五年级数学下册教案

时间:2022-11-10 17:31:10 教案 我要投稿

五年级数学下册教案

  作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的五年级数学下册教案,仅供参考,欢迎大家阅读。

五年级数学下册教案

五年级数学下册教案1

  教材分析

  观察物体是“空间与几何”这一领域的内容,在不同学段有着不同的要求。本单元的内容属于第二学段,通过观察、拼摆较为抽象的几何形体,使学生进一步认识到从不同的位置观察物体,所看到的形状是不同的,让学生能正确辨认从正面、左面和上面观察到的简单物体形状。教材在编排上不仅设计了观察活动,而且设计了需要学生进行想象、猜测和推理进行探究的活动,目的是为了更好地培养学生的空间想像力和思维能力,为之后正式学习投影和三视图的有关知识奠定感性认识和基础。

  学情分析

  学生在日常生活中已经积累了丰富的观察物体的感性经验,并通过第一学段的学习,已经能辨认从不同位置观察到的简单物体的形状。而本单元在此基础上,还要求学生学会辨认从不同方位看到的物体的形状和相对位置。因此,教师在教学中要设计观察和拼搭等活动,为自己和学生准备好教具与学具。同时在进行观察和拼搭的活动中,要注意让学生真正地、充分地进行活动和交流。因为只有在活动的过程中,学生才能真正经历观察、想象、猜测、分析和推理等过程,学生的空间想象力和思维能力才能得以锻炼,空间观念才能得到发展。切不可让教师的演示或少数学生的活动和回答来代替每一位学生的亲自动手、亲自体验和亲自思考。要鼓励学生敢于发表自己的意见,与同伴交流自己的想法,在交流中理清思路,互相启发。

  教学目标

  知识技能:让学生经历观察和操作的过程,从中认识到从不同位置观察物体所看到形状是不同的,能正确辨认从正面、左面、上面观察到物体形状。

  数学思考:能根据已有的图形,用各种方法拼搭相应立体图形,发展学生的空间想象力。

  问题解决:通过拼搭活动,培养学生的空间想象力和推理能力。

  情感态度:

  1.通过选取熟悉的环境和物体作为观察对象,联系生活经验,感受数学在生活中的应用,激发学生学习数学的热情。

  2.通过合作交流,养成学生互助、合作的意识,提高学生的数学交流和表达能力。

  课时划分:2课时

  观察物体……………………1课时

  练习二………………………1课时

  第一单元:观察物体

  第一课时:从某个角度观察多个物体

  教学内容:教材P2例1及练习一第1、2题。

  教学目标

  知识与技能:能根据从一个方向看到的'图形摆立体图形。能分析和分辨从不同角度观察立体图形的情况。

  过程与方法:通过推测和拼搭图形的方式,引导学生简化过程,培养学生的空间想象力和思维能力。

  情感、态度与价值观:通过让学生自己拼摆,得出结论,激发学生对数学的求知欲及探求数学知识的兴趣。

  教学重点:能根据从正面、上面或左面看到的平面图形推测出小正方体的拼搭方式。

  教学难点:培养学生的空间想象力和抽象思维能力。

  教学方法:启发式教学法与直观演示法。

  教学准备:若干个小正方体、多媒体。

  教学过程:

  一、创设情境,激趣导入

  同学们都玩过积木吧,老师给你们4个小正方体木块,请你们摆出从正面看到的是下图的图形。

  今天我们就来一起研究这个问题,板书:观察物体(三)。

  二、探究体验,经历过程

  1.学生探究。

  学生分成若干个小组,每个小组若干个小正方体。

  师:现在同学们每个小组都有若干个小正方体,请你们自主探究一下,怎样拼搭立体图形,才能从正面看到的是,看一看哪个小组得出的方法最多。

  学生分组探究,教师巡视指导。

  学生动手操作,小组成员之间进行讨论交流。

  2.探究结果汇报。

  (1)一共有4个小正方体,从正面看到的是,可以先一行摆3个小正方体,剩下的1个小正方体的摆放位置有如下几种情况:

  ①可以摆在这3个小正方体任意1个的后面,如下图。

  ②可以摆在这3个小正方体任意1个的前面,如下图。

  师:摆出的立体图形的形状是不同的,但是从正面观察时,看到的图形是相同的。还有其他的拼搭方法吗?

  学生思考,动手实验。

  学生接着展示:

  大家在拼搭的过程中要多思考,从不同的角度考虑问题,我们会发现不同的结论。

  3.学生探究。师:如果再增加一个同样的小正方体,也就是用5个同样的

  小正方体,要保证从正面看的形状不变,应该怎样拼搭呢?下面就请各小组的同学用手中的小正方体进行拼搭,看哪个小组得出的结论最多。

  学生分小组动手操作,教师巡视指导。提示学生按照一定的顺序摆放,既可避免重复也可避免遗漏

  学生分组自主探究,相互交流。

  4.汇报探究结果。

  小组分别汇报自己小组拼搭的图形。

  ①可以摆在这3个小正方体任意2个的后面,如下图。

  ②可以摆在这3个小正方体任意2个的前面,如下图。

  ③可以摆在这3个小正方体任意1个的后面,如下图。

  ④可以摆在这3个小正方体任意1个的前面,如下图。

  ⑤可以把1个摆在后面,1个摆在前面,如下图。

  教师分别对各个小组所拼搭的图形点评,给学生以肯定和鼓励。

  三、课堂小结,梳理提升

  这节课我们研究了,根据从一个角度观察物体得到的平面图形进行拼搭立体图形,你有什么收获呢?

  学生谈收获,教是根据学生谈话归纳整理成板书。

  板书设计:观察物体(三)

  1.由几个大小相同的小正方体摆成的立体图形,从同一个方向观察,看到的图形可能是相同的,也可能是不同的。

  2.根据从一个方向看到的图形摆立体图形,有多种摆法。

  作业:教材第3页练习一第1、2题。

  第一单元:观察物体

  第二课时:从多个角度观察立体图形

  教学内容:教材P~例1、例2及练习一第、题。

  教学目标

  知识与技能:根据图形推测拼搭的方式,引导学生简化过程,培养学生的空间想象力和思维能力。

  过程与方法:通过动手操作,自主探究,解决由平面图形到立体图形的转化问题。让学生自己拼摆,得出结论,激发学生对数学的求知欲及探求数学知识的

  兴趣。

  情感、态度与价值观:培养学生从多个角度观察物体的能力,通过思考和分析,掌握从不同角度观察立体图形的情况。

  教学重点:经历观察过程,根据从正面、上面和左面看到的物体的三视图,推测出小正方体的拼搭方式。

  教学难点:培养学生的空间想象力和抽象思维能力。

  教学方法:启发式教学法与直观演示法。

  教学准备:若干个小正方体、多媒体。

  教学过程:

  一、创设情境,激趣导入

  上节课,我们学习了根据从某个角度观察得到的平面图形,拼搭出立体图形的方法,这节课,我们再来研究怎样根据从多个角度观察得到的三视图来拼搭立体图形。教师出示从正面观察某立体图形得到的平面图形,如。

  请同学们猜一猜,它是由几个小正方体组合而成的,并说明理由。

  学生纷纷发表意见,有的说是2个,有的说3个……

  师:看来要了解物体的真面目只看一面是不够的,今天我们就一起来探索根据三视图摆立体图形。

  二、探究体验,经历过程

 1.投影出示例2。

  2.分小组探究。

  学生分成若干个小组,每个小组准备若干个小正方体木块。

  师:现在每个小组都有若干个小正方体木块,请你们自主探究一下,怎样拼搭,能拼搭成符合兰兰看到的三视图的立体图形,看一看哪个小组最先完成并说一说是怎样摆的。

  学生分组探究,教师巡视指导。

  3.探究结果汇报。

  我们拼搭的图形为。因为兰兰从正面看得到的平面图形和从左面看得到的平面图形都是由2个小正方形组成的长方形,因此说明这个立体图形只有一层,并且它的前面是2个小正方体,它的左面也是2个小正方体。而从上面看是两排,它的前排是2个小正方体,第二排是一个小正方体并且应该在左边,因此我们组拼成了上面的图形。

  师生共同评价总结:各小组都能积极地思考,动手动脑解决问题,并说出了自己的思考过程。

  3.即时练习。

  指导学生完成教材第2页“做一做”。

  学生根据题意自行操作,教师巡视及时发现学生在拼摆中存在的问题,并进行及时指导。

  三、巩固练习

  1.第3题:呈现了从不同方向观察一个立体图形得到的三个图形,让学生用正方体搭出相应的立体图形。教师可以放手让学生自主探究,然后组织全班同学讨论并流拼搭的方法。注意引导学生有步骤、简洁地进行操作。

  2.第4题:先让学生独立解决问题,再组织交流。

  对于第(2)小题,学生完成练习后,教师让学生展示不同的摆法,通过交流,使学生进一步体会只看到一面是无法确定物体的形状。

  3.第5题:可以让学生先直接作出判断,再组织交流。

  4.第6题:让学生根据从一个方向看到的图形,判断所观察的物体是什么立体图形,使学生进一步认识到:不能只根据一个方向看到的形状,就确定是什么立体图形。如果搭成的图形从正面看,最少需要3个正方体,还可能是4个、5个……

  教师可以让学生说一说或在方格纸上画出,从不同的方向观察自己所搭的立体图形得到的图形;还可以让学生小组活动,由一名学生增加所给的条件,使其他人能准确地摆出这个立体图形。

  5.第7题:先让学生独立思考,并根据题意要求动手摆一摆,以此来验证自己的想法。在学生独立思考的基础上,教师组织学生进行全班交流。

  四、课堂小结,梳理提升

  这节课,我们研究了根据物体的三视图拼搭立体图形,同学们都能积极地动手参与,积极地思考。在按照物体的三视图进行拼搭时,先根据平面图分析出要拼搭的立体图形共有几层.要拼搭的立体图形共有几排,再根据平面图形确定每层和每排的小正方体的个数和位置。

  板书设计:

  从多个角度观察立体图形

  先根据平面图分析出要拼搭的立体图形有几层;

  然后确定要拼搭的立体图形百几排;

  最后根据平面图形确定每层和每排的小正方体的个数。

  作业:教辅相关练习。

  第二单元:因数与倍数

  教材分析

  本单元是在学生学过整数的认识、整数的四则计算、小数、分数的认识等知识的基础上展开教学的。本单元的内容主要包括因数和倍数,2、5、3的倍数的特征,质数和合数等知识。通过这部分内容的学习,既可以让学生在前面所学的整数知识基础上进一步探索整数的性质,又有助于发展他们的抽象思维。这些知识的学习是以后学生学习公倍数与公因数、约分、通分、分数四则运算等知识的重要基础。

  学生已经学过整数的认识、整数的四则计算、小数、分数的认识等知识,但本单元的知识属于“数论”的初步知识,概念比较多,有些概念比较抽象,概念的前后联系又很紧密,部分学生学习时可能会有一定的困难。教材明确规定在研究因数与倍数时,限制在不包括0的自然数范围内研究,避免由此带来一些小学生尚不必研究的问题。教学时要注意以下两点:

  学情分析

  1.利用乘法引导学生认识因数和倍数。教材在揭示倍数和因数的概念时,没有像原来的教材那样,先揭示整除的概念,再利用整除认识倍数和因数,而是让学生通过分类,用除法算式认识倍数和因数。在找一个数的倍数时,也是让学

五年级数学下册教案2

  设计说明

  《数学课程标准》指出:“应注重让学生通过观察、操作、推理等方法,发展空间观念。”因此,本节课的教学设计主要突出以下两点:

  1.充分利用直观教学,帮助学生形成空间观念。

  学生空间观念的形成具有很强的直观依赖性,而图形的外显性属性特征比较容易感知,所以在教学中,充分利用直观教具,调动学生的感官,通过触摸、测量、类比等学习活动,帮助学生认识并建立1厘米3、1分米3、1米3的实际大小的体积观念,从而使学生在头脑中形成表象,积累经验,有助于以后计算和估算物体的体积。另外,在教学中引导学生将三个体积单位结合起来进行对比,并列举生活中的实例,激发学生的求知欲,让学生在活动中应用数学知识解决实际问题。

  2.注重学习方法的迁移。

  在认识三个常用的体积单位的新知教学中,采用分层推进的教学策略。首先引导学生摸一摸、量一量、比一比、举例子,认识并学习1厘米3。然后将主动权交给学生,让学生利用认识1厘米3的方法在小组内自主活动,认识1分米3,最后认识1米3。这样不仅培养了学生小组合作学习的能力,同时也提高了学生参与尝试的`兴趣。

  课前准备

  教师准备 PPT课件、1厘米3和1分米3的正方体模型、一块小橡皮擦、一瓶墨水、一个粉笔盒、一个骰子、一粒花生、三根米尺、量杯、纸杯、酒瓶、饮料瓶

  学生准备 若干个1厘米3和1分米3的正方体模型、收集的几种瓶子、针筒

  教学过程

  第1课时 体积单位

  ⊙复习旧知,引入新课

  1.复习旧知。

  师:我们以前学过长度单位和面积单位,常用的长度单位和面积单位有哪些?

  (生回答,师板书)

  长度单位:厘米、分米、米

  面积单位:平方厘米、平方分米、平方米

  将一块小橡皮擦、一瓶墨水、一个粉笔盒放在讲台上。

  师:请按体积的大小将它们排列起来。

  (生汇报)

  2.引入新课。

  师:物体有大有小,如果要测量它们的体积,也需要有一个统一的标准,就像计量长度有长度单位,计量面积有面积单位,计量体积就需要有体积单位。(板书:课题体积单位)

  设计意图:先让学生复习已学过的长度单位和面积单位,然后引出体积单位,从而让学生初步感知长度单位、面积单位和体积单位之间的区别,同时让学生明确统一体积单位的重要性。

  ⊙操作感知,获取新知

  1.认识体积单位。

  (1)认识1厘米3。

  ①出示棱长为1厘米的正方体,让学生动手量一量棱长,明确这个正方体的体积就是1厘米3。

  ②得出结论:棱长为1厘米的正方体,体积是1立方厘米,记作1厘米3(cm3)。

  ③摸一摸:让学生直观感受一下1厘米3的大小。

  做一做:用橡皮泥切出一个1厘米3的正方体。

  看一看:小组内拼一拼2厘米3、4厘米3,感受一下有多大。

  ④举例:找找看,我们身边哪些物体的体积接近1厘米3?

  (反馈:一个骰子、一粒花生等物体的体积接近1厘米3)

  (2)认识1分米3。

  师:刚才我们通过摸一摸、量一量、举例子等方法认识了1厘米3,我们能不能用同样的方法来认识1分米3呢?

  ①出示棱长为1分米的正方体,明确这个正方体的体积就是1分米3。

  ②用硬纸板做一个1分米3的正方体盒子,摸一摸,感受一下1分米3的大小。

  ③举例:我们身边哪些物体的体积接近1分米3?

五年级数学下册教案3

  【教学内容】 人教版五年级数学下册第二单元质数和合数例1。

  【教学目标设计

  1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。

  2、过程与方法:采用探究式学习法,通过观察、自主学习-合作、交流验证-分类、比较-抽象-归纳总结-巩固 。 提高学习过程,培养学生观察和概括能力,培养学生积极探究的意识。

  3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。

  【教学重难点】

  1. 掌握质数、合数的概念。

  2. 正确地判断一个数是质数还是合数?

  【教具学具准备】:课件

  教学过程:

  一. 导入新课:

  1.导入课题:前面我们学习了奇数和偶数。那么自然数还有没有其他的分法?今天这节课我们就一起来研究“质数与合数”(板书课题)

  2.说出自己的学号、爸爸、妈妈、爷爷或奶奶的年龄,老师判断这个数是质数还是合数?

  3.激发兴趣。

  二.探究新知。

  1.说出1~20各数的因数。(课件出示,开火车的形式)

  2.观察思考 这些数的因数的个数一样多吗?(生:不一样)

  3.师:你能把这些数按因数的个数进行分类吗? ( 学生讨论,分类 )

  4.学生报结果(学生完成表格)

  5. 观察比较,发现特点,归纳概念。

  (1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数的个数有什么特点?

  一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

  (2)师:观察4,6,8,9,10,12,14,15,16,18,20这几个数的因数的个数有什么特点?

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  (3)师:1既不是质数,也不是合数。

  6.最小的质数是几?有没有最大的质数?最小的合数是几?有没有最大的合数?

  7.展示老师和学生制作的思维导图。

  8.判断自己的学号是质数还是合数?

  三.自学例1:

  1.指名汇报预习的结果。

  2.质疑。

  3.找质数的方法是:筛选法。

  4.修改自己圈的质数。

  5.出示质数歌。

  四.智慧大闯关:

  1.判断下面的数字是质数还是合数?

  (1)全年12个月,大月有31天,小月是30天,平年2月是28天, 闰年2月是29天。

  (2)五(1)班上学期有52人,这学期又转来1名学生,现在共53人。

  2. 下面的说法正确吗?说一说你的理由。

  (1)所有的'奇数都是质数。 ( )

  (2)所有的偶数都是合数。 ( )

  (3)在1,2,3,4,5,…中,除了质数以外都是合数。( )

  (4)两个质数的和是偶数。 ( )

  3.猜数。

  4.猜一猜老师的电话号码是多少?

  (1)是奇数,但不是质数也不是合数。

  (2)比最小的质数大1。

  (3)比最小的合数大2。

  (4)10以内最大的奇数。

  (5)是奇数,但不是质数也不是合数。

  (6)10以内既是奇数,又是合数。

  (7)和第6个数相同。

  (8)10以内最大的质数。

  (9)10以内最大的偶数。

  (10)和第一个数相同。

  (11)是最小的偶数。

  5.数学游戏。

  五.数学文化:

  结合数学文化进行思想教育。

五年级数学下册教案4

  一、复习导入

  1、根据分数与除法的关系填空。

  被除数÷除数说说:分数与除法的关系。

  2、提问:80÷20的商是多少?

  被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?

  回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)

  (商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)

  二、新课

  1、动手做数学。

  (1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。

  (涂上阴影)

  (2)提问:比较它们的长度、有什么发现?能根据分数的意义加以说明吗?

  (3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。

  2、设疑:为什么分子、分母都不同的几个分数可以相等,它们之间有什么规律呢?

  (1)观察并研究分子、分母是按什么规律变化的?

  1/2 =2/4 = 3/6 = 4/8学生观察的顺序可以自选。

  (2)学生发现并归纳得出的规律(揭示:分数的基本性质):

  分数的分子和分母同时乘以或者除以相同的数分数的大小不变。

  (3)理解意义。

  提问:刚才我们根据分数的意义来说明分数的基本性质的。能不能根据分数与除法的关系和商不变的规律来说明呢?

  先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)

  将分数的基本性质补充完整。

  3、应用性质、解决问题。

  (1)指出:应用分数的基本性质可以把一个分数化成分母不同而大小相等的分数。

  (2)把3/4和15/24化成分母是8而大小不变的分数。

  要求:独立思考解答、交流方法

  (3)师生一起总结方法:

  看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。

  (4)独立完成练一练。

  重点是:学生要能自觉根据分数的基本性质观察分母或分子是怎样变化的,相应地分子或分母就怎样变化。

  变化的依据是分数的基本性质

  (5)口答练习十八第2题并说明判断的.依据。

  4、全课总结:你能将这节课的内容及重点归纳概括一下吗?

  5、作业:完成练习十四

  理解并掌握分数的基本性质,同桌互相说分数并指定分母或分子让另一个同学化。

  三、难点点拨

  在运用分数的基本性质时,会出现以下几种错误:

  ①忽略了“同时”。举例说明= =是错误的,只是分子乘2,分母不变,正确答案应是= = 。

  ②忽略了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。

  在理解分数的基本性质时要注意三点:必须强调“同时”;必须强调“乘上或除以相同的数”;必须强调“0除外”。

  ③忽略了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的

五年级数学下册教案5

  【复习导入】

  1.如果告诉了长方体的长、宽、高,怎样求它的表面积?

  2. 如果要求正方体的表面积,需要知道什么?怎样求?

  3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?

  4.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?

  【课堂作业】

  完成教材第26页第11~13题。

  1.第11题

  (1)分析题目的已知条件和问题。

  (2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?

  (3)列式解答:

  4×[8×6+(8×3+6×3)×2-11.4]

  =4×[48+42×2-11.4]

  =4×120.6=482.4(元)

  答:粉刷这个教室需要花费482.4元。

  2.第12题

  这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的面积不能算在表面积里。

  分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。

  左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。

  解:涂黄油漆[40×(65-10)+40×65+40×40]×2

  =(2200+2600+1600)×2=12800(c2)

  涂红油漆40×65×2+40×40×3=5200+4800=10000(c2)

  答:涂黄油漆的总面积为12800c2,涂红油漆的面积为10000c2。

  3.第13题

  提示:把一个长方体从中间截断,就可以分成两个正方体。

  让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。

  小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。

  【课堂小结】

  通过这节课的学习,你有什么收获?还有什么问题?

  【课后作业】

  完成练习册中本课时练习。

  板书设计第5课时长方体和正方体的表面积(3)

  长方体的表面积≡(长×宽+长×高+宽×高) ×2

  正方体的表面积≡边长×边长×6

  教学反思

  第6课时 体积和体积单位

  学习内容体积和体积单位(教材第27、28页的内容、第28页的“做一做”,及第32页练习七的第1~5题)。第 6 课时课型新授

  学习目标1.使学生理解体积的概念,了解常用的体积单位,形成表象。

  2.培养学生比较、观察的能力。

  3.通过学生的动手实践,加强学生空间概念的发展。

  教学重点常用体积单位。

  教学难点常用体积单位。

  教具运用 “乌鸦喝水”,玻璃杯、水、沙子、木条……

  教学过程二次备课

  【复习导入】

  口答:1米、1分米、1厘米是什么计量单位?

  1平方米、1平米分米、1平方厘米又是什么计量单位?

  【新课讲授】

  1.认识体积的概念。

  (1)故事导入 :多媒体演示乌鸦喝水的故事。看完后,老师提问:乌鸦是怎么喝到水的?为什么把石头放进瓶子里,瓶子里的水就升上来了。

  引导学生说出石头占了水的空间,所以水就升上来了。

  (2)实验证明老师:石头真的占了水的空间吗?我们再来做个实验验证一下。取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒入第二个杯子,让学生观察会出现什么情况。

  学生通过观察会发现:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了一部分空间,所以装不下了。

  (3)观察比较

  观察:电视机,影碟和手机,哪个所占的空间大?教师:不同的物体所占空间的大小不同。

  (4)体积概念的引入

  教师:物体所占空间的大小叫做物体的体积。

  提问:体积与表面积的概念相同吗?为什么?

  2.体积单位的认识。(1)出示两个长方体。

  提问:怎样比较这两个长方体体积的大小呢?(要比较这两个长方体体积的大小就要用统一的体积单位来测量)

  (2)根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?

  教师:计量体积要用体积单位,常用的体积单位有立方厘米、立方分米、立方米,可以分别写成c3,d3和3。

  (3)认识体积单位。

  老师:请你猜一猜1c3,1d3,13是多大的正方体。

  学生讨论后回答:棱长是1c的正方体,体积是1c3;棱长是1d的正方体,体积是1d3;棱长是1的正方体,体积是13。教师请学生看教材,证实同学们的回答是正确的。

  (4)再次感受体积单位实际的大小。

  ①一粒蚕豆的大小是1c3,请同学们估出身边体积是1c3的物体。

  ②一个粉笔盒的大小是1d3,请同学们用手捧出1d3大小的物体。

  ③用3根1长的木条做成一个互成直角的架子,把它放在墙角,看看13有多大,估计一下,大约能容纳几个同学?

  教师:立方厘米,立方分米,立方米是常用的体积单位,要计算一个物体的体积,就要看这个物体中含有多少个体积单位,请同学们用4个1c3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?(4c3)为什么?(因为它是由4个体积是1c3的小正方体摆成的)

  (5)练习:完成课本第28页“做一做”第1、2题。

  【课堂作业】教材第32页练习七1~5题。

  【课堂小结】教师:同学们,今天我们认识了体积和体积单位。它们在我们的生活中应用非常广泛。通过今天的学习,大家又有什么收获呢?

  【课后作业】完成练习册中本课时练习。

  板书设计1.体积和体积单位

  物体所占空间的大小叫做物体的体积。常用的体积单位有立方厘米,立方分米,立方米。可分别写成c3,d3,3。

  第 7 课时 长方体和正方体的体积(1)

  学习内容长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的.例1及第32页练习七的第5~6题)。第 7 课时课型新授

  学习目标1.通过讲授,引导学生找出规律,总结出体积的公式。

  2.指导学生运用公式正确计算长方体、正方体的体积。

  3.培养学生积极思考、探索新知的思维品质。

  教学重点长方体、正方体体积计算。

  教学难点 长方体、正方体体积计算

  教具运用 正方体木块若干。

  教学过程二次备课

  【复习导入】

  1.什么叫体积?计量物体的体积常用的单位有哪些?

  2.怎样计算一个物体的体积呢?

  【新课讲授】

  1.长方体体积的计算。

  教师出示一块长方体积木,一块盖房用的大型砖板。

  (1)提问:它们的体积是多少?你是怎样想的?

  引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1c3或1d3去量就比较麻烦。

  教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

  (2)观察操作,探究长方体的体积公式。

  小组合作,用准备好的24块1c3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

  学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

  说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

  学生独立思考,然后小组内讨论交流,得出结论。

  小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

  板书:长方体的体积=长×宽×高

  讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

  (3)质疑:求长方体的体积公式需要知道什么条件?

  2.探究正方体的体积公式。

  (1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

  (2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

  3.运用长方体的体积公式解决问题。

  (1)出示教材第30页的例1。

  (2)学生看图,理解题意。

  (3)说出题中所给信息,和所求问题。

  (4)指名说出长方体的体积公式。

  (5)指名学生上台板演过程,其他同学判断。

  (6)老师订正书写。V=abh=7×4×3=84(c3)

  (7)看图,学生独立在练习本上完成。

  (8)指名板演,集体订正。

  【课堂作业】

  完成课本第31页“做一做”第1、2题。

  【课堂小结】

  1.这节课,你有什么收获?

  2.在计算长方体和正方体的体积时,要注意哪些问题?

  【课后作业】

  完成练习册中本课时练习。

  板书设计2.长方体和正方体的体积(1)

  长方体的体积=长×宽×高

  V=abh

  正方体体积=棱长×棱长×棱长

  V=aaa=a3

  教学反思

五年级数学下册教案6

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第41~42页例9、例10和“练一练’’,第45页练习七第1~2题。

  教学目标:

  1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。

  2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

  3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。

  教学重点:

  求两个数的公因数和最大公因数。

  教学难点:

  理解求公因数和最大公因数的方法。

  教学准备:

  小黑板

  教学过程:

  一、铺垫准备

  1.直观演示,作好铺垫。

  出示边长6厘米和边长5厘米的两个正方形。

  提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?

  2.引入新课。

  谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。

  二、学习新知

  1.认识公因数。

  (1)出示例9,了解题意。

  启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。

  交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?

  结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:12÷6=2 18÷6=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:12÷4=3 18÷4=4......2)

  (2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。

  交流:还有哪些边长整厘米数的正方形也能正好铺满?你是怎样想的? 你发现正方形边长的厘米数符合什么条件,就能把这个长方形正好铺满?

  (3)引导:现在你发现,哪些数既是12的.因数,又是18的因数?

  指出:大家发现,1、2、3、6这几个数,既是12的因数,又是18的因数,也就是12和18公有的因数,我们称它们是1 2和18的公因数。(板书)

  追问:4是1 2和18的公因数吗?为什么不是?

  2.求公因数。

  (1)出示问题。

  引导:我们已经知道,两个数公有的因数,是它们的公因数。那如果已知两个数,你能不能找出它们所有的公因数呢?接着看一个问题。

  出示例10,让学生明确要找出8和1 2的所有公因数,并找出其中最大的一个。

  (2)探索方法。

  引导:先想想怎样的数是8和12的公因数;再想怎样可以找到8和12的公因数。和同桌商量商量,找出它们的公因数,并找出最大的一个。

  学生思考、尝试,教师巡视、指导。

  交流:你是怎样找8和12的公因数和最大的公因数的?

  结合交流,引导学生理解不同思考方法:(在交流中板书过程)

  ① 分别找出8和12的因数,再找公因数,并确定最大的一个。

  ②先找出8的因数,再从8的因数里找1 2的因数,并确定最大的一个。 提问:为什么可以这样找8和12的公因数?

  ③先找1 2的因数,再从1 2的因数里找8的因数,并确定最大的一个。 追问:这种方法是怎样想的?

  小结

  3.用集合图表示公因数。

  出示两个圈:8的因数 12的因数(图略) 让学生分别说出8和12的因数,教师板书。

  引导:如果要在图里既看出8的因数和12的因数,又能把公有的因数写在共同的部分,这两个圈怎样合并到一起比较合适?小组里讨论讨论。

  4.回顾内容。

  提问:回顾今天的学习,我们认识了哪些内容?(板书课题) 什么是公因数和最大公因数?

  三、巩固深化

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习七第1题。

  学生练习,指名板演。检查板演过程,说明最大公因数;有错订正。

  4.做练习七第2题。 让学生直接写出得数。

  提问:能根据算式说说哪个数是哪个数的因数或倍数吗?

  四、小结收获

  提问:今天这节课你收获了什么?在学习过程中你还有哪些体会?<

五年级数学下册教案7

  教学内容:

  义务教育课程教科书数学五年级下册(人教版)第18~19页例1、例2。

  教学目标:

  1.使学生认识长方体,掌握长方体的特征。

  2.使学生认识并理解长方体的长、宽、高。

  3.通过引导学生观察、操作,培养学生的探索意识和实践能力,培养学生初步的空间观念和想象能力。

  教学重、难点:

  教学 重点:掌握长方体的特征,认识长方体的长、宽、高。

  教学难点:初步建立“立体图形”的概念,形成表象。

  教学准备:

  教师:多媒体课件、长方体形状的纸盒、长方体框架。

  学生:长方体形状的物品

  教学过程:

  一、导入

  师:今天老师带来一些比较有标志性建筑物的图片,大家一起来欣赏一下。(课件展示图片)这些建筑物结构的形状都有什么共同特征?

  生:建筑物结构的形状都是长方体。

  师:同学们观察得真仔细。(出示课件中建筑物的轮廓)

  师:不只是建筑物的形状,我们身边的一些物品的形状是长方体。请同学们一起来看大屏幕。(出示课件)

  了解了我们身边这么多物品的形状都是长方体,今天我们就来更加深入的研究长方体这个立体图形。

  (贴出课题:长方体的认识,并贴出画有长方体平面图的卡纸)

  (过渡语)师:我知道同学们也带来了长方体的物品,请你们拿出来给同桌展示一下。

  二、探究新知

  (一)通过摸,整体认识长方体的面、棱、顶点。

  1.师:接下来跟着老师来用手摸一摸。你摸到了什么?你有什么感觉?

  生:我摸到了长方体的面,长方体的面摸起来滑滑的、平平的。

  师:其他同学也是这种感觉吗?没错像这样摸起来滑滑的、平平的部分就叫做长方体的面。(板书:面)

  2.师:那除了面,我们还能摸到长方体的其他组成部分吗?

  (预设1)生:我还摸到了长方体的棱。

  师:那请问长方体的棱在哪里呢?(请生上台指出长方体的棱)

  (预设2)生回答不出来

  师边指边说:长方体两个面相交的部分叫做长方体的棱。(板书:棱:面和面相交的线段)

  接着让生在自己的长方体物品里找出长方体的棱指出来给同桌看看。

  3.指导学生观察顶点。

  师:同学们三条棱相交的地方叫作长方体的顶点。用手摸摸看。(板书:顶点:棱和棱的交点)

  4.师小结:同桌互相指一指说一说巩固一下长方体的面、棱、顶点的具体位置。

  (二)探究长方体的特征

  1.独立观察、小组合作探究长方体特征。

  (过渡语)师:刚才我们认识了长方体的面、棱和顶点,现在请你拿出长方体的物品,仔细观察长方体的面、棱和顶点,数一数,看一看,你有什么发现?

  (课件出示活动要求)请生朗读活动要求。

  提示:同学们在数面、棱、顶点的数目时拿着长方体的手不要来回转动,要想一想怎样数比较好,不重复也不遗漏。(教师巡视指导学生观察)

  2.汇报交流,归纳长方体的特征。(课件一步步出示答案)

  在汇报交流时注意:

  (1)引导学生按照一定顺序数面、棱、顶点的个数。

  在数棱和面的数目时,教师要引导学生认识相对(互相平行)及相交的棱、相对(没有公共边的面)及相邻的面(有一条公共边的面)。

  (2)若学生(出示有两个面是正方形的长方体)让学生指一指特殊的长方体中哪些面是相同的,哪些棱的长度相等。

  3.师小结:通过刚才的观察、探究,我们知道:长方体是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形,有8个顶点,12条棱,并且相对的面完全相同,相对的棱长度相等。

  (板书:6个面、8个顶点、12条棱)

  (出示课件,并让生把长方体的定义齐读一遍)

  (三)认识长方体的长、宽、高。

  1.动手操作,深化认识。

  (1)(过渡语)师:为了对长方体有更加深入的认识,我们大伙动动手来制作了一个长方体的框架。如果我只给你细木条和橡皮泥,该如何运用这些材料呢?

  请个别生读活动要求。

  小组讨论2-3分钟,请生回答。

  (预设)生:我要用细木条来当长方体的棱,橡皮泥用来黏住细木条,同时橡皮泥充当长方体的.顶点。

  师:同学们觉得这位同学的想法怎么样?有没有需要补充的?

  师:我也非常赞同你的想法,下面请同学们拿出信封里的材料开始制作吧。

  注意:请每组拿出一本书垫在下面再制作长方体框架。

  (师巡视并指导学生制作)

  (2)师:仔细观察长方体框架,你发现长方体用了几根细木条?

  生:12根细木条

  师:这些细木条其实就是长方体的12条棱,如果可以分成几组?

  (预设)生1:分为三组,四条长,四条宽,四条高。

  (预设)生2:我想分为四组,每一组里有一长,一宽,一高。

  2.认识长、宽、高。

  (1)师:相交于同一个顶点的这三条棱的长度相等吗?像这样相交于同一个顶点的三条棱的长度,分别叫做长方体的长、宽、高。

  (过渡语)师:你们刚才都说到了长、宽、高,请问同学们谁愿意带上你们的作品上台给大家指一指长、宽、高分别在什么位置?

  生:横着、竖着、侧着摆放长方体框架,分别让学生指它的长、宽、高。

  (2)认识不同位置放置的长方体的长、宽、高。(课件演示)

  3.课堂小结:通过对这节课的学习,你对长方体有什么新的认识?

  生:我知道了长方体的面、棱、顶点

  生:我还知道了长方体是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形,有8个顶点,12条棱,并且相对的面完全相同,相对的棱长度相等。

  三、练习巩固

  1.判断。

  (1)长方体有6个面,12条棱和8个顶点。( )

  (2)长方体相对的面的大小相同,但形状不相同。( )

  (3)在长方体中,不是相对的棱长度都不相等。( )

  2.想一想,做一做

  书本第21面 练习五 第一题

  四、课堂小结

  通过这节课的学习,你对长方体又有了哪些新的认识?

  五、板书设计:

  长方体的认识

  6个面 12条棱 8个顶点

  相对的面完全相同,相对的棱长度相等

五年级数学下册教案8

  一、课前游戏:

  文字游戏——说反话、做动作

  左、加法、乘法、上来、买进、给你、送出去、往南

  二、导入新课:

  1、快速抢答:

  课件出示:

  (1)我送给小红4张邮票,现在我有12张,我原来有( )张邮票。

  (2)一杯果汁再倒入40毫升后是200毫升,原来这杯果汁有( )毫升。

  (3)把甲杯里40毫升果汁倒给乙杯后,现在甲杯有100毫升,甲杯原来有( )毫升。

  同学们,你们为什么答得那么快呀?你能选一个说说你是怎么想的吗?你发现这几个题目有什么共同点吗?

  引导学生说出这几题都是已知现在,求原来。我们可以怎么想呢?相机板书:

  原来 倒过来 现在

  2、课件出示逆运算题:( ) ( ) (20)

  师:你能挑战一下这一题吗?

  学生试答,让他们说说自己是怎样想的?

  引出倒过来推算

  师:算出来的得数10对不对?我们有什么办法证明?

  生:顺着计算一遍。

  引导学生口头验算结果,然后回答第2小题。

  ( ) ( ) (54)

  3、小结。

  师:今天我们要学习的策略就是……?

  生答师板书:倒推

  三、教学例题:

  (一)、教学例

  1,学会基本的倒推思想。

  1、课件逐步出示例1情境图,生观察,并相机阅读条件和问题。

  师:你准备用什么策略来解决这个问题?(生自由汇报)

  师:你准备先从哪个条件入手解决这个问题?(生汇报)

  师:你准备怎么解决这个问题?(生自由汇报思考过程)

  2、画杯子图倒过来分析证明。(课件画图演示过程)

  3、填表分析。

  师:现在甲杯和乙杯各有多少毫升?你是怎么想的?原来甲杯和乙杯各有多少?你又是怎么想的?

  4、列式计算。

  师:你准备怎么列式计算?先算什么?再算什么?

  板书: 400÷2=200(毫升)

  甲杯 200+40=240(毫升)

  乙杯 400-240=160(毫升)

  师:为什么先算400除以2得到200,第二步为什么用200加40?算乙杯除了可以用400减去240,还可以怎样想?(板书:或200—40=160)

  5、学生检验。

  师:这个答案对不对,咱们想个办法证明一下。

  6、师:同桌说说解决这道题目的策略。(学生小组交流)

  7、出示练习十六第1题。(设计情境,收集上海世博会纪念卡)

  师:你准备怎样解决这个问题,用怎样的策略?

  学生根据题目中的条件信息,独立列式解答,教师巡视,注意后进生的答题情况,再汇报交流思考过程。

  师:第一步用60除以2算的是什么?根据什么条件这样算的?(生答)

  统计正确率,表扬与鼓励同步。

  师:有些题目在解答之前,我们可以先把重要的信息先整理出来。

  (二)、教学例2,学习如何收集、整理信息,再倒过来推想。

  1、课件播放例题2。

  读题,出示学习建议。

  学生同桌合作学习,教师巡视,挑选代表性作业实物投影交流。

  生汇报倒过来推想的策略,教师小结:

  课件倒过来逐个出示:

  探索简便思考过程

  师:我们也可以像上课开始做的那道逆运算题目一样,把题目简单化。

  课件出示:( ) ( ) (52)

  师:你会倒过来推算吗?(生口答)

  2、列式计算:

  师:先在小组里说说自己的想法,再列式解答。

  生答师板书方法一:52+30-24=58(张)

  师:还有什么思考方法可以找出答案?

  师:又收集的比送给小军的少6张,现在比原来就怎么样?

  生答师板书方法二:30-24+52=58(张)

  3、验算证明:

  师:根据求出的答案,再顺推过去,看看剩下的是不是52张?

  生口头检验。(58加收集的24张就有82张,送给小军30张减去30就还剩52张)

  4、小结:

  师:不管用哪种计算方法,咱们在解题之前的思考过程都用到了什么策略?

  生:倒过来推想的策略

  师:看来,倒过来推想的策略还真的'很重要呢!

  (三)、教学练一练题型,理解“一半多一些”题目的思考策略。

  1、课件播放练一练题目。

  (1)学生自由读题,说说通过读题,哪些地方有疑惑?

  预设:学生会说出“一半多一张”不太明白,教师提示:你能用两个动作来解释一下这句话吗?提供一叠画片,操作演示,帮助学生分析理解。

  结合学生的理解,逐步出示题目的变化信息,引导学生用简单的箭头图来表达。

  (2)师:根据摘录整理到的信息,你会倒过来推想吗?

  生汇报倒过来思考的过程,师相机课件出示。

  (3)师:根据这种倒过来推想的方法,你会列式计算吗?

  生独立列式解答,再汇报交流思考过程。

  (4)检验答案。

  四、巩固应用

  1、选一选:出示小刚买一个铅笔盒用去所带钱的一半,买一本笔记本又用去2元,这时还剩16元,小刚原来带了( )钱。(此题的安排目的主要是让学生能够巩固对“一半”题目类型的理解,并引导学生做选择题的方法还可以用答案代入法,其实也体现了学生的检验过程和与顺推思路的比较。)

  2、估一估、比一比:设计去苏州乘火车到上海参观世博会情境题,一种情况是家中8:20出发,到达苏州火车站约什么时刻?另一种情况是火车发车时间为8:20,从家到常熟客运站30分钟,再到苏州汽车站为1小时,从汽车站到火车站还需5分钟,为了不误车,最迟什么时候从家中出发?(让学生通过比较,进一步理解什么情况下适合用倒推策略来解决实际问题)

  五、总结谈话:

  今天你有什么收获?

  六、思维拓展:

  1、我来吟诗:古人用倒推作诗

  2、尝试做思考题“李白喝酒”。随音乐出示题目,教师先进行分析题意。

  借助箭头变化图帮助学生理解,让学生用今天所学的策略尝试解决。

  生课后讨论交流,然后汇报交流。夺取智慧星。

五年级数学下册教案9

  第一单元

  方程

  教学目标:

  1、使学生在具体的情境中,理解方程的含义,初步体会等式与方程的关系;初步理解等式的性质,会用等式的性质解简单的方程,会列方程解决一步计算的实际问题。2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象成式与方程的过程,积累将现实问题数学化的经验,感受方程的思想方法及价值,发展抽象思维能力和符号感。3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯;获得一些成功的`经验,进一步树立学好数学的自信心,产生对数学的兴趣。

  教学重难点:

  寻找等量关系是列方程解决实际问题的教学重点,也是教学的难点。

  课时安排:

  等式与方程,等式的性质和解方程(1)(课本P1~6)

  3课时

  等式的性质和解方程(2),列方程解决简单的实际问题(课本P7~11)3课时

  整理与复习(课本P12~14)

  2课时

  第二单元

  确定位置

  教学目标:

  1、使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规定;初步理解数对的含义,会用数对表示具体情境中物体的位置。

  2、使学生经历用数对描述实际情境中物体的位置到用数对描述方格图上点的位置的抽象过程,逐步掌握用数对确定位置的方法,丰富对现实空间和平面图形的认识,进一步发展空间观念。

  3、使学生积极参与学习活动,获得成功的经验,感受数对与生活实际的联系,拓宽知识视野,激发学习兴趣。

  教学重点与难点:

  1.初步理解数对的含义。

  2.会用数对表示具体情境中物体的位置。

  3.掌握用数对确定位置的方法。

  课时安排:3课时

  第三单元

  公倍数和公因数

  教学目标:

  1、使学生通过具体的操作和交流活动,认识公倍数与最小公倍数、公因数与最大公因数。

  2、使学生经历探索和发现数学知识的过程,积累数学活动的经验,进一步培养自主探索与合作交流的能力,感受一些简单的数学思想方法,发展数学思考。

  3、使学生在参与学习活动的过程中,培养主动与他人合

五年级数学下册教案10

  一、复习导入

  1.课件出示圆:关于圆这个图形,你已经了解了一些什么?

  学生口答。

  2.那么你还想学习关于圆的哪些知识呢?(课件显示什么是圆的面积)

  二、教学例7

  1.初步猜想:猜一猜圆的面积可能与什么有关?

  2.实验验证:圆的面积与半径或直径究竟有着怎样的关系呢?我们可以来做个实验。

  (1)教师逐步出示例题中的第一幅图:先出示正方形,再以。正方形的边长为半径画一个圆。

  提问:①图中正方形的面积与圆的半径有什么关系?②猜一猜,圆的面积大约是正方形的几倍?(引导学生观察得出圆的面积小于正方形的4倍,有可能是3倍多一些,并让学生适当说明自己的想法。)

  出示方格图后指出:可以用数方格的方法再来验证刚才的猜想。

  提问:想一想,我们怎样去数方格?学生交流时注意引导:①先数出1/4个圆的面积;②特别接近满格的可以看作满格,其余不满一格的可以凑成一满格。

  在学生数出后,让学生用计算器算一算,这个圆的面积大约是正方形面积的几倍,并将结果记录下来。

  (2)指出:只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。

  让学生观察例题中的下面两幅图,计算并填写图下的表格。

  3.交流归纳:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?

  学生交流中相机总结:(1)圆的面积是它的半径平方的3倍多一些。(2)圆的面积可能是半径·平方的丌倍。

  三、教学例8

  1.谈话导人:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。那么圆的面积究竟应该怎样来计算呢?我们继续学习。

  2.操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。再让学生用预先已经平均分成16份的圆,仿照教师的拼法拼一拼。

  提问:拼成的图形像个什么图形?

  追问:为什么说它像一个平行四边形?(拼成的图形上下的边不够直)

  3.初步想像:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?用实物或投影演示,验证或修正学生的想像。

  4.进一步想像:如果将圆平均分成64份、128份……也用类似的.方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

  交流后,教师出示如教科书所示的箭头、省略号、长方形虚线框。

  5.推导公式。

  (1)拼成的长方形与原来的圆有什么联系?在小组里讨论交流。

  交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆半径;长方形的长是圆周长的一半。

  追问:如果圆的半径是厂,长方形的长和宽各应怎样表示?(重点引导学生理解c/2=2πr/2=πr)

  (2)根据长方形面积的计算方法,怎样来计算圆的面积?

  根据学生的回答,完成形如教科书第105页上的板书,并得出公式:S=πr。

  追问:①看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?②有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

  6.做“练一练”。

  核对答案后,先引导学生比较两题的不同之处,再引导学生总结已知直径求圆面积的方法。

  四、教学例9

  1.谈话导人:在日常生活中,经常会遇到与圆面积计算有关的实际问题:

  2.出示例9。学生读题后,可以先问问学生有没有在生活中见过自动旋转喷水器,再让学生想像自动旋转喷水器旋转一周后喷灌的地方是什么图形,最后借助多媒体动画或挂图帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远距离。

  3.学生独立列式解答,并组织交流。

  五、做练习十九的第1题

  1.指名读题,并要求说说对题意的理解。

  2.学生独立尝试解答。

  3.反馈交流。对解答错误的学生帮助其分析错误的原因。

  六、全课小结

  今天这节课,你有什么收获? (重点引导关注:圆的面积公式是怎样的?我们是怎样推导出圆的面积公式的?解决实际问题时,根据圆的半径和直径,分别怎样求圆的面积?等等。

五年级数学下册教案11

  教学内容:

  教材14—15页例6、例7及相应的“试一试”“练一练”,练习三第1—3题。

  教学目标:

  1.学生通过自己探究,理解并掌握梯形面积公式,能应用公式进行正确计算。

  2.学生通过操作和观察,发展空间观念;培养学生的分析、综合、抽象、概括和运用转化的思考方法解决实际问题的能力。

  3.学生在探索发现的过程中,获得积极的情感体验,感受数学的魅力。

  教学重点:

  探索发现梯形的面积公式。

  教学难点:

  在探究中理解梯形的上、下底与平行四边形的底之间的关系。

  教学准备:

  多媒体课件、剪下书上第117页的梯形。

  探究方案:

  一、自主准备

  你能想办法求出下面梯形的面积吗?(每个小方格表示1平方厘米)

  你打算怎样做,与同学交流。(可以在图上画一画)

  假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成

  二、自主探究(剪下课本第117页的6个梯形)

  1.拼一拼:剪下的梯形中,哪两个梯形能拼成平行四边形,动手拼一拼。

  2.能拼成平行四边形的,求出平行四边形和梯形的面积,再填写下表。

  3.想一想

  (1)拼成平行四边形的两个梯形有什么关系?

  (2)拼成的平行四边形的底与梯形的上底、下底有什么关系?

  平行四边形的高与梯形的高有什么关系?

  每个梯形的面积与平行四边形的面积有什么关系?

  (3)根据平行四边形的面积公式,推想梯形的面积计算公式

  三、自主应用

  试一试:一块梯形麦田,上底36米,下底54米,高40米。这块麦田的面积是多少平方米?

  四、自主质疑

  说一说

  (1)梯形的面积公式是怎么推导的?你有什么疑问?

  (2)你认为本节课应学会什么?

  教学过程:

  一、明确目标

  提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?

  二、探究交流

  1.出示例6,交流梯形的面积。

  (1)组织汇报:面积是多少。

  (2)组内交流,你是用什么方法知道的.。

  (3)组织全班交流。

  2.出示例6,交流梯形面积的探究情况。

  (1)小组交流:对照例6的表格说一说自己是怎么拼的,怎么填的?讨论并交流例6下面的问题。

  (2)全班交流:指名上台展示拼法,并对照拼图说一说:拼成的平行四边形的底与梯形的上、下底有什么关系?梯形的高与拼成的平行四边形的高有什么关系?梯形的面积与拼成的平行四边形的面积有什么关系?

  (3)总结归纳:两个完全一样的梯形拼成一个平行四边形,拼成的平行四边形的底就是梯形的上底与下底的和,拼成平行四边形的高就是梯形的高,每个梯形的面积则是拼成平行四边形面积的一半,因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2

  学生在书上完成梯形面积的字母公式。

  3.交流“试一试”。

  (1)出示“试一试”的梯形图,你是怎么求这块梯形的面积的?先和自己的同桌说一说自己的想法及计算的结果。

  (2)全班交流:梯形的面积计算过程中,为什么要除以2?

  4.完成“练一练”。

  出示“练一练”,学生独立完成。

  全班交流:每个梯形的面积是多少?你是怎么想的?

  明确:根据梯形和拼成的平行四边形的面积关系,如果已知拼成的平行四边形面积,怎样求梯形的面积?如果已知每个梯形的面积,怎样求平行四边形的面积?

  三、巩固拓展

  1.完成练习三第1题。

  (1)学生自己找出面积相等的梯形。

  (2)同桌交流:你是怎么找出面积相等的梯形的?

  (3)全班交流:由于这四个梯形的高都相等,只要比较它们上、下底的和是否相等。除左边第3个之外,其余梯形的面积都相等,因为它们上、下底的和都是8厘米,高都是4厘米。

  2.完成练习三第2题。

  学生独立计算后再集体交流结果。

  3.完成练习三第3题。

  (1)出示零件的示意图,全班讨论交流:怎么理解“横截面”?指出图中零件中的横截面在哪里?

  (2)小组交流:这个零件的横截面是什么形?它的上底、下底、高各是多少?怎样求这个横截面的面积?

  (3)学生独立计算后再集体交流结果。

  (4)学生订正。

  四、总结延伸、组织阅读。

  1.你有什么收获?还有什么疑问?

  2.阅读教材第15页最后的内容,并动手画一画。

  板书设计:

  梯形面积的计算

  两个完全一样的梯形可以拼成一个平行四边形。

  平行四边形的底=梯形的上底+下底

  平行四边形的高=梯形的高

  梯形的面积=平行四边形面积的一半

  梯形的面积= (上底+下底)×高÷2 s=(a+b)×h÷2

五年级数学下册教案12

  教学内容:

  教材第75~76页内容及练习与应用第1—7题。

  教学目标:

  1、通过回顾与整理,使学生进一步加深对分数意义的理解

  2、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题

  3、进一步理解分数的基本性质,掌握约分和通分的方法。

  4、通过小组交流的形式组织学生整理知识要点,体验自己学习的收获,建立合理的'认知结构。

  教学重点:

  熟练解决求一个数是另一个数几分之几的实际问题

  教学难点:

  帮助学生建立合理的认知结构。

  教学方法:

  讲练结合法

  教学过程:

  一、回顾与整理

  1、这一单元你学会了什么?

  学生交流。

  2、小组讨论书上的三个问题。

  指名汇报。约分和通分的根据是什么?

  约分要约到什么为止?什么是最简分数?通分一般用什么作公分母?

  二、练习与应用

  1、做第1题。

  下面的涂色部分可用哪些分数表示?还能说出其他分数吗?说说你是怎样想的?

  2、做第2、3题。

  学生独立完成。校对,说说自己的想法。

  3、做第4题。

  可以用直线上同一个点表示的数,有什么特点?

  你准备怎样找呢?学生完成约分,说说哪些分数相等?学生独立画点。

  5、做第5题。

  学生独立完成。指名汇报方法。

  6、第6题

  学生先独立练习

  引导比较A三道题目计算方法有什么相同?

  B算式中选择的除数有什么不同?

  C从中还能想到些什么?

  沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。

  7、第7题

  练习后加强对比

  引导学生区别清楚:一、第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二、第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。

  三、课堂总结

  通过今天的复习你有什么收获?

五年级数学下册教案13

  教学反思:

  生2:我是通过画线段图得出解决问题的方法的。把全班男生看成一个整体(单位“1”),先计算出户外活动和去少年宫的男生人数共占男生总数的几分之几,然后再计算留在家中的男生人数占男生总数的几分之几。

  分数王国与小数王国

  教学目标:

  1、掌握分数与小数互化的方法。

  2、能正确地将简单的分数化为小数,将小数化为分数。

  能将分数与小数互化并比较大小。

  教学难点:

  掌握分数与小数互化的方法。

  教学准备:

  教师准备 PPT

  学生准备 两张完全一样的方格纸

  教学过程

  ⊙创设情境,导入新课

  师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

  (出示情境图)

  师:“分数王国”里有哪些数呢?“小数王国”里呢?

  (生汇报)

  师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

  生:120和0.06都说自己更大。

  师:120和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

  设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的120与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

  ⊙自主探索,学习新知

  1.解决问题。

  (1)出示教材7页情境图。

  师:比一比,“分数王国”里的120与“小数王国”里的0.06哪个数大?

  (2)大胆猜测,探究比较方法。

  方法一 把分数化成小数来比较。

  120=1÷20=0.05,因为0.06>0.05,所以0.06>120。

  方法二 把小数化成分数来比较。

  0.06=6100,120=5100,因为6100>5100,所以0.06>120。

  展示学生没有想到的.画图法,让学生在讨论中理解。

  0.06>120

  师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

  2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

  (1)认真读题,明确题目中的“翻译”指什么。

  (2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说18与0.125的互化过程。

  (3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

  3.归纳分数化成小数的方法。

  (1)探究将分数化成小数的方法。

  把下列分数化成小数:15 18 425

  练习,并思考转化方法。

  (2)小组内交流方法。

  (3)班内反馈。

  要求学生说出转化方法,并讲明转化的原理。

  师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。

  4.归纳“小数化成分数”的方法。

  把0.3,0.27,0.75,0.125化成分数。

  练习,探究小数化成分数的方法。

  师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

  设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

  ⊙巩固练习,拓展运用

  1.把下面的分数化成小数。

  320 58 516 925

  学生独立完成,和同桌说一说转化的方法。

  2.把下面的小数化成分数。

  1.5 0.28 0.06 3.7

  学生独立完成,和同桌说一说转化的方法。

  3.比较下面各组数的大小,说一说你是怎样比较的。

  19○0.1 110○0.09 1.66○53

  4.你说我答。

  同桌之间一个说分数,另一个说与这个分数相等的小数,互相交换着说。

  (让学生熟记一些常用的分数与小数的互化结果)

  设计意图:通过各种形式的练习,帮助学生掌握分数与小数的互化方法,增强学生应用所学知识解决问题的能力。

  ⊙课堂总结

  这节课我们学习了什么?通过这节课的学习,你有什么收获?

  ⊙布置作业

  教材8页4题。

  板书设计

  “分数王国”与“小数王国”

  18=1÷8=0.125 0.25=25100=14

  ↓ ↓

  用分数的分子除以分母 根据小数的意义,先把小数化成分数,再化简

五年级数学下册教案14

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的'1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

五年级数学下册教案15

  教学目标:

  1、通过练习,使学生进一步提高用数对确定位置的能力。

  2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。

  教学过程:

  一、基础练习

  下面是某一地区的平面图。

  1、用数对标出环球大厦和购物中心的位置。

  2、图中(11,4)表示的位置是( )。

  3、( )和( )在同一行上。

  4、小明从公园门口出来,到书店该怎样走?

  (1)独立完成解答。

  (2)集体评讲。

  二、提高练习

  1、练习三第5题。

  (1)理解题意,明白“行”“列”表示的意思。

  (2)根据(x,5)这个数对,说说x表示的是列数还是行数?

  根据这个数对能确定什么?它表示的可能是哪个班?

  (3)在小组中说说第(3)小题。

  这里的x,可能表示哪些数?为什么?

  2、完成练习三第6题。

  (1)理解题意,明确鲜花和绿色植物都应放在方格线的.交点上。

  (2)在小组中设计交流。

  (3)展示作业,汇报结果。

  你能用数对描述一下自己设计的摆放位置吗?

  你觉得自己设计的如何?优点是什么?

  互相评价:设计是否合理?是否美观?

  3、完成练习三第7题。

  平移后顶点位置的数对什么变化乐,什么没变?(第一个数变了,第二个数没变)

  第一个怎么变化的?

  独立在书上方格中完成第(3)小题。

  在小组中完成第(4)小题。

  说说顺次连接四个点得到了什么图形?

  4、完成练习三第8题。

  理解题意,简单介绍国际象棋的棋盘。

  棋盘上的列车行分别用什么表示?

  用g2表示白王,和数对表示的方法相同吗?

  完成第(2)小题的填空。

  在小组中互相说说黑车从C6~C2,是怎样前进的?

  三、阅读“你知道吗”

  四、课堂总结

  用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识呢?学好这个知识对于大家今后的学习、生活都有重要的作用。

【五年级数学下册教案】相关文章:

数学五年级下册教案02-27

五年级下册数学教案11-09

五年级数学下册教案最新02-14

小学五年级下册数学教案11-03

人教版五年级下册数学教案11-09

五年级数学下册教案《因数与倍数》10-12

小学数学五年级下册人教版教案 五年级下册小学数学青岛版电子版12-13

五年级下册数学教案(15篇)01-05

五年级下册数学教案15篇01-04