有理数的乘方教案

时间:2023-09-26 12:25:50 秀雯 教案 我要投稿

有理数的乘方教案(通用10篇)

  作为一名优秀的教育工作者,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么优秀的教案是什么样的呢?以下是小编整理的有理数的乘方教案,欢迎阅读,希望大家能够喜欢。

有理数的乘方教案(通用10篇)

  有理数的乘方教案 1

  一、教材分析:

  有理数的乘方是人教版七年级上册数学第一章的内容,在有了小学平方、立方基础之上,让学生通过探究学会乘方的意义和概念,熟练掌握有理数乘方的运算。有理数的乘方是一种特殊(积中的每一个因数都相同)的乘法。乘方贯穿初中数学的始终,对整个初中学习十分重要。通过这一节课的学习,培养学生的探索精神和观察、分析、归纳能力,并向学生渗透细心的重要性,使学生充分体会数学与现实生活的紧密联系,渗透数学的简洁美、神奇美。

  二、教学目标:

  (一)知识技能目标:

  1、正确理解乘方、幂、指数、底数等概念。

  2、感悟探索乘方的意义,会书写乘方算式,确定乘方的结果的符号。

  3、能快速、准确地进行有理数的乘方运算。

  (二)过程与方法:

  1、通过对乘方意义的探索,培养学生观察、比较、分析、归纳及概括能力。

  2、通过乘方运算的运用,培养学生的逻辑思维能力。

  (三)情感目标

  1、通过创设问题情境,激发学生学习数学的兴趣。通过乘方的故事,向学生展示数学与生活的紧密联系,数学源于生活,高于生活。

  2、向学生渗透探索、归纳的数学思想及数学的简洁美。

  3、培养学生协作精神,体验数学的探索与创造的快乐。

  三、教学重点

  正确理解乘方的意义,掌握乘方的运算方法。

  四、教学难点

  有理数乘方运算中符号的确定。

  五、教学方法:

  (1)创设问题情境,从生活实践入手,体现生活中的数学。

  (2)探索归纳,学生总结结论。

  (3)精讲多练,提高学生运用知识的能力。

  (4)运用闯关比赛形式,激发学生的学习兴趣,及时反馈提高。

  六、设计思想:

  通过人体细胞分裂创设问题情境,激发学生的学习兴趣,对新知识的探究,以生活中的实例拉面和珠穆朗玛问题作为探究内容,使学生感悟生活中的数学,体现数学与现实生活的密切关系,自然地将学生的思维带入到整个教学过程中来。学生通过观察、探究、思考及与同学们交流合作,充分调动他们的学习积极性,参与到课堂教学中,进一步提高学生的逻辑推理能力与抽象概括能力。对新知的运用采用精讲多练的形式,把课堂交给学生,使他们在练习中发现问题,解决问题,从而实现知识掌握与运用形成能力。为了及时反馈信息,设计了课堂检测以闯关比赛形式,激发学生的参与意识,提高学生应用知识的能力,最后结合作业与数学故事《阿凡提》,向学生渗透数学文化,展示数学的神奇美。

  七、教学过程:

  (一)回顾思考

  回顾有理数的乘法法则,思考边长为5的正方形的面积是,棱长为5的立方体的体积是。

  设计题图:从学生已有基础入手,循序渐进,为探究新知做好铺垫。

  (二)情境引入

  1个细胞30分钟后分裂成2个,经过5小时,这种细胞由1个能分裂成多少个?

  要想解决此题,通过今天的学习就能做到,下面我们一起来学习有理数的乘方。

  板书课题:有理数的乘方

  设计意图:

  (1)以人体自身结构特点创设问题情境,设置疑问,激发学生的学习兴趣。

  (2)让学生产生惊奇,进而激发他们的求知欲,迫切欲揭开乘方运算的神秘面纱。

  (三)观察发现:启发引导,探索规律,得出概念。

  形式记作读作

  a a

  a×a

  a×a×a

  a×a×a×a

  a×a×…×a

  观察其中都含有哪些运算,这些式子的因数有什么特点?

  乘方的定义及有关概念:(新知归纳)

  1、乘方的定义:求n个相同因数的乘积的运算叫做乘方,乘方的结果叫做幂。

  2、乘方的表示法:

  读作:a的n次方或a的n次幂,也读作a的平方,也读作a的立方。

  (四)学以致用

  例1(1)(-3)×(-3)×(-3)×(-3)×(-3)可以记为____

  (2)在(-3)2中,底数是____,指数是____。

  (3)在-32中,底数是____,指数是____。

  议一议:-32与(-3)2有什么不同?结果相等吗?然后要求学生指出它们的区别。

  例2:计算

  分析:①先引导学生分别指出它们的底数和指数;(找)

  ②按照乘方的定义将它化为熟悉的乘法运算;(化)

  ③运用乘法法则运算。(算)

  老师引导

  小题,归纳步骤;学生尝试自己动手求解其他几个,最后师生共同评析完善。

  注意:

  (1)负数的乘方,在书写时一定要把整个负数(连同符号),用小括号括起来。这也是辨认底数的方法

  (2)分数的乘方,在书写的时一定要把整个分数用小括号括起来。

  (五)探索交流

  例3计算:

  (1)102,103,104,105,;

  (2)(-10)2,(-10)3,(-10)4(-10)5 。

  观察例3的结果,你能发现什么规律小组讨论

  1、正数的任何次幂都是正数;

  负数的奇次幂是负数,

  负数的偶次幂是正数

  2、 10n等于1后面加n个0

  (六)小结练习

  乘方是求n个相同因数a的积的运算

  运算加减乘除乘方

  结果和差积商幂

  注意:

  (1)乘方与加、减、乘、除一样是一种运算

  (2)幂是乘方运算的结果,如和、差一样

  测评练习:

  1、写出下列各幂的底数与指数:

  (1)在74中,底数是___,指数____;

  (2)在a4中,底数是___,指数是____;

  (3)在(—6)5中,底数是___,指数是______;

  (4)在—25中,底数是____,指数是____;

  根据上面练习的表你觉得幂的符号与底数指数有关吗?你发现有什么变化规律吗?

  2、如果:x2=64,x是几?x3=64,x是几?

  3、(-1)n当n偶数时,结果为___

  当n奇数时,结果为___

  (—1)20xx-(-1)20xx=___

  注意:①对于乘方运算,先要学生确定幂的符号,再运算。

  ②对于1和—1的正整数次幂的运用加以强调。

  设计意图:

  (1)解题过程规范化,面向全体,照顾中下学生。

  (2)加深巩固概念,理解乘方的意义,熟练地进行乘方运算体会成功的感觉。

  考考你:一个数的平方为144,这个数是________

  一个数的平方是0,这个数是________

  一个数的平方为它本身,这个数是_______

  一个数的立方为它本身,这个数是________

  设计意图:

  (1)让学生通过比较加深理解,掌握乘方的意义。

  (2)让学生通过练习讨论并争执后理解乘方的各个概念,培养学生思维的严谨性。

  (3)通过闯关及时反馈,培养学生的竞争意识。

  (七)生活与数学

  1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条。

  这样捏合到第_______次后可拉出256根面条。

  2、珠穆朗玛峰是世界的最高峰,它的海拔高度是8848米。把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。这是真的吗?

  设计意图:选取生活实例,展示数学与现实生活的紧密联系。

  (八)乘方的故事

  1、巴衣老爷说:你能每天给我10元钱,一共给我20年吗?阿凡提说:尊敬的巴衣老爷,如果你能第一天给我1毛钱,第二天给我2毛钱,第三天给我4毛钱,以此类推,一直给20天,那我就答应你的要求!巴衣老爷眼珠子一转说:那好吧!亲爱的同学们:你知道阿凡提和巴衣老爷谁得到的`钱多?

  2、有一个长工到一个财主家去做工,他和财主商定:“第一天给一分钱,第二天给两分钱,以后每天是前一天的平方。”财主答应了,到月底(30天)后,你猜一猜:财主会给长工多少钱?

  设计意图:及时巩固所学内容,通过数学故事,渗透数学文化,展示数学的神奇美。

  八、教学评价与反思

  本节课的教学设计是以人教版教材和新课程标准为依据,结合农村地区学生的实际情况,总体上采取教师创设问题学生合作交流与自主探索师生概括明晰的教学思路,整个教学过程环环相扣,层层深入,以问题为线索,启发学生思考和探索,这样的设计符合农村地区学生的认知规律,使学生易于接受。

  教学开始,提出问题,借助多媒体手段,引发学生积极思考,并归结出答案,由答案的表现形式再给学生提出问题,激发学生的求知欲望,在教师的启发诱导下自然过度到新知的学习,接着层层设问,引出乘方以及与乘方有关的概念,采用归纳类比的方法把新旧知识联系起来,既有利于复习巩固旧知识,又有利于新知的理解和掌握。

  成功之处:

  成功之一:用学生刚学过的生物学中人体细胞分裂创设了一个有趣的问题情境。一下就贴近了学生的心灵,激起了同学们强烈的的求知欲望。

  成功之二:以拉面的故事进一步让学生感受乘方意义的实例,在计算过程中培养了学生的合作意识、观察能力与分析数据能力,同时体会数学来源于生活,增强学生学好数学的决心。

  成功之三:学以致用环节。设计了一例一问题,一练习题组的形式,由简单基础题逐渐增难,循序渐进强化乘方意义的理解,书写、计算。成功实现的教学的基本目标。

  成功之四:恰当使用了多媒体教学设备。在课件制作上考虑到初一学生的年龄特点,有效地吸引学生的注意力。多媒体设备的使用不仅大大地提高了课堂容量,而且还可以展示学生的作品(课堂练习的解答),及时纠正学生书面表达的错误,规范解题格式,改掉小学生重结果轻过程,解题格式不规范,解题步骤混乱等不良现象。同时也营造了宽松、和谐的课堂氛围、让学生充分发表自己的看法,及时给学生鼓励与肯定,消除学生由小学升入初中因环境变化而引起的心里障碍,激活学生的思维,保持学生参与课堂学习的积极性。

  成功之五:随堂练习,巩固新知的环节循序渐进、层次分明。第一步:基础例题帮助学生正确寻找底数和指数,第二步提高练习,议一议,提高学生的能力,更好地理解乘方的意义,为下一节有理数的混合运算做好准备。第三步:测评练习极好的活跃了课堂氛围,增强的学生的竞争意识。

  成功之六:参透了传统的数学文化,将古今知识奇闻妙趣有机结合在一起,拓展了学生的视野,开阔了学生的思维,让学生领略了古今中外数学的神奇、简洁。

  不足之处

  不足之一:“探究新知:启发引导,探索规律,得出概念”环节中,没有安排学生动手亲自操作,对学生感受能力会不太深刻。

  不足之二:对学生情况不够熟悉。因为本节课是初一学生入学后一个月进行的,所以我对各个学生具体情况谅解不够深入,但是课后仔细想来,做好中小学数学教学的衔接工作不仅仅是教学内容设计上的衔接,而应该是多方位的衔接,其中就包括教师应尽快了解、熟悉学生,这样可以帮助消除学生刚升入初中的许多不适应。

  不足之三:回顾思考比较生硬,不够艺术化,教学尽量更加生动形象。

  有理数的乘方教案 2

  一、知识与技能

  (1)正确理解乘方、幂、指数、底数等概念。

  (2)会进行有理数乘方的运算。

  二、过程与方法

  通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。

  三、情感态度与价值观

  培养探索精神,体验小组交流、合作学习的重要性。

  教学重、难点与关键

  1.重点:正确理解乘方的意义,掌握乘方运算法则。

  2.难点:正确理解乘方、底数、指数的概念,并合理运算。

  3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。

  四、课堂引入

  1.几个不等于零的有理数相乘,积的符号是怎样确定的?

  几个不等于零的有理数相乘,积的符号由负因数的'个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。

  2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?

  五、新授

  边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa

  aa简记作a2,读作a的平方(或二次方)。

  aaa简记作a3,读作a的立方(或三次方)。

  一般地,几个相同的因数a相乘,记作an.即aaa. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

  在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

  有理数的乘方教案 3

  教学目标:

  1、知识与技能:

  了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。

  2、过程与方法:

  在科学记数法中,其中a是整数位只有一位的数,n是原数的整数位数减1。

  重点、难点:

  1、重点:用科学记数法表示绝对值较大的数。

  2、难点:熟练用科学记数法表示绝对值较大的数。

  教学过程:

  一、创设情景,导入新课

  太阳的半径大约是696000千米;光的速度大约是300000000米/秒。这些数读、写都有困难,可把696000记作6.96×105,这就是科学记数法。

  二、合作交流,解读探究

  1、填空

  = , = , =

  2.8×= ,2.8×= ,2.8×=

  2、学生探究:从前面的填空可知:

  100=, 1000=, 10000=280=2.8×,2800=2.8×,28000=2.8×

  从上面你能发现什么规律吗?

  (1)10的指数比原数的整数位少1,一个数可以写成一个整数位数只有一位的数与10的n次幂相乘的`形式。

  三、应用迁移,巩固提高

  1、做一做:课本P44例2

  解答见教材,注意10的指数比原数的整数位少1

  2、科学记数法:把一个绝对值大于10的数记成的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

  3、做一做:用科学记数法表示下列各数:

  (1) 108000;

  (2)-3200000

  两生上台练习,指出学生存在的错误,如对科学记数法中a的要求理解的错误。

  4、P44练习第1、2、3题

  四、总结反思

  用科学记数法表示时要注意:

  (1)a是整数位只有一位的数

  (2)10的指数n比原数的整数位数少1。

  五、作业:P45习题1.6A组第3、4、5题

  有理数的乘方教案 4

  教学目标

  1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;

  2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;

  3.会用科学记数法表示较大的数。

  教学重点

  1.有理数乘方的意义,求有理数的正整数指数幂;

  2.用科学记数法表示较大的数。

  教学难点

  有理数乘方结果(幂)的符号的确定。

  教学过程(教师)

  问题引入

  手工拉面是我国的传统面食。制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条。你能算出拉扣6次后共有多少根面条吗?

  乘方的有关概念

  试一试:

  将一张报纸对折再对折……直到无法对折为止。你对折了多少次?请用算式表示你对折出来的报纸的层数。

  你还能举出类似的实例吗?

  有理数的乘方:同步练习

  1.对于式子(-3)6与-36,下列说法中,正确的.是xx

  A.它们的意义相同

  B.它们的结果相同

  C.它们的意义不同,结果相等

  D.它们的意义不同,结果也不相等

  2.下列叙述中:

  ①正数与它的绝对值互为相反数;

  ②非负数与它的绝对值的差为0;

  ③-1的立方与它的平方互为相反数;

  ④±1的倒数与它的平方相等。

  有理数的乘方教案 5

  一、教学目标

  1、认知目标

  正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

  2、能力目标

  (1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

  (2).使学生能够灵活地进行乘方运算。

  3、情感目标

  让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

  二、教学重难点和关键:

  1、教学重点:正确理解乘方的意义,掌握乘方运算法则。

  2、教学难点:正确理解乘方、底数、指数的`概念,并合理运算,3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

  三、教学方法

  考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

  四、教学过程

  1、创设情境,导入新课:

  这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

  师:假如我现在抽取的是黑3红3黑4红5 (幻灯片放映图片)如何算24?

  师:如果四张都是3呢?

  生答:-3 - 3×3×(-3)=

  师:现在老师把扑克牌拿掉一张红3,变成2个黑3,1个红3,大家有办法凑成24吗?

  生:思考几分钟后,有同学会想出的答案

  师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)

  2、动手实践,共同探索乘方的定义

  学生活动:请同学们拿出一张纸进行对折,再对折

  问题:(1)对折一次有几层?2

  (2)对折二次有几层?

  (3)对折三次有几层?

  (4)对折四次有几层?

  师:一直对折下去,你会发现什么?

  生:每一次都是前面的2倍。

  师:请同学们猜想:对折20次有几层?怎样去列式?

  生:20个2相乘

  师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

  简记:……

  师:请同学们总结对折n次有几层?可以简记为什么?

  2×2×2×2……×2

  SHAPE MERGEFORMAT

  n个2

  生:可简记为:

  师:猜想:生:

  师:怎样读呢?生:读作的次方

  老师总结:求个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在中,叫做底数(相同

  的因数),叫做指数(相同因数的个数)。

  注意:乘方是一种运算,幂是乘方运算的结果。看作是的次方的结果时,也可读作的次幂。

  有理数的乘方教案 6

  学习目标:

  1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算

  2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力。

  3、培养语言表达能力。调动学习积极性,培养学习数学的兴趣。

  学习重点:

  有理数乘法

  学习难点:

  法则推导

  教学方法:

  引导、探究、归纳与练习相结合

  教学过程:

  一、学前准备

  计算:

  (1)(一2)十(一2)

  (2)(一2)十(一2)十(一2)

  (3)(一2)十(一2)十(一2)十(一2)

  (4)(一2)十(一2)十(一2)十(一2)十(一2)

  猜想下列各式的值:

  (一2)×2(一2)×3

  (一2)×4(一2)×5

  二、探究新知

  1、自学有理数乘法中不同的形式,完成教科书中29~30页的.填空。

  2、观察以上各式,结合对问题的研究,请同学们回答:

  (1)正数乘以正数积为__________数,(2)正数乘以负数积为__________数,

  (3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。

  提出问题:一个数和零相乘如何解释呢?

  《1.4.1有理数的乘法》同步练习含解析

  1、若有理数a,b满足a+b<0,ab<0,则( )

  A、a,b都是正数

  B、a,b都是负数

  C、a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值

  D、a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值

  5、若a+b<0,ab<0,则( )

  A、a>0,b>0

  B、a<0,b<0

  C、a,b两数一正一负,且正数的绝对值大于负数的绝对值

  D、a,b两数一正一负,且负数的绝对值大于正数的绝对值于0

  《1.4.1.2有理数的乘法运算律》课时练习含答案

  2、大于—3且小于4的所有整数的积为( )

  A、—12 B、12 C、0 D、—144

  2、3.125×(—23)—3.125×77=3.125×(—23—77)=3.125×(—100)=—312.5,这个运算运用了( )

  A、加法结合律

  B、乘法结合律

  C、分配律

  D、分配律的逆用

  3、下列运算过程有错误的个数是( )

  ①×2=3—4×2

  ②—4×(—7)×(—125)=—(4×125×7)

  ③9×15=×15=150—

  ④[3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50

  A、1 B、2 C、3 D、4

  4、绝对值不大于2 015的所有整数的积是。

  5、在—6,—5,—1,3,4,7中任取三个数相乘,所得的积最小是,最大是。

  6、计算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的结果为。

  7、计算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的结果是。

  有理数的乘方教案 7

  一、 学情分析:

  在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

  二、 课前准备

  把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

  三、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  四、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  五、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?

  学生:

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

  2、 小组探索、归纳法则

  教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做 P76 练习1(1)(3),教师评析。

  (4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的.符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。

  4、 讨论对比,使学生知识系统化。

  有理数乘法

  有理数加法

  同号

  得正

  取相同的符号

  把绝对值相乘

  (-2)(-3)=6

  把绝对值相加

  (-2)+(-3)=-5

  异号

  得负

  取绝对值大的加数的符号

  把绝对值相乘

  (-2)3= -6

  (-2)+3=1

  用较大的绝对值减小的绝对值

  任何数与零

  得零

  得任何数

  5、 分层作业,巩固提高。

  六、 教学反思:

  本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。

  有理数的乘方教案 8

  一、 教学内容

  人教版七年级数学(上)第一章第四节《有理数的乘除法》,见课本p28.

  二、学情分析

  在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。

  三、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  四、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  五、教学手段

  制作幻灯片,采用多媒体的现代课堂教学手段。

  六、教学方法

  注意创设问题情景,选择“情景---探索---发现”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。在整个学习过程中,以“自主参与,勇于探索,合作交流”的探索式学法为主,从而达到提高学习能力的目的。

  七、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法,同学们先看下面的问题(出示蜗牛爬的动画幻灯片)

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题。

  2、 学生探索、归纳法则

  学生分为四个小组活动,进行乘法法则的探索。

  (1)教师出示蜗牛在数轴上运动的问题,让学生理解。

  蜗牛现在的位置在点o,规定向右的方向为正,向左的方向为负;现在时间后为正,现在时间前为负

  a.+ 2 ×(+3)

  +2看作向右运动的速度,×(+3)看作运动3分钟后。

  结果:3分钟后的位置

  +2 ×(+3)=

  b. -2 ×(+3)

  -2看作向左运动的速度,×(+3)看作运动3分钟后。

  结果:3分钟后的位置

  -2 ×(+3)=

  c. +2 ×(-3)

  +2看作向右运动的速度,×(-3)看作运动3分钟前

  结果:3分钟前的位置

  +2 ×(-3)=

  d. (-2) ×(-3)

  -2看作向左运动的速度,×(-3)看作运动3分钟前。

  结果:3分钟前的位置

  (-2) ×(-3)=

  e.被乘数是零或乘数是零,结果是仍在原处。

  思考:积的符号与两个因数的符号有什么关系?

  积的绝对值与两个因数的绝对值又有什么样的关系?

  (2)学生归纳法则

  a.符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  b.积的绝对值等于 。

  c.任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。(出示幻灯片)

  3、 运用法则计算,巩固法则。

  例1计算:

  (1) (-5) ×(-3); (2) (-7)×4; (3) (-3)×9; (4)(-3) ×(- )

  引导学生观察、分析例1中(4)小题两因数的关系,得出:

  有理数中仍然有:乘积是1的'两个数互为倒数。

  例2. 见课本p30页

  4、 分层练习,巩固提高。

  巩固练习

  (1)确定下列两个有理数积的符号:

  (2)计算(口答):

  ① ② ③ ④

  ⑤ ⑥ ⑦ ⑧

  (3)判断下列方程的解是正数、负数还是0。

  (1) 4x= -16 (2)-3x=18

  (3)-9x=-36 (4)-5x=0

  5、小结

  (1)有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

  (2)如何进行两个有理数的乘法运算:

  先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

  6、作业布置

  课本p30页练习1,2,3.

  课后反思:

  本节内容是学生在小学学习过的乘法以及初中学习了有理数的加法,减法及混合运算的基础上,进一步学习的基本运算,它既是对前面知识的延续,又是以后学习有理数除法等数学知识的铺垫,起了承上启下的作用。对经历有理数乘法法则的探索过程,使学生体验分类讨论的数学思想方法。

  教学设计上,强调自主学习,注重交流合作,让学生在自主探索过程中理解和掌握有理数的乘法法则,并获得数学活动的经验,提高学习能力。

  有理数的乘方教案 9

  教学目的:

  (一)知识点目标:有理数的乘法运算律。

  (二)能力训练目标:

  1.经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

  2.能运用乘法运算律简化计算。

  (三)情感与价值观要求:

  1.在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

  2.在讨论的过程中,使学生感受集体的力量,培养团队意识。

  教学重点:

  乘法运算律的运用。

  教学难点:

  乘法运算律的运用。

  教学方法:

  探究交流相结合。

  教学过程:

  创设问题情境,引入新课

  [活动1]

  问题1:有理数的加法具有交换律和结合律,在以前学过的范围内乘法交换律、结合律,以及乘法对加法的分配律都是成立的,那么在有理数的范围内,乘法的这些运算律成立吗?

  问题2:计算下列各题:

  (1)(一7)×8;

  (2)8×(一7);

  (5)[3×(一4)]×(一5);

  (6)3×[(一4)×(一5)];

  [师生]由学生自主探索,教师可参与到学生的讨论中。

  像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)

  [师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?

  [生]例如:5×[3十(一7)]和5×3十5×(一7);(略)

  [师](一5)×(3一7)和(一5)×3一5×7的结果相等吗?

  (注意:(一5)×(3一7)中的3一7应看作3与(一7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)

  讲授新课:

  [活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。

  应得出:1.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.

  2.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

  3.一般地,一个数同两个数的`和相乘,等于这个数分别同这两个数相乘,再把积相加。

  [活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。

  3.用简便方法计算:

  [活动4]

  练习(教科书第42页)

  课时小结:

  这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

  课后作业:课本习题1.4的第7题(3)、(6)。

  活动与探究:

  用简便方法计算:

  (1)6.868×(一5)十6.868×(一12)十6.868×(十17)

  (2)[(4×8)×25一8]×125

  有理数的乘方教案 10

  学习目标:

  1、知识目标:了解有理数乘法法则的合理性,掌握有理数的乘法法则,熟练运用有理数的法则进行准确运算。

  2、能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力。

  3、情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯。

  学习重点、难点

  重点:有理数乘法运算法则的推导及熟练运用。

  难点:有理数乘法运算中积的符号的确定。

  学习过程

  一、预习导航

  1、在小学我们已经接触了乘法,那什么叫乘法呢?

  求几个的运算,叫乘法。

  一个数同0相乘,得0。

  2、请你列举几道小学学过的乘法算式。

  二、合作探究、展示交流

  1、问题1:森林里住着一只蜗牛,每天都要离开家去寻找食物,如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟后蜗牛在什么位置?

  规定:向右为正,现在之后为正。

  3分钟后蜗牛应在o点的( )边( )cm处。

  可以列式为:(+2)(+3)=

  问题2:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?

  规定:向右为正,现在之后为正。

  3分钟后蜗牛应在o点的( )边( )cm处。

  可以列式为:

  问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?

  规定:向右为正,现在之后为正。

  3分钟前蜗牛应在o点的( )边( )cm处。

  可以表示为:

  问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?

  规定:向右为正,现在之后为正。

  3分钟前蜗牛应在o点的( )边( )cm处。

  可以表示为:

  2、观察这四个式子:

  (+2)(+ 3)=+6(—2)(—3)=+6

  (—2)(+3)=—6(+2)(—3)=—6

  根据你对有理数乘法的思考,总结填空:

  正数乘正数积为__数:负数乘负数积为__数:

  负数乘正数积为__数:正数乘负数积为__数:

  乘积的绝对值等于各乘数绝对值的_____。

  思考:当一个因数为0时,积是多少?

  3、试着总结一下有理数乘法法则吧:

  两数相乘,同号得,异号得,并把绝对值。

  任何数同0相乘,都得。

  三、小试牛刀。

  1、你能确定下列乘积的符号吗?

  3 7积的符号为;(—3)7积的符号为;

  3(—7)积的符号为;(—3)(—7)积的符号为。

  2先阅读,再填空:

  (—5)x(—3)。同号两数相乘

  (—5)x(—3)=+( )得正

  5 x 3= 15把绝对值相乘

  所以(—5)x(—3)= 15

  填空:(—7)x 4____________________

  (—7)x 4 = —( )___________

  7x 4 = 28_____________

  所以(—7)x 4 = ____________

  [例1]计算:

  (1)(—5)(2)(—5)

  (3)(—6)(—0.45)(4)(—7)0=

  解:(1)(—5)(—6)=+(56)=+30=30

  请同学们仿照上述步骤计算(2)(3)(4)。

  (2)(—5)6 = =

  (3)(—6)(—0.45)= =

  (4)(—7)0=

  让我们来总结求解步骤:

  两个数相乘,应先确定积的,再确定积的。

  四、巩固练习

  1、小组口算比赛,看谁更棒

  (1)3(—4)(2)2(—6)(3)(—6)2

  (4)6(—2)(5)(—6)0(6)0(—6)

  2、仔细计算。注意积的'符号和绝对值。

  (1)(—4)0.25(2)(—0.5)(—2)(3)(—)

  (4)(—2)(—)(5)(—)(—)(6)(—)5

  3、用正负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1千米,气温的变化量为—6℃,攀登3千米后,气温有什么变化?

  五、一分钟过关检测

  1、下列说法错误的是( )

  A、一个数同0相乘,仍得0

  B、一个数同1相乘,仍得原数

  C、如果两个数的乘积等于1,那么这两个数互为相反数

  D、一个数同—1相乘,得原数的相反数

  2、在—2,3,4,—5这四个数中,任意两个数相乘,所得的积最大的是( )

  A、10 B、12 C、—20 D、不是以上的答案

  3、计算下列各题:

  (1)(—10)(—9)=(2)(—9)(—10)=;(3)9(—2)=;(4)(—2)9 =;

  (5)(—6)(—5)=;(6)(—5)(—6)=

  六、体会联想:

  1、有理数的乘法的计算步骤分哪两步?

  2、有理数的乘法法则是什么?

【有理数的乘方教案】相关文章:

有理数的乘方教案11-10

《有理数的加法》教案02-25

《有理数的乘法》教案02-26

有理数减法教案04-05

《有理数的加法》教案04-16

有理数的乘法教案09-29

有理数的加法教案03-02

有理数的除法教案01-23

有理数的加法与减法教案01-28