- 相关推荐
分数的意义教案范文汇编8篇
作为一位优秀的人民教师,有必要进行细致的教案准备工作,借助教案可以让教学工作更科学化。那么优秀的教案是什么样的呢?下面是小编为大家收集的分数的意义教案8篇,希望对大家有所帮助。
分数的意义教案 篇1
学习内容:
教材104页例1、例2及做一做。
学习目标:
1、 我能理解同分母分数加、减法的算理,学会同分母分数加、减法的计算方法。
2、 我能正确计算同分母分数加、减法。
3、 我会用所学知识解决实际问题。
学习重点:
理解同分母分数加、减法的算理。
学习难点:
学会同分母分数加、减法的计算方法。
学习准备:
圆纸片
学习过程:
一、检查课前学习,导入新课
二、自主学习,合作探究
1、自学教材104页例1
(1)我得到的数学信息
(2)求爸爸妈妈一共吃了多少张饼?我写的`算式
(3)我是这样想的,得出结果
(4)通过解答,我发现
分数加法的含义与整数加法的含义( )
计算同分母分数加法时,分母( ),分子( )。
2、小组合作学习例2
仔细观察,根据问题,写出算式。
我是这样想的,得出结果:
从计算中,我发现分数减法含义与整数减法含义( ),计算同分母分数减法时,分母( ),分子( )。
3.小组展示,汇报。
4.观察例1和例2,我发现计算同分母分数加减法时,分母( ),分子( )。计算的结果不是最简分数时,应该( )。
5.我能行
完成105页做一做第一题。
分数的意义教案 篇2
【教材分析】
教材首先指出百分数在生产、工作和生活中有广泛的作用,接着通过两个实例引出百分数的概念。教材这里强调的是两个数量的比,并联系比的概念说明,百分数也可以看作是以100为后项的一种比,所以又叫做百分率或百分比。最后教学百分数的写法。
【学情分析】
学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的含义尤为重要。
【教学目标】
1、使学生了解百分数的意义,会正确读写百分数。
2、指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。
【重点难点】
1、百分数的意义及读、写。
2、分数与百分数的意义之间的联系和区别。
【教具准备】
课前查阅百分数的资料。
小黑板或投影。
【教学过程】
活动(一)复习准备
1、在日常生活中,同学们会经常看到或听到这样一些数:(出示投影或小黑板)
(1)在12届亚运会中各国金牌情况如下:中国占40.3%,韩国占18、5%,日本占17.4%,其它国家占23.8%。
(2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。
2、谁知道这些数是什么数?你对百分数已经有了哪些了解?你还想了解什么?
师:在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。这节课就来研究。
活动(二)探究新课
1、某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。六年级学生占全年级的几分之几?五年级三好生占全年级的几分之几?17/100、3/20分别表示两个量之间的什么关系?(倍数关系)
⑴根据学生的回答板书:六年级三好生占全年级的17/100 五年级三好生占全年级的3/20
板书:17/100=17/100
3/20=15/100
⑵提问:根据所得的`数,你能一眼看出哪个年级三好生人数的比例高吗?你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)
⑶讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)
⑷小结:像这样分母不同的分数进行比较时,一般要进行通分,使分母相同。尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。下面我们把这两个数变成分母是100的分数。
⑸思考:17/100和15/100都表示什么?(表示三好学生和总人数之间的倍数关系)
2、练习。(出示课件)
一个工厂从一批产品中抽出500件,经过检验,有490件合格。合格的比率是多少?思考并计算这批产品的合格率是多少?(490/500)改写成分母是100的分数是多少?(98/100)说说98/100表示什么?
3、概括百分数的意义。
⑴师:通过以上的练习说一说17/100、15/100、98/100都表示什么?(表示一个数是另一个数的百分之几)
⑵提问:什么是百分数?百分数表示两个量之间什么关系?
⑶小结:表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做分率或百分比。
板书:百分数的意义和写法。
⑷提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?4、学习百分数的读法和写法。
提问:百分数和分数比,相同点和不同点是什么?百分数应该用什么形式表示呢?
(1)写法:写百分数时,通常不写成分数形式,而采用(%)表示。写百分数时,去掉分数线和分母,在分子后面添上百分号。
(2)读法:读百分数时,只要把百分号看作分母是100,百分号前面的数看作分子,就可以和分数一样读了。
5、百分数与分数的联系和区别。
活动(三)巩固练习
1、第105页“做一做”。
2、第106页第1,2题。
3、(投影)判断:
(1)分母是100的分数叫做百分数。
(2) 27/100千米可以写成27%千米。
(3)百分数的分母一定是100。
(4)五(2)班45人,体育全部达标,达标率100%。
4、填空:
(1)一本书看了40%,表示( )占( )的40%。
如果书是100页,看了( )页;书是 200页,看了( )页。
(2)一条公路,修了25%,还剩 ( )%没修。
(3)火车速度比汽车快25%,火车的速度是汽车的( )%。
5、一个工厂十月份的产值相当于九月份的百分之一百零八,写出这个百分数。十月份的产值比九月份的多了还是少了?
活动(四)课堂总结
这节课我们学习了哪些知识?(百分数的意义、读法和写法。)你知道人们在日常生产和生活中都在什么时候用百分数吗?(在计算优秀率、合格率、体育达标率等方面。)百分数的应用十分广泛,所以希望同学们学好百分数并学会在实际中应用。
【教学反思】
学生了解了百分数的意义,会正确读写百分数。学生能够在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养了学生分析、概括能力。
分数的意义教案 篇3
第一课时
教学内容:分数意义的认识
教学目标:
1、使学生了解分数的产生,单位“1”的含义,理解分数的意义。
2、培养学生的观察能力和抽象概括能力。
教学过程:
一、复习
1、把一块蛋糕平均分成3份,其中的1份用分数()表示
2、把一个圆平均分成4份,其中的一份用分数()表示。
3、把一条线段平均分成8份,其中的1份用分数()表示。
4、用分数表示下面各图中的`阴影部分。(p.67第1题)
5、用下面分数表示图中的阴影部分,对不对?为什么?
二、教学新课
1、一个食物、一个图形、一条线段都可以看作单位“1”。
2、举几个“1”。
3、其实一把铅笔、一群小羊、一盘苹果、一项工程等组成的整体,都可以看作单位“1”。
4、再举几个单位“1”。
5、把4支铅笔看做一个整体,平均分成4份,每份(1支)是这个整体的1/4,3份是整个整体的1/3。那么两份呢,4份呢。
6、把6只小羊看作一个整体,平均分成3份,每份(2)只是这个整体的1/3。2份是这个整体的2/3。
7、把12只苹果看作一个整体,平均分成4份,每份(3只)是这个整体的1/4,2份是这个整个的1/4。
8、一个食物,一个图形,组成一个整体一把铅笔,一群小羊都可以看作单位“1”。
9、判断题:单位“1”只能是一个物体、吗?
10、教学分数的概念:把单位”1“平均分成若干份,表示这样的一份或者几份的数,叫做分数。
理解若干份的意思:1份、2份、3份、4份………..
11、1/2、1/3、1/4、2/5、3/6、5/8
以上这些分数表示把单位“1”平均分成()份,表示这样的()份。
11、教学分母、分子
在分数里,表示把单位“1”平均分成多少份的数叫做分母。
表示这样多少份的数,叫做分子。其中的一份,叫做分数单位。
三、教学例1用直线上的点表示1/5和3/5。
想:直线上从0到1表示单位“1”,把他平均分成5分,这样的一份用1/5表示,这样的3份,可以用3/5表示。
试一试:指出下面直线上A、B、C各点分别表示几分之几?
四、巩固练习:
1、把15个圆平均分成5份,其中的2份用分数()来表示。
2、把12面小红旗平均分成6分,其中的5分用分数()来表示。
3、把12根小棒平均分成3份,每份是():如果平均分成2分,每份是()。
4、说出下面每一个数的分数单,位,并指出每个分数含有多少个分数单位。
1/75/83/104/159/20xx/100
5、4/5是()个1/5。
五、反馈总结。
六、布置作业。
反思:对于单位“1”的教学不够到位,应通过多种例子举例说明。让学生知道单位“1”不仅指一个物体,也可以指一个整体。这是教学的难点。应予以突破。对于分母、分子、分数单位概念的教学不够细腻。应加强。
分数的意义教案 篇4
教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。
学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。
教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。
教学目标:
1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。
2、经历认识分数意义的过程,培养学生的抽象、概括能力。
3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。
教学重点:明确分数和分数单位的意义,理解单位“1”的含义。
教学难点:对单位“1”的理解。
教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。
教学过程:
一、创设情景,温故引新。
1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?
二、教学分数的产生。
2、能根据成语说出下面的分数吗?
一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )
1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?
2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。
3、总结:在测量、分物的`时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。
4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?
三、教学分数的意义。
师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)
出示一个1/4的正方形的阴影部分。
师:阴影部分可以用什么分数表示?它表示什么意思?
2、师:下列图中的阴影部分能用1/4表示吗?为什么?
如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。
(强调一定要平均分)(板书:平均分)
3、动手操作,探索新知。
(1)操作。
师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。
学生动手操作,教师巡视。
(2)交流
师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?
小组交流。
(3)认识单位“1”。
师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?
生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。
师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分
(课件显示:一个物体)
把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)
把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)
师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)
师:(投影出示):我们可以把这3只象看作一个整体吗?
我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?
我们还可以把哪些物体也看成一个整体呢?(学生举例。)
师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。
概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
(4)理解分子分母的意义。
师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)
(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?
①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?
生:1/2
②师:为什么可以用1/2来表示?
③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?
如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?
如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?
如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?
④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?
⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?
师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。
四、教学分数单位。
师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?
显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)
加强练习,深化概念。
练习:
1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。
2、67 的分数单位是( ),有( )个这样的分数单位。
3、说出每个分数的意义。
(1)五(1)班的三好生人数占全班的29 。
(2)一节课的时间是23 小时。
4、课本练习十一第9题。
5、判断(对的打“√”,错的要“×”)。
(1)一堆苹果分成4份,每份占这堆苹果的14 ( )
(2)把5米长的绳子平均分成7段,每段占全长的57 ( )
(3)14个19 是914 ( )
(4)自然数1和单位“1”相同。( )
五、小结。
今天这节课我们学习了?你有哪些收获?
分数的意义教案 篇5
教学目标:
1、使学生认识百分数,知道百分数在生产、生活中的广泛应用。
2、使学生理解百分数的意义,能正确熟练读、写百分数。
3、培养学生的比较、分析、综合能力和应用意识。
教学重、难点:
百分数的意义
教学方法:
引导—————自学
预习提示;
(1)找一找生活中的百分数。
(2)什么是百分数?
(3)羊毛含量36%是什么意思?
(4)怎样求一个数是另一个数的百分之几。
教学过程:
一、创设情境
让学生把事先找到的生活中的百分数带入课堂。
请同学们拿出在生活中找到的实际应用的百分数,并说一说是在哪儿找到的。
学生交流。
在生产、生活和工作中,人们经常要用到百分数,百分数有什么好处?什么叫百分数呢?今天我们一起来研究百分数。
二、引导探究,揭示百分数的特征
(一)出示课本例
1、一条裙子,羊毛的含量为36%,对此进行分析,并完成下表。
一条裙子,羊毛的含量为36%。
这个句子中,单位“1”的量是:
这个百分数是( )和( )比较的结果。
这个百分数表示的意义是:
看到这个句子,你能想到什么?
这个36%的分母100表示什么?分子36又表示什么?
学生在小组内学习,每位学生在小组内汇报学习情况。
学生活动,教师参与。
什么叫做百分数?我们学过分数,分数既可以表示一个数是另一个数的几分之几,也可以表示一个具体的数量。那百分数呢?
学生通过探究得出:百分数是表示一个数是另一个数百分之几的数,百分数表示两个数的一种倍数关系,百分数又叫做百分率或百分比。
(二)小组合作学习,比较百分数与分数的不同。
接下来我们就比较一下百分数和分数,到底有那些不同?
通过合作学习使学生明白:百分数和分数的写法不同,为了区别与分数和便于书写,百分数通常不写成分数形式,而是采用%来表示。
在这个过程中渗透百分数的写法以及读法。并进行随机练习。
通过比较还要使学生明白;
①百分数可以不是最简分数,如:52%、38%,分子和分母不用约分,而分数就不一样了。
②百分数的分子可以是小数,如:3。1%。也可能分子比分母大,如:120%,和分数不同。
(三)学习求一个数是另一个数的百分之几,揭示百分数的意义。
出示例1。学生独立完成在小组内交流。
三、学生反思学习过程
回顾刚才的学习过程,说一说,你有什么收获?
四、多层练习,巩固深化
1、出百分数,并回答问题。
1% 18% 50% 89% 100% 125% 7。5% 0。05% 300%
① 谁是最小的百分数?在这组内还有比它小的吗?
② 谁是的百分数?
③ 请读出跟一半的意思一样的那一个百分数。
④ 300% 是什么意思?
⑤ 在这组百分数中,我们可以看到,百分数的.分子有的是小数,有的是整数,有的大于分母,有的小于分母,这是为什么呢?
2、读出下面的句子,并回答老师提出的问题。
(1) 我国的耕地面积约占世界的7%。
(2) 我国的人口约占世界的22%。
提问:这两句话中的百分数表示谁与谁比?
看到这两句话,你想到什么?
及时对学生进行思想教育。
3、三峡库区分重庆库段和湖北库段。重庆库段的面积占三峡库区面积的85%,湖北库段的面积占三峡库区面积的百分之几?
完成课本练习一的相关习题。
分数的意义教案 篇6
教学过程:
课前三分钟交流
讲故事《大胆的小猴》,并与大家交流,对学生进行自信、勇敢的培养。
设计意图:课前三分钟交流是孩子们展示的舞台,在这短短的三分钟时间里带给自己快乐、自由和成长。这个环节是师生的最爱。学生自信的主持,精彩的展示,内容的丰富,真可谓色、香、味俱全的大餐。学生展示的内容丰富,可以是数学古诗、数学家的故事、数学要闻、数学成语、数学符号的由来等等形式多样。真是万紫千红,各有千秋。
小组交流、探究、合作学习
一、展示课前收集的生活中的百分数。
设计意图:小学生学习的数学应是生活中的数学,是学生"自己的数学"。数学来自于生活,又必须回归于生活。数学只有在生活中才能赋予活力与灵性。数学学习内容远离生活无疑是导致学生对数学没有兴趣的根本原因,它使本该生动活泼的数学学习活动变得死气沉沉。有鉴于此,数学的教与学应该联系生活,注重现实体验,变传统的" 书本中学数学"为"生活中做数学",体现以解决问题为中心的生本教育理念。
二、小组交流百分数的意义。
百分数表示一个数是另一个数的百分之几。是一个量与另一个量的比较。两个量比较才能产生百分数,只有一个数量是不能产生百分数的。百分数表示的是两个数比较的结果,所以也叫百分率或百分比。
设计意图:尊重学生的主体足够自主的空间、足够活动的机会的教学,让学生自探明之,自求得之,倡导合作学习、探究学习的教学,才能有效地增进学生的发展,创建一种开放的、浸润的、积极互动的课堂文化。
三、小组交流百分数的读法和写法。
读百分数时注意要读成百分之几,不能读成一百分之几。写百分数时,通常先写分子,再写百分号,并注意%的两个小圆圈要均匀且不能过大,以免和分子混淆。
在半分钟内写十个百分数,看看写出的百分数占总数的百分之几,并用自己喜欢的一个百分数说一句话。
设计意图:通过小组交流并展示生活中找到的百分数的读法和写法,又加深理解了百分数的意义。
四、小组交流百分数与分数的区别。
(1)意义不同
分数代表一个数值,也可以代表一个分率。而百分数只能代表一个分率。
(2)读法不同
分数读作几分之几,百分数读成百分之几,不能读成一百分之几。
(3)写法不同,百分数在分子后面加上百分号就行了,而不是写成分数的形式。
(4)分母不同
分数的分母可以是任何一个大于0的自然数。而百分数的分母规定是100。
(5)分子不同
分数的.分子必须是自然数。百分数的分子可以是小数,整数,可以大于100,可以小于100。
(6)百分数不可以约分,分数可以约分。
(7)分数单位不同,分数的单位是几分之一,而百分数的单位只能是百分之一
设计意图:百分数源于分数,而又有别于分数。实践证明,学生认识这一点非常困难,这是长期学习的种属概念负迁移所致。学生会误认为分数与百分数是包含关系,分数有的属性,百分数也一定具有。为了跨越这一认识上的误区,我采用了小组探究交流的方式进行学习,使学生区分清楚百分数和分数是不一样的。
五、生活中的应用
1、经典文化中的百分数。
百发百中——100% 百里挑一——1%
2、做游戏。
石头 剪刀 布
规则:两人十次,想一想,你赢了对方几次?赢的次数占总次数的百分之几?
设计意图:学生通过找成语中的百分数和做游戏,已能找出生活中的百分数,并能将百分数应用到平时玩的游戏中。所以此环节承上启下,意在让学生意识到生活离不开数学,数学是有用的,既有利于培养学生的数学意识,又体现“学生活中的数学、学有用的数学”,符合生本教育的理念,在生活中找例子。
生本教育数学课堂练习是一堂数学课的重要组成部分,是进一步深入理解知识、掌握技能技巧、培养积极的情感和态度、促进学生深层次发展的有效途径;所以一节数学课,练习是否有效,将是一节课的点睛之笔。所以课堂练习要设计有挑战性习题,可以通过游戏、猜谜、闯关练习等形式,吸引学生的无意注意,当学生沉迷在问题的情境之中时,他们的无意注意就会转化为有意注意并趋于主导地位,从而达到主动探究的目的。
六、总结
请告诉大家你这节课学习情绪的比率。
愉快占( )%
紧张占( )%
遗憾占( )%
分数的意义教案 篇7
分数、百分数的意义
教学内容:
教材第77~78页分数、百分数的意义和“练一练”,练习十五第1—10题。
教学目标:
使同学进一步认识分数、百分数的意义和相关概念,认识分数与小数的联系、分数与百分数的联系和区别,以和分数与除法之间的联系;进一步培养同学的判断、分析等思维能力。
教学重点:
进一步认识分数、百分数的意义和相关概念,认识分数与小数的联系、分数与百分数的联系和区别,以和分数与除法之间的联系。
教学难点:
正确认识分数和百分数的联系和区别。
教具准备:
小黑板
教学过程:
教学过程
自我加减
一、揭示课题
1.说出下列小数的意义。
O.3
0.13
0.258
O.013
同学口答后,说明一位小数、两位小数、三位小数……分别表示十分之几、百分之几、干分之几……
2.引入课题
我们已经复习了整数和小数的知识,今天开始,我们复习分数和百分数的知识。这节课,我们复习分数和百分数的意义。(板书课题)
通过复习,要进一步掌握分数、百分数的意义和一些相关概念,认识这些概念的联系,并提高分析、判断等思维能力。
二、复习分数的意义和相关概念
1.说出每个分数的意义。
提问:根据上面每个分数的意义,你能说说怎样的数是分数吗?上面每个分数的分数单位是什么,各有几个这样的分数单位?什么叫分数单位?
2.说出下列各题的商。
2÷9
4÷13
÷7
提问:在上面算式里,能用整数表示这些算式的商吗?像上面这样两个数不能整除时,用什么数来表示商?
指名同学口答。
提问:除法与分数有什么关系,用字母怎样表示?
3.同学练习。
(1)“练一练”第l、2题。
同学填在课本上。指名口答,并说说怎样想的。
(2)口答练习十五第1题。
提问:为什么这两个分数不一样?
(3)口答练习十五第2题。
指名同学说出每个分数的意义。
(4)口答练习十五第3题。
指名同学说出每句话的含义。
4、比较每组数里小数与分数表示的意义。
0.3和
0.13和
0.013和
你觉得每组数里小数和分数表示的意义有什么联系?可以看出小数实际上是怎样的分数?
5.复习分数的分类。
(1)提问:我们把分数怎样分类的?
(2)“练一练”第3题。
指名同学口答。
(3)提问:你是根据什么判断一个分数是真分数,还是假分数的?真分数和假分数的值有什么区别?
(4)提问:假分数可以改写成什么形式的数?带分数和整数能改写成假分数吗?
(5)“练一练”第4题。
小黑板出示,指名一人板演,其余同学做在练习本上。
集体订正。
提问:假分数怎样化成带分数或整数?带分数或整数怎样化成假分数?
6.复习最简分数。
(1)提问:怎样的分数是最简分数?谁来举几个最简分数的例子?
(2)在(
)里填上适当的数,使每个分数都是最简分数。
①4米是6米的 。
②9千克是12千克的 。
③5厘米是1O厘米的 。
指名口答后提问:这里的分数表示的是什么意思?(一个数是另一个数的几分之几)
三、复习百分数的意义和相关概念
1、“练一练”第5题。
让同学填(
)里的'数,然后口答。
老师板书:97.5%,提问:97.5%是什么数,它是怎样计算出来的?合格率97.5%具体表示什么意思?
从上面的数里,你能知道怎样的数叫做百分数?请你说出几个百分数。你认为百分数的意义与分数的意义有什么联系,有什么不同?
2.复习“成数”。
(1)提问:“成数”实际上是什么数?在哪里用“成数”来表示?
(2)“练一练”第6题。
同学做在课本上,然后口答。
3.练习十五第4题。
同学做在课本上,然后指名回答。
追问:怎样求一个数是另一个数的百分之几?
四、综合练习
1、练习十五第5题。
让同学填在课本上。
小黑板出示,同学口答,老师板书。
2.做练习十五第6题。
让同学做在练习本上,然后口答。追问:分数单位是的最简真分数的和是多少?
3.练习十五第8题。
先让同学讨论,再填在课本上。指名同学口答,并说明理由。
4.练习十五第l0题。
让同学找规律,在□里填上恰当的数。
同学口答,说说是怎样想的。提问:你知道这样填下去,会越来越接近哪个数?为什么?
五、课堂小结
谁来说说今天复习的这些概念含义?
六、课内作业
练习十五第7、9题
七、板书设计
分数、百分数的意义
a÷b= (b≠ 0)
真分数
分数
假分数
八、我的课后反思:
分数的意义教案 篇8
学习内容:
教材第70、71页例3、例4,及“做一做”。
学习目标:
1.我能认识带分数,知道带分数是一部分假分数的另一种书写形式。
2.我能掌握把假分数化成整数或带分数的方法。
学习重难点:
认识带分数,能把假分数化成整数或带分数。
学习过程:
一、导入新课
二、合作探究、检查独学
1.小组内检查独学部分的题目完成情况,质疑探讨。
2.根据独学部分的.题目自学例3、例4。小组内讨论交流。
(1)什么样的假分数能化成整数?化成整数的依据是什么?
我的想法:________________________________________
(2)比较把假分数化成整数和化成带分数的方法有什么共同点和不同点?
我的想法:________________________________________
3.小组代表展示、汇报
4.总结升华
5.我能行:完成71页“做一做”。