的中点为M,试求直线l的方程.

  ()

  4、斜率为1的直线l与椭圆+y2=1相交于A、B两点,则|AB|的最大值为( B )

  A . 2B.

  C. D.

  5、已知(4, 2)是直线l被椭圆=1所截得的线段的中点,则l的方程是_____

  6、,为椭圆的两个焦点,过的直线交椭圆于两点P、Q,且,求椭圆的离心率。

  ()

  提高学生解决综合题目的能力。

椭圆的性质教案3

  2.1.2椭圆的简单几何性质

  目标:

  (1)通过对椭圆标准方程的讨论,使学生掌握椭圆的几何性质,并正确地画出它的图形;领会每一个几何性质的内涵,并学会运用它们解决一些简单问题。

  (2)培养学生观察、分析、抽象、概括的逻辑思维能力;运用数形结合思想解决实际问题的能力。

  重点:椭圆的简单几何性质及其探究过程。

  教学难点:利用曲线方程研究曲线几何性质的基本方法和离心率是用来刻画椭的扁平程度的给出过程

  教学过程:

  一、复习引入:

  1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹

  2.标准方程: , ( )

  二、新课讲解:

  1.范围:

  由标准方程知,椭圆上点的坐标 满足不等式 ,

  说明椭圆位于直线 , 所围成的矩形里.

  2.对称性:

  在曲线方程里,若以 代替 方程不变,所以若点 在曲线上时,点 也在曲线上,所以曲线关于 轴对称,同理,以 代替 方程不变,则曲线关于 轴对称。若同时以 代替 , 代替 方程也不变,则曲线关于原点对称.

  所以,椭圆关于 轴、 轴和原点对称.这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心.

  3.顶点:

  确定曲线在坐标系中的位置,常需要求出曲线与 轴、 轴的交点坐标.

  在椭圆的标准方程中,令 ,得 ,则 , 是椭圆与 轴的两个交点。同理令 得 ,即 , 是椭圆与 轴的两个交点.

  所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点.

  同时,线段 、 分别叫做椭圆的长轴和短轴,它们的长分别为 和 , 和 分别叫做椭圆的长半轴长和短半轴长.

  由椭圆的对称性知:椭圆的短轴端点到焦点的距离为 ;在 中, , , ,且 ,即 .

  4.离心率:

  椭圆的焦距与长轴的比 叫椭圆的离心率.

  ∵ ,∴ ,且 越接近 , 就越接近 ,从而 就越小,对应的椭圆越扁;反之, 越接近于 , 就越接近于 ,从而 越接近于 ,这时椭圆越接近于圆。

  当且仅当 时, ,两焦点重合,图形变为圆,方程为 .

  5.填写下列表格:

  方程

  图像

  a、b、c

  焦点

  范围

  对称性椭圆关于y轴、x轴和原点都对称

  顶点

  长、短轴长长轴: A1A2 长轴长 短轴:B1B2短轴长

  离心率

  例1.求椭圆 的长轴和短轴的长、离心率、焦点和顶点的坐标.

  解:把已知方程化为标准方程 , , ,

  ∴椭圆长轴和短轴长分别为 和 ,离心率,

  焦点坐标 , ,顶点 , , , .

  例2.过适合下列条件的椭圆的标准方程:

  (1)经过点 、 ;

  (2)长轴长等于 ,离心率等于 .

  解:(1)由题意, , ,又∵长轴在 轴上,

  所以,椭圆的标准方程为 .

  (2)由已知 , ,

  所以,椭圆的标准方程为 或 .

  例3.如图,设 与定点 的距离和它到直线 : 的距离的比是常数 ,求点 的轨迹方程.

  分析:若设点 ,则 ,到直线 : 的距离 ,则容易得点 的轨迹方程.

  作业:P47第4、5题

  空间向量及其运算

  空间向量及其运算

  ●考试目标 主词填空

  1.空间向量基本定理及应用

  空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p存在惟一的有序实数组x、y、z,使p=x a+ y b+ z c.

  2.向量的直角坐标运算:

  设a=(a1,a2,a3), b=(b1,b2,b3),

  A(x1,y1,z1),B(x2,y2,z2).

  则a+b= .

  a-b= .

  ab= .

  若a、b为两非零向量,则a⊥b ab=0 =0.

  ●题型示例 点津归纳

  【例1】已知空间四边形OABC中,∠AOB=∠BOC=

  ∠AOC,且OA=OB=OC.,N分别是OA,BC的中点,G是

  N的中点.

  求证:OG⊥BC.

  【解前点津】 要证OG⊥BC,只须证明 即可.

  而要证 ,必须把 、 用一组已知的空间基向量表示.又已知条为∠AOB=∠BOC=∠AOC,且OA=OB=OC,因此可选 为已知的基向量.

  【规范解答】 连ON由线段中点公式得:

  又 ,

  所以 )

  因为 .

  且 ,∠AOB=∠AOC.

  所以 =0,即OG⊥BC.

  【解后归纳】 本题考查应用平面向量、空间向量和平面几何知识证线线垂直的能力.

  【例2】 在棱长为a的正方体ABCD—A1B1C1D1中,求:异面直线BA1与AC所成的角.

  【解前点津】 利用 ,求出向量 与 的夹角〈 , 〉,再根据异面直线BA1,AC所成角的范围确定异面直线所成角.

  【规范解答】 因为 ,

  所以

  因为AB⊥BC,BB1⊥AB,BB1⊥BC, 例2图

  所以 =0,

  =-a2.

  所以 =-a2.

  又

  所以〈 〉=120°.

  所以异面直线BA1与AC所成的角为60°.

  【解后归纳】 求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量表示.

  【例3】 如图,在正方体ABCD—A1B1C1D1中,E、F分

  别是BB1、DC的中点.

  (1)求AE与D1F所成的角;

  (2)证明AE⊥平面A1D1F.

  【解前点津】 设已知正方体的棱长为1,且 =e1,

  =e2, =e3,以e1,e2,e3为坐标向量,建立空间直角坐标系D—xyz,

  则:(1)A(1,0,0),E(1,1, ),F(0, ,0),D1(0,0,1),

  所以 =(0,1, ), =(0, ,-1).

  所以 =(0,1 ),(0, ,-1)=0.

  所以 ⊥ ,即AE与D1F所成的角为90°.

  (2)又 =(1,0,0)= ,

  且 =(1,0,0)(0,1, )=0.

  所以 AE⊥D1A1,由(1)知AE⊥D1F,且D1A1∩D1F=D1.

  所以AE⊥平面A1D1F.

  【解后归纳】本题考查应用空间向量的坐标运算求异面直线所成的角和证线面垂直的方法.

  【例4】 证明:四面体中连接对棱中点的三条直线交于一点且互相平分(此点称为四面体的重心).

  【规范解答】∵E,G分别为AB,AC的中点,

  ∴EG ,同理HF ,∴EG HF .

  从而四边形EGFH为平行四边形,故其对角线EF,

  GH相交于一点O,且O为它们的中点,连接OP,OQ.

  只要能证明向量 =- 就可以说明P,O,Q三点共线且O

  为PQ的中点,事实上, ,而O为GH的中点, 例4图

  ∴ CD,QH CD,

  ∴= =0.

  ∴ =,∴PQ经过O点,且O为PQ的中点.

  【解后归纳】本例要证明三条直线相交于一点O,我们采用的方法是先证明两条直线相交于一点,然后证明 两向量共线,从而说明P、O、Q三点共线进而说明PQ直线过O点.

  ●对应训练 分阶提升

  一、基础夯实

  1.在下列条中,使与A、B、C一定共面的是( )

  A. B.

  C. D.

  2.与向量a=(12,5)平行的单位向量是( )

  A. B.

  C. D.

  3.若向量{a, b,c}是空间的一个基底,向量m=a+b,n=a-b,那么可以与m、n构成空间另一个基底的向量是( )?

  A.a B.b ? C. c D.2a?

  4. a、b是非零向量,则〈a,b〉的范围是 ( )?

  A.(0, ) B.[0, ]? C.(0,π)? D.[0,π]?

  5.若a与b是垂直的,则ab的值是( )?

  A.大于0 B.等于零? ?C.小于0 D.不能确定

  6.向量a=(1,2,-2),b=(-2,-4,4),则a与b( )

  A.相交 B.垂直? C.平行 ?D.以上都不对

  7. A(1,1,-2)、B(1,1,1),则线段AB的长度是( )?

  ?A.1 ?B.2 ? C.3 ?D.4

  8. m={8,3,a},n={2b,6,5},若m∥n,则a+b的值为( )

  ?A.0 ? B. C. D.8

  9. a={1,5,-2},b={m,2,m+2},若a⊥b,则m的值为( )?

  ?A.0 ?B.6 ?C.-6 ?D.±6

  10. A(2,-4,-1),B(-1,5,1),C(3,-4,1),令a= ,b= ,则a+b对应的点为( )

  ?A.(5,-9,2) B.(-5,9,-2) ?C.(5,9,-2) D.(5,-9,2)

  11. a=(2,-2,-3),b=(2,0,4),则a与b的夹角为( )

  ?A.arc cos ? B. ? C. D.90°

  12.若非零向量a={x1,y1,z1},b={x2,y2,z2},则 是a与b同向或反向的( )

  ?A.充分不必要条 B.必要非充分条?

  ?C.充要条 D.不充分不必要条

  二、思维激活

  13.已知向量a, b, c满足a+b+c=0,a=3, b=1, c=4.则ab+bc+ca= .?

  14.已知a=2 ,b= ,ab=- ,则a、b所夹的角为 .

  15.已知空间三点A、B、C坐标分别为(0,0,2),(2,2,0),(-2,-4,-2),点P在xOy平面上且PA⊥AB,PA⊥AC,则P点坐标为 .

  16.已知a={8,-1,4},b={2,2,1},则以a、b为邻边的平行四边形的面积为 .

  三、能力提高

  17.已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,且与α所成的角是30°,如果AB=a,AC=BD=b,求C、D之间的距离.

  18.长方体ABCD—A1B1C1D1中,E、F分别为AB、B1C1中点,若AB=BC=2,AA1=4,试用向量法求:

  (1) 的夹角的大小.

  (2)直线A1E与FC所夹角的大小.

  19.在正方体ABCD—A1B1C1D1中,E、F分别为BB1、DC的中点,求证:D1F⊥平面ADE.

  20.如图所示,已知 ABCD,O是平面AC外的一点, ,求证:A1,B1,C1,D1四点共面.

  空间向量及其运算习题解答

  1.C 由向量共线定义知.?

  2.C 设此向量为(x,y),∴ ,?∴

  3.C

  4.D 根据两向量所成的角的定义知选D.

  5. B 当a⊥b时,ab=0(cos 〈a, b〉=0)?

  6.C a=(1,2,-2)=- b ∴a∥b.

  7.C AB= =3.?

  8.C ∵m∥n,故(8,3,a)=k(2b,6,5),?∴8=2bk,3=6k,a=5k,?

  ∴k= 故a= ,b=8,∴a+b= +8=

  9.B ∵a⊥b ∴1m+52-2(m+2)=0. ∴m=6.

  10.B =(-1,0,-2), =(-4,9,0),∴a+b=(-5,9,-2).

  11.C cos(ab)= =- .

  12.A?若 ,则a与b同向或反向,反之不成立.

  13.-13 ∵a+b+c=0,∴(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0,?

  ∴ab+bc+ca=- (a2+b2+c2)=- (9+1+16)=-13.

  14. ?cos〈a, b〉= .∴a,b所夹的角为 .

  15.(-8,6,0) 由向量的数量的积求得.

  16.9 S=absin〈a, b〉求得.

  17.如图,由AC⊥α,知AC⊥AB.?

  过D作DD′⊥α,D′为垂足,则∠DBD′=30°,

  〈 〉=120°,

  ∴CD2=

  =b2+a2+b2+2b2cos120°=a2+b2.

  ∴CD=

  点评:本题把线段转化成向量表示,然后利用向量进行运算.

  18.如图,建立空间坐标系,则D(0,0,0)、A(2,0,0),B(2,2,0)

  、C(0,2,0)、A1(2,0,4)、B1(2,2,4)、C1(0,2,4).

  由题设可知E(2,1,0),F(1,2,4).

  (1)令 的夹角为θ,?

  则cosθ= .

  ∴ 的夹角为π-arccos .

  (2)∴直线A1E与FC的夹角为arccos

  19.如图所示,不妨设正方体的棱长为1,且设 =i, =j, =k,

  以i、j、k的坐标向量建立空间直角坐标系D—xyz,

  则 =(-1,0,0), =(0, ,-1),?

   =(-1,0,0)(0, ,-1)=0,∴AD⊥D1F.

  又 =(0,1, ), =(0, ,-1),

  ∴ =(0,1, )(0, ,-1)= - =0.

  ∴AE⊥D1F,又AE∩AD=A, ∴D1F⊥平面ADE.

  点评:利用向量法解决立体几何问题,首先必须建立适当的坐标系.

  20.证明:∵

  =2

  ∴A1,B1,C1,D1四点共面.

  正切函数的定义

  泗县三中教案、学案:正切函数的定义、图像与性质

  年级高一学科数学课题正切函数的定义、图像与性质

  授课时间撰写人

  学习重点掌握正切函数的图像与性质

  学习难点利用数形结合思想分析问题、解决问题的技能

  学 习 目 标

  (1)了解任意角的正切函数概念;

  (2)掌握正切线的画法;

  (3)能熟练掌握正切函数的图像与性质;

  (4)掌握利用数形结合思想分析问题、解决问题的技能。

  教 学 过 程

  一 自 主 学 习

  1.对于正切函数

  (1)定义域: ,

  (2)值域:

  观察:当 从小于 , 时,

  当 从大于 , 时, 。

  (3)周期性:

  (4)奇偶性:

  (5)单调性:

  2.作 , 的.图象

  二 师 生 互动

  例1.比较 与 的大小

  例2.讨论函数 的性质

  例3. 观察正切曲线写出满足下列条件的x的值的范围:tanx>0

  三 巩 固 练 习

  1.与函数 的图象不相交的一条直线是( )

  2.函数 的定义域是

  3.函数 的值域是

  4.函数 的奇偶性是 ,周期是

  5. 求函数 的定义域、值域,指出它的周期性、奇偶性、单调性,并说明它的图象可以由正切曲线如何变换得到。

  四 课 后 反 思

  五 课 后 巩 固 练 习

  1.以下函数中,不是奇函数的是( )

  A.y=sinx+tanx B.y=xtanx-1 C.y= D.y=lg

  2.下列命题中正确的是( )

  A.y=cosx在第二象限是减函数 B.y=tanx在定义域内是增函数

  C.y=|cos(2x+ )|的周期是 D.y=sin|x|是周期为2π的偶函数

  3. 用图象求函数 的定义域。

  4.不通过求值,比较tan135°与tan138°的大小

  演绎推理学案

  第5课时

  2.1.1演绎推理(二)

  学习目标

  正确区分合情推理和演绎推理知道它们的联系和区别,加深对演绎推理的理解和运用。

  学习过程

  一、学前准备

  1.

  二、新课导学

  探究新知(预习教材P30~P33,找出疑惑之处)

  问题1:“三段论”可以用符号语言表示为

  (1)大前提:_____________________;

  (2)小前提:_____________________;

  (3)结 论:_____________________。

  注意:在实际证明过程中,为了叙述简洁,如果大前提是显然,则可以省略。

  2、思考并回答下面问题:

  因为所有边长都相等的凸多边形是正方形,………………………………大前提

  而菱形是所有边长都相等的凸多边形,……………………………………小前提

  所以菱形是正方形。…………………结 论

  (1)上面的推理正确吗?

  (2)推理的结论正确吗?为什么?

  (3)这个问题说明了什么?

  结论:上述推理的形式正确,但大前提是错误的,所以所得的结论是错误的。

  总结:

  应用示例

  例1.证明函数 在 内是增函数。

  解:

  反馈练习

  1. 演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法 ( ).

  A.一般的原理原则; B.特定的命题;

  C.一般的命题; D.定理、公式.

  2.若函数 是奇函数,求证 。

  三、总结提升www.

  本节小结

  1.本节学习了哪些内容?

  答:

  学习评价

  一、自我评价

  你完成本节导学案的情况为( )

  A.很好 B.较好 C. 一般 D.较差

  二、当堂检测

  1.下列表述正确的是( )。

  (1)归纳推理是由部分到整体的推理;

  (2)归纳推理是由一般到一般的推理;

  (3)演绎推理是由一般到特殊的推理;

  (4)类比推理是由特殊到一般的推理;

  (5)类比推理是由特殊到特殊的推理。

  A、(1)(2)(3) B、(2)(3)(4)

  C、(2)(4)(5) D、(1)(3)(5)

  2、下面几种推理过程是演绎推理的是( )。

  A、两条直线平行,同旁内角互补,如果 和 是两条平行线的同旁内角,则 ;

  B、由平面三角形的性质,推测空间四面体的性质;

  C、某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人;

  D、在数列 中, , ,由此归纳出 的通项公式。

  3、课本 练习3。www.

  凸多面体面数(F)顶点数(V)棱数(E)

  三棱柱569

  长方形6812

  五棱柱71015

  三棱锥446

  四棱锥558

  五棱锥6610

  课后作业

  1.设m是实数,求证方程 有两个相异的实数根。

  2. 用三段论证明:三角形内角和等于 180°.

  直线的参数方程学案

  第06时

  2、2、3 直线的参数方程

  学习目标

  1.了解直线参数方程的条及参数的意义;

  2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

  学习过程

  一、学前准备

  复习:

  1、若由 共线,则存在实数 ,使得 ,

  2、设 为 方向上的 ,则 =? ? ;

  3、经过点 ,倾斜角为 的直线的普通方程为 。

  二、新导学

  探究新知(预习教材P35~P39,找出疑惑之处)

  1、选择怎样的参数,才能使直线上任一点的坐标 与点 的坐标 和倾斜角 联系起呢?由于倾斜角可以与方向联系, 与 可以用距离或线段 数量的大小联系,这种“方向”“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程。

  如图,在直线上任取一点 ,则 = ,

  而直线

  的单位方向

  向量

  因为 ,所以存在实数 ,使得 = ,即有 ,因此,经过点

  ,倾斜角为 的直线的参数方程为:

  2.方程中参数的几何意义是什么?

  应用示例

  例1.已知直线 与抛物线 交于A、B两点,求线段AB的长和点 到A ,B两点的距离之积。(教材P36例1)

  解:

  例2.经过点 作直线 ,交椭圆 于 两点,如果点 恰好为线段 的中点,求直线 的方程.(教材P37例2)

  解:

  反馈练习

  1.直线 上两点A ,B对应的参数值为 ,则 =( )

  A、0 B、

  C、4 D、2

  2.设直线 经过点 ,倾斜角为 ,

  (1)求直线 的参数方程;

  (2)求直线 和直线 的交点到点 的距离;

  (3)求直线 和圆 的两个交点到点 的距离的和与积。

  三、总结提升

  本节小结

  1.本节学习了哪些内容?

  答:1.了解直线参数方程的条及参数的意义;

  2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

  学习评价

  一、自我评价

  你完成本节导学案的情况为( )

  A.很好 B.较好 C. 一般 D.较差

  后作业

  1. 已知过点 ,斜率为 的直线和抛物线 相交于 两点,设线段 的中点为 ,求点 的坐标。

  2.经过点 作直线交双曲线 于 两点,如果点 为线段 的中点,求直线 的方程

  3.过抛物线 的焦点作倾斜角为 的弦AB,求弦AB的长及弦的中点到焦点F的距离。

  回归分析的基本思想及其初步应用

  要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.

  重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.

  教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.

  教学过程:

  一、复习准备:

  1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.

  2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.

  二、讲授新课:

  1. 教学总偏差平方和、残差平方和、回归平方和:

  (1)总偏差平方和:所有单个样本值与样本均值差的平方和,即 .

  残差平方和:回归值与样本值差的平方和,即 .

  回归平方和:相应回归值与样本均值差的平方和,即 .

  (2)学习要领:①注意 、 、 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即 ;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数 来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.

  2. 教学例题:

  例2 关于 与 有如下数据:

  2 4 5 6 8

  30 40 605070

  为了对 、 两个变量进行统计分析,现有以下两种线性模型: , ,试比较哪一个模型拟合的效果更好.

  平面直角坐标系与伸缩变换

  高二数学导学案 主备人: 备时间: 组长签字 :

  1.1平面直角坐标系与伸缩变换

  一、三维目标

  1、知识与技能:回顾在平面直角坐标系中刻画点的位置的方法

  2、能力与与方法:体会坐标系的作用

  3、情感态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

  二、学习重点难点

  1、重点:体会直角坐标系的作用

  2、难点:能够建立适当的直角坐标系,解决数学问题

  三、学法指导:自主、合作、探究

  四、知识链接

  问题1:如何刻画一个几何图形的位置?

  问题2:如何研究曲线与方程间的关系?

  五、学习过程

  一.平面直角坐标系的建立

  某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚了4s。已知各观测点到中心的距离是1020m,试确定巨响发生的位置(假定声音传播的速度是340m/s,各观测点均在同一平面上)

  问题1:

  思考1:问题1:用什么方法描述发生的位置?

  思考2:怎样建立直角坐标系才有利于我们解决问题?

  问题2:还可以怎样描述点P的位置?

  B例1.已知△ABC的三边a,b,c满足b2+c2=5a2,BE,CF分别为边AC,CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。

  探究:你能建立不同的直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题?

  小结:选择适当坐标系的一些规则:

  如果图形有对称中心,可以选对称中心为坐标原点

  如果图形有对称轴,可以选对称轴为坐标轴

  使图形上的特殊点尽可能多地在坐标轴上

  二.平面直角坐标系中的伸缩变换

  思考1:怎样由正弦曲线y=sinx得到曲线y=sin2x?

  坐标压缩变换:

  设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原 1/2,得到点P’(x’,y’).坐标对应关系为: 通常把上式叫做平面直角坐标系中的一个压缩变换。

  思考2:怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。

  设P(x,y)是平面直角坐标系中任意一点,保持横坐标x不变,将纵坐标y伸长为原 3倍,得到点P’(x’,y’).坐标对应关系为: 通常把上式叫做平面直角坐标系中的一个伸长变换。

  思考3:怎样由正弦曲线y=sinx得到曲线y=3sin2x? 写出其坐标变换。

  定义:设P(x,y)是平面直角坐标系中任意一点,在变换 的作用下,点P(x,y)对应P’(x’,y’).称 为平面直角坐标系中的伸缩变换。

  六、达标检测

  A1.求下列点经过伸缩变换 后的点的坐标:

  (1) (1,2);

  (2) (-2,-1)

  A2.点 经过伸缩变换 后的点的坐标是(-2,6),则 , ;

  A3.将点(2,3)变成点(3,2)的伸缩变换是( )

  A. B. C. D.

  A4.将直线 变成直线 的伸缩变换是 .

  B5.为了得到函数 的图像,只需将函数 的图像上所有的点( )

  A.向左平移 个单位长度,再把所得各点的横坐标缩短到原的 倍(纵坐标不变)

  B.向右平移 个单位长度,再把所得各点的横坐标缩短到原的 倍(纵坐标不变)

  C.向左平移 个单位长度,再把所得各点的横坐标伸长到原的3倍(纵坐标不变)

  D.向右平移 个单位长度,再把所得各点的横坐标伸长到原的3倍(纵坐标不变)

  B6.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换 后的图形:

  (1) ;

  B8.教材P8 习题1.1 第4,5,6

椭圆的性质教案4

  【学情分析】:

  学生已经掌握了椭圆的概念、标准方程的概念,也能够运用标准方程中的a,b,c的关系解决题目,但还不够熟练。另外对于求轨迹方程、解决直线与椭圆关系的题目,还不能很好地分析、解决。

  【三维目标】:

  1、知识与技能:

  ①进一步强化学生对于椭圆标准方程中a,b,c关系理解,并能运用到解题当中去。

  ②强化求轨迹方程的方法、步骤。

  ③解决直线与椭圆的题目,强化数形结合的运用。

  2、过程与方法:

  通过习题、例题的练讲结合,达到学生熟练解决椭圆有关问题的能力。

  3、情感态度与价值观:

  通过一部分有难度的题目,培养学生克服困难的毅力。

  【教学重点】:

  知识与技能②③

  【教学难点】:

  知识与技能②③

  【课前准备】:

  学案

  【教学过程设计】:

  教学环节

  教学活动

  设计意图

  一、复习、引入

  1、请讲出椭圆的标准方程?并讲出a,b,c之间的关系?

  2、怎样来求动点的轨迹方程,具体的'步骤有哪些?

  3、直线与椭圆的关系有哪些种?

  突出本节要复习的内容

  二、例题、练习

  一、椭圆的标准方程及a,b,c之间的关系

  1、方程表示焦点在y轴上的椭圆,则k的取值范围是

  2、、焦点坐标为(0,-4)、(0,4),a=5的椭圆的标准方程

  为

  3、动点M到两个定点A(0,-)、B(0,)的距离的和是,则动点M的轨迹方程是

  4、经过点A(-2,0),B(—1,—)两点的椭圆的标准方程.

  二、求动点的轨迹方程。(重视步骤)

  1、点M(x,y)与定点F(4,0)的距离和它到直线L:的距离的比是常数,求点M的轨迹方程,并说明它是什么曲线?。()

  2、若P(-3,0)是圆x+y-6x-55=0内一定点,动圆M与

  已知圆相内切且过P点,求动圆圆心M的轨迹方程。()

  三、直线与椭圆的关系。(数形结合,关注过程)

  1、k为何止时,直线和曲线有两个公共点?一个公共点?没有公共点?

  分析:利用联立方程组,再利用△进行判断。

  *2、已知椭圆,直线L:,椭圆上是否存在一点,它到直线L的距离最小?,最小距离是多少?()

  利用三组题目,复习相关的三个知识点。

  第一组:先练后评

  第二组:先引导分析再做,后评;

  第三组:与前一节例题呼应,先经过分析,在引导学生写出过程。

  目的:1、使学生在做题的过程中,复习椭圆的相关知识。

  2、强化学生对后两大类题型步骤的掌握。

  三、小结

  本节课对于前面几节课讲过的知识,进行了一次复习。椭圆是高考中常考的知识点,需要同学们对椭圆相关知识足够的熟悉,过程步骤清楚,做题速度足够的快、准确。

  四、作业

  1、若方程表示的曲线是椭圆,则k的取

  值范围是

  2、与椭圆共焦点,且过点(3,-2)的椭圆

  方程是

  3、若C、D是以F1、F2为焦点的椭圆上的

  两点, CD过点F1,则△F2CD的长 20

  4、已知(4,2)是直线l被椭圆=1所截得的线段的中点,则l的方程是_____

  5、一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方

  程,并说明它是什么曲线?()

  6、直线l过点M(1,1),与椭圆+=1相交于A、B两点,若AB的中点为M,试求直线l的方程. (3x+4y-7=0)

【椭圆的性质教案】相关文章:

函数的性质教案08-31

《认识椭圆形》教案07-12

分数的基本性质教案01-20

《物质的变化和性质》教案09-03

双曲线的几何性质教案11-15

《分数的基本性质》的教案08-26

分数的意义和性质教案10-14

平行线的性质教案03-25

《认识椭圆形》教案15篇10-07