面积的教案(通用20篇)
作为一名为他人授业解惑的教育工作者,常常要写一份优秀的教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写才好呢?下面是小编为大家收集的面积的教案,欢迎大家借鉴与参考,希望对大家有所帮助。
面积的教案 篇1
一、知识要点
在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
二、精讲精练
【例题1】求图中阴影部分的面积(单位:厘米)。
【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。
62×3.14× =28.26(平方厘米)
答:阴影部分的面积是28.26平方厘米。
练习1:
1.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
3.求下面各个图形中阴影部分的面积(单位:厘米)。
【例题2】求图中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14× -4×4÷2÷2=8.56(平方厘米)
答:阴影部分的面积是8.56平方厘米。
练习2:
1.计算下面图形中阴影部分的面积(单位:厘米)。
2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)
答:长方形长方形ABO1O的面积是1.57平方厘米。
练习3:
1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。
3.如图所示,AB=BC=8厘米,求阴影部分的面积。
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。
【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。
I和II的面积相等。
因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以
6×4=24(平方厘米)
答:阴影部分的面积是24平方厘米。
练习4:
1.如图所示,求四边形ABCD的面积。
2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。
3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。
【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。
【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。
半径:4÷2=2(厘米)
扇形的圆心角:180-(180-30×2)=60(度)
扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)
三角形BOC的面积:7÷2÷2=1.75(平方厘米)
7-(2.09+1.75)=3.16(平方厘米)
答:阴影部分的面积是3.16平方厘米。
练习5:
1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。
2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。
3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
组合图形面积计算(二)
一、知识要点
对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
二、精讲精练
【例题1】如图所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的`斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米
[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
练习1:
1.如图所示,求阴影部分的面积(单位:厘米)
2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?
【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。
3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)
解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)
答:阴影部分的面积是16.82平方厘米。
练习2:
1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。
2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。
3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。
【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。
【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。
空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)
阴影部分的面积:10×10-21.5×2=57(平方厘米)
解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。
(10÷2)2×3.14×2-10×10=57(平方厘米)
答:阴影部分的面积是57平方厘米。
练习3:
1.求下面各图形中阴影部分的面积(单位:厘米)。
2.求下面各图形中阴影部分的面积(单位:厘米)。
3.求下面各图形中阴影部分的面积(单位:厘米)。
【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。
【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。
既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)
阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)
答:阴影部分的面积是3.87平方厘米。
练习4:
1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。
【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。
【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。
3.14×(30×2)×1/4-30=17.1(平方厘米)
答:阴影部分的面积是17.1平方厘米。
练习5:
1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。
3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。
面积的教案 篇2
目标
通过对比练习使学生进一步分清表面积和体积各自的计算方法以及这两个概念的区别,能够正确地计算长方体和正方体的表面积和体积。
教学及训练
重点
分清这两个概念和各自的计算方法。
仪器
教具
一个可以展开的长方体纸盒。
教学内容和过程
教学札记
一、揭示课题
我们已经学会计算长方体和正方体的表面积和体积,这节课我们就对表面积和体积进行比较。(板书课题)
二、探索研究
1、体积和表面积的比较。(拿出一个长方体,观察并回答)
(1)长方体的表面积指的是什么?体积指的是什么?(根据学生的.回答将长方体纸盒先拆开展平演示给学生看,再重新围起来,形成一个长方体,并板书)
表面积:是长方体6个面的总面积,叫做它的表面积
长方体
体积:(是6个面围成的)长方体所占空间的大小,叫做它的体积。
(2)表面积和体积各用什么计量单位表示?
根据学生的回答板书:
面积单位有:、、
体积单位有:、、
(3)计算一个长方体(或正方体)的表面积和体积,需要测量哪些长度?为什么?
根据学生的回答板书:
表面积=(长×宽+长×高+宽×高)×2
长方体
体积=长×宽×高
表面积=棱长×棱长×6
正方体
体积=棱长×棱长×棱长
2、应用。
出示例3,学生独立审题后教师提问:
①做这个纸箱至少要用多少平方米的硬纸板求的是这个纸箱的什么?
②这个纸箱的体积是多少立方米?怎么求?
学生解答后并让学生自己讲讲为什么这样做,最后集体订正。
三、巩固练习
1、做第23页的“练一练”。
2、做练习四的第1、2题。
四、课堂
学生今天学习的内容。
五、课后实践
1、做练习五的第3、4题。
2、把练习五的第6、7题填在课本上。
表面积和体积的对比
长方体
表面积=(长×宽+长×高+宽×高)×2
体积=长×宽×高
正方体
表面积=棱长×棱长×6
体积=棱长×棱长×棱长
面积的教案 篇3
教学目标
1、经历认识直角的过程,会辨认直角、锐角和钝角,会用已知直角比一比的方法,去判断直角。
2、在认识角的过程中,培养与人合作的意识,发展初步的观察能力和实践能力,体会数学与生活的密切联系,增强数学学习的兴趣。
教学重点、难点:
初步感知直角的特征;会画直角,判断直角、锐角、钝角;建立直角的表象。教学流程
一、复习导入:
出示:三个不同形状的角
师:老师这里有这样一些图形,你们认识吗?叫什么?角有什么特点?
今天我们就来继续研究角。
(板书:认识指角)
二、认识直角
1、谈话:上节课我们认识了角,你们能从桌上的物品中找到角吗?小组交流。
师:(取一张正方形纸)谁来介绍它的角?你还能找到同样的角吗?学生介绍,出示挂图。
师:仔细观察这三个角,它们真是同样的角?可以怎样来验证呢?学生动手试一试。小组合作验证:将三个角重合比较。师在黑板上画出直角。教学直角的符号。
小结:这三个角虽然位置不同,但他们都是直角。闭上眼睛想一想直角都是什么样?可以用手势比画一下。
2、师:出示一张不规则的纸。
师:在这张纸上你能找到直角吗?我们可以用它折出一个直角,想试一试吗?(请跟老师一起折一折)每人按要求折纸,并在折出的直角上标上直角符号,四人一小组比一比折出直角的大小怎样?。
指出:所有的直角都是一样大的。
3、拿出三角尺和数学书封面上的角比一比,你有什么发现?师:在生活中找找角。在我们的生活中,到处都有直角的身影,你能找到它们吗?
学生寻找交流,师生倾听评议。
4、、你能用两个同样的三角尺拼出一个直角吗?
学生拼,看看哪组想的方法多?要求用“比一比”的方法验证拼出的是否是直角。另外两个相同的三角尺呢?
5、我们可以用三角尺上的'直角来画。
要求:在方格纸上任选一点作为直角的顶点,把三角尺上的直角顶点对准这一点,然后沿着三角尺直角的两边画去,这就是一个直角。
三、认识锐角和钝角
1、出示3个钟面,观察钟面上时针和分针形成的角,学生交流:哪一个是直角,哪一个角比直角大,哪一个角比直角小?(黑板上画出锐角和钝角)
2、出示活动角,转一个直角,这是什么角?请你用活动角也转一个直角。
师:用活动角转一个锐角,锐角比直角怎样?回到直角,转一个钝角,钝角比直角怎样?
师:说说怎样的角是锐角,怎样的角是钝角?判断练习:哪些是直角?哪些是锐角?哪些是钝角?辨析中认识锐角、钝角。
1、“想想做做”第4题,数一数:图形中有几个直角?几个锐角和几个钝角?统计错误人数。
2、“想想做做”第5题,找一找:下面的四边形中,哪几个图形的四个角都是直角?并标上图形中所有的直角。
四、全课小结
通过今天一节课的学习活动,你有哪些收获?
面积的教案 篇4
教学目标:
1、掌握三角形的面积计算公式,并能正确计算三角形的面积。
2、经历探索三角形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。
3、能运用三角形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点:理解三角形面积公式的推导过程。
教学准备:每小组各两个完全一样的直角三角形、锐角三角形、钝角三角形,每小组各一个长方形、正方形和平行四边形的纸模型;一条红领巾;多媒体课件。教学过程:
一、动手操作,发现规律
1、游戏导入:用长方形、正方形和平行四边形,在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考或讨论有几种折法,再开始折,并用彩色笔画出折痕。
2、小组学生代表上台汇报操作结果。
3、师根据汇报有选择地在黑板上贴出以下四种折法:
4、引出课题。
师:看来今天我们班的同学很乐意表现自己,老师真为你们而高兴。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
二、探索三角形面积计算公式
1、玩游戏,小组内交流问题。
师:刚才同学们玩了一次折一折的游戏,想不想再继续玩?(想)好,现在我们再来玩一个。请听好要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:
(课件出示以下问题)
A、两个完全一样的三角形能拼出什么图形?
B、拼成图形的面积你会算吗?
C、拼成的图形与原来每一个三角形有什么联系?(学生在小组里动手拼一拼,并相互交流以上问题)
2、学生代表上台演示汇报(2名学生,1人汇报,1人演示)(生1边演示)生2边汇报:我们用2个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以一个三角形的面积=底×高÷2。
师:哦!原来是这样!同学们,你们明白了吗?请把掌声送给刚才这两位小老师。
师:刚才这个小组是用两个完全一样的锐角三角形来拼组的。你们还有其他新的发现吗?
(点用直角三角形拼组的小组代表汇报)(学生汇报的过程略)
师:汇报得真好!还有吗?
(点用直角三角形拼组的小组代表汇报)(学生汇报的过程略)
(注明:每一种拼组学生汇报后都贴在黑板上。在老师小结时,故意把其中的一个三角形拿掉,并用画虚线表示。)
3、根据学生的汇报,老师小结。
师:看来不管是锐角三角形、直角三角形,还是钝角三角形,只要两个完全一样的三角形就能拼成一个平行四边形,大家都说其中一个三角形的面积是平行四边形面积的一半。师追问:是不是任意一个三角形面积是任意一个平行四边形面积的一半?
(师任意拿起一个三角形和不等底等高的平行四边形的`纸板,让学生对比进行引导)
销售汇报:三角形的底和高必须与平行四边形的底和高相等时才对。
同学们现在说的很有道理,我们再来回忆一下刚才大家拼图形的过程。
老师板书:
三角形的面积是这个等底等高的平行四边形面积的一半。(板书)
师:看来,我们通过玩一玩,拼一拼,知道了怎样求一个三角形的面积了。那谁来说一说三角形的面积的计算公式是什么?
生:三角形的面积=底×高÷2(老师板书)
师追问:同学们,老师有点不明白,为什么写这个公式时用三角形的底乘高呢?“底×高”表示什么意思?为什么要“÷2”?
生:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。(学生加深对三角形面积计算公式的理解后,让学生齐读公式)师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?
生:s=ah÷2(板书)
4、介绍数学知识。
师:同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看屏幕。(多媒体出示P85页的数学知识)
师:同学们,我国古代数学家固然伟大。但是,老师觉得你们更了不起!他们年纪很大了才发现的,而咱们年纪轻轻的不也找到三角形面积的计算方法了吗?来,把热烈的掌声送给咱们自己!(响起掌声)好,接下来我们是不是更有信心继续展示自我?(是)
三、学以致用,解决问题。
师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)
1、
计算生活中的三角形的面积(1)计算红领巾的面积
师:老师这里有一条红领巾,(举起实物)如果想求它的面积有多少?需要知道什么条件?
生:需要三角形的底和高。(课件出示例2)
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
师:请同学们算一算。(学生练习后讲评订正)(2)计算三角形标志牌的面积
师:我们经常见到类似以下标志的标志牌(课件出示,注明:“4.8分米”是边提问边出示),你知道这个标志牌的面积吗?谁口算一下。
生:3×4÷2=6(平方分米)
师:都是这样做的吗?为什么不用3×2.5÷2呢?
生:因为2.5分米不是3分米对应的高。
师:如果与2.5分米对应的底边是4.8分米(课件出示)还可以怎样列式?
生:2.5×4.8÷2
师:通过这道题的解答,你明白了什么?
生:我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。
(3)认识道路交通警示标志。
师:请看屏幕。(多媒体出示)
师:你们认识这些交通警告标志吗?
(学生回答后,老师边小结,课件边出示板书)
向右急转弯
注意危险
减速慢行
注意行人
师:同学们,我们学校门口到人民路口这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)
(学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)
(4)画面积相等的三角形。
师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)
师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
(学生打开书87页,在书中画一画,完成第6题)
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?
生:无数个
师:通过画这样的三角形,你发现了什么?
生:三角形的面积与底和高有关,与形状无关。
四、课堂小结
师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?
五:布置作业:
面积的教案 篇5
教学目标
1、巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2、养成良好的审题习惯。
教学重点
运用所学知识解答有关平行四边形面积的应用题。
教学难点
运用所学知识解答有关平行四边形面积的'应用题。
教学准备
三角板,直尺等。
教学过程
一、基本练习
1.口算。
4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49
530+270 3.5×0.2 542-98 6÷12
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
三、巩固练习
1.测量右图中平行四边形的一条底边和它对应的高,
并计算它们的面积。
2.分别计算图中每个平行四边形的面积,
你发现了什么?(单位:㎝)
四、总结全课
通过本节课的练习,你有什么收获?你还有哪些疑难问题?
五、作业
优化作业。
面积的教案 篇6
[教学内容]
人教版《义务教育课程标准实验教科书?数学》五年级上册第79-83页的内容。
[教学目标]
1、知识目标
使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标
通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标
①通过自评、互评,引导学生学会欣赏别人,认识自己;
②通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点]
推导平行四边形的面积公式及运用公式解决各种各样的问题。
[教学难点]
运用平行四边形的面积公式解决各种各样的问题。
[突破重、难点的方法]
动手操作,细心观察,合作交流。
[教具准备]
多媒体课件、木框架、长方形图片、平行四边形图片、剪刀、表格。
[学具准备]
长方形图片、平行四边形图片、剪刀。
[设计思路]
设置疑问-引发猜想-探究感悟-再探究深化-生成知识-应用和解决问题。
[教学过程]
教学过程
设计思路
一、以景置疑,引出课题
1、观察主题图,提出问题
①出示第79页的主题图,问:在这美丽的学校或学校的周围,你能看到我们所学过的图形吗?
②谁能说说长方形的面积是怎样计算的?正方形呢?
③在这美丽的校园里,我最喜欢看的是学校中间的两个花坛,你们知道长方形的花坛大还是平行四边形的花坛大吗?是怎样知道的?(估计学生会说我会算出长方形的面积,而平行四边形的面积看上去跟长方形的面积差不多)
教师引出今天我们就来学习平行四边形的.面积,板书课题。
以学生熟悉的学校作为情景,让学生倍感亲切地投入到学习中,通过观察让学生重温学过的旧几何图形知识,然后再设置疑问,起到了一种温故而入新的效果。
1、数方格,比较平行四边形的面积与长方形的面积。
①拿出老师预先准备的方格纸图,即第80页平行四边形图和长方形图,然后叫学生用数的方法数出两个图形的面积各是多少。
②再认真观察方格纸上的两个图形,并完成以下的表格。
③仔细观察,你能发现什么?
学生可能会说出平行四边形的面积与长方形的面积是一样的,也有的可能会说出平行四边形的面积应等于它的底×高,对于任何一种发现,教师都要表扬,对于一些有价值的发现更要大力表扬。
通过猜测,数方格,填表格,仔细观察,不数兑现以学生为主体的教学思想,同时也使学生感悟到平行四边形的面积与长方形的面积有着密切的关系,为再探究平行四边形的面积公式储备了澎湃的动力。
2、剪图形,进一步探究平行四边形的面积。
①出示图形,问谁有方法可以求出它的面积。
指出:要求这个图形的面积要用剪或拼的方法,那给你这两个图形,你能用类似的方法或其它方法来求它的面积吗?
②学生以小组为单位用剪或其它方法共同探究平行四边形的面积的计算方法。
3、小组汇报探究的过程和结果。
汇报完后,教师再通过电脑课件把平行四边形转化成长方形的过程演示给学生看,让学生进一步理解平行四边形的面积公式的形成过程。
4、小结平行四边形的面积。
平行四边形的底相当于长方形的长,高相当于宽,由此得出:平行四边形的面积=底×高
5、阅读课本,捕捉新知。
让学生自己看书本第81页的内容,看完后谈自己还发现了什么?
通过剪的小组活动,进一步培养学生动手操作能力、观察能力、思维能力。通过合作、观察、思考、交流、概括等活动得出平行四边形的面积公式,这正好符合当前的教学理念,即让学生参与 知识的形成过程,同时也验证了学生之前的猜想。
通过自主探索,让学生学会从书中获取知识,养成爱看书的好习惯。
三、练习巩固,知识升华。
(一)基本练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
强调学生在计算平行四边形的面积时应先写出它的字母公式,然后根据公式直接计出它的面积。
2、完成书本第82页的第1题。
此题先让学生独立解答,教师只作简单的讲评。
(二)综合练习
1、游戏式练习。
用一个文件袋装着两个没有给出底边、高的长度的平行四边形,叫学生出来抽其中一个,抽到面积大的哪位同学赢。
学生在确定哪个图形的面积大时,渗透要求平行四边形的面积需要知道平行四边形的底和高分别是多少的知识。
2、完成第82页的第3题。
3、选择题。
(1)如右图,()的面积大。
A、甲B、乙C、相等
(2)将一个长方形拉成一个平行四边形后,它的周长(),面积()。
A、变大B、变小C、不变
4、完成书本第82页的第4题。
要求学生说出解题思路。
分层次、有梯度地进行练习,目的是遵循学生的认知规律,从而更好使学生掌握知识和提升能力。
四、课堂小结,拓展延伸。
这节课,你学习了什么,学会了什么?觉得自己的表现怎么样,同学的表现呢?老师呢?
自评、互评更能让学生认识自己,在评价中更能反思自己的行为或表现,促使共同进步。
面积的教案 篇7
设计说明
1.利用圆内知识间的内在联系,解决实际问题。
学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。
2.重视图示的作用。
结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
课前准备
教师准备 PPT课件
学生准备 圆片 剪刀
教学过程
一、创设情境,激发兴趣
师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的是什么图形?(圆)
师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)
师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]
设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。
二、探究新知,建构模型
1.课件演示自动旋转喷灌装置在灌溉农田的生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。
师:怎么求出浇灌的面积呢?(生汇报:根据S=πr2得出3.14×32=3.14×9=28.26m2,强调要先算“平方”)
教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。
2.课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)
(1)想一想,要求羊圈的面积,首先要知道圆的.哪一部分?(半径)
(2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡) (学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)
(3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m) 面积:3.14×202=1256(m2)]
3.探究推导圆的面积计算公式的其他方法。
(1)引导学生观察所拼成的图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的底相当于圆的周长,拼成的三角形的高相当于圆的半径)
(2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。
圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2
设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。
面积的教案 篇8
教学内容
义务教育课程标准实验教科书数学五年级上册第79~81页,平行四边形的面积。
教材分析
平行四边形面积计算是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上学习的,它是进一步学习三角形、梯形、圆和立体图形表面积的基础。在本节课的教学中,引导学生动手操作,合作探究,运用转化的方法推导出平行四边形面积的计算方法,并运用所学的知识解决生活中的实际问题。
教学目标
1、通过探索,理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的.面积。
2、通过操作、观察、比较,培养学生运用转化的方法解决实际问题,发展学生的空间观念。
3、学生在自主探究中体验成功的喜悦,获得积极的情感体验,激发学习的兴趣。
教学重点
理解并掌握平行四边行的面积计算公式。
教学难点
理解平行四边形面积计算公式的推导过程。
教具、学具准备
课件,平行四边形学具纸片,剪刀,尺子等。
教学过程
一、创设情境,引出课题
1、课件出示情境图。
师:同学们,很高兴能跟大家一起来学习,我发现我们学校环境特别优美,我拍了几幅照片,看一看,你能找出哪些图形?
生看图回答。
2、师:在过6天,我们学校就要举行庆典活动了,为了把我们的学校打扮得更漂亮,学校准备在操场的西边空地上新建两个花坛。(课件出示规划图)
3、师:说一说,这两个花坛分别是什么形状的?。
生:一个长方形,一个正方形。(课件相机抽出平面图形)
师:你认为哪个花坛大呢?
生1:长方形的大。
生2:平行四边形的大。
师:怎样来比较两个花坛的大小呢?
生:算出它们的面积,再比较。
师:你会计算它们的面积吗?
生:我会计算长方形的面积,将长方形的长乘宽就能算出它的面积。
4、平行四边形的面积怎样计算呢?今天我们一起来研究平行四边形面积计算。
板书课题:平行四边形的面积.
[设计意图:通过观察情境图,发现图形,巩固和加深了对已学过的图形特征的认识,加强学习内容与生活实际的联系,计算长方形的面积为学习新知作好了知识上的铺垫。]
二、探究新知,发现新知
1、猜一猜。
师:同学们大胆猜一猜,平行四边形的面积可能怎样计算?
面积的教案 篇9
一、教学内容:
课本第97~98页有关长方形面积计算的内容和相应的”做一做”中的题目,完成练习二十六的第1~5题。
二、教学目标:
1、使学生知道长方形面积公式的推导过程,掌握长方形面积的计算公式与方法,会用公式正确计算长方形的面积。
2、通过试验、操作、观察、思考,培养学生抽象、概括、发现、创新的能力。
3、渗透真知源于实践的唯物主义的。
三、教具:cai课件、长方形纸
四、教学设想:
通过复习上一节课的内容:面积和面积单位。引入,如果要测量一个长方形操场的面积,用面积单位去量,这种方法好不好?如果要求长方形游泳池的面积,我们能把面积单位摆到水面上去吗?从而引入面积计算的新方法:长方形面积的计算。
然后,出示一个长5厘米、宽3厘米的长方形,让学生通过动手操作,摆一摆可以摆下多少个1平方厘米的`小正方形。其次,由学生根据已掌握的知识和刚才动手操作的情况,你是怎样得出这个长方形的面积的,并推导出长方形面积的计算公式。最后通过练习与拓展,巩固所学的知识,发展学生解决问题的能力。
面积的教案 篇10
教学目标
1.理解长方体和正方体表面积的意义.
2.理解并掌握长方体和正方体表面积的计算方法.
3.培养和发展学生的空间观念.
教学重点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学难点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件.
学具:长方体、正方体纸盒、剪刀.
教学过程
一、复习准备.
(一)口答填空.
1.长方体有个面,一般都是,相对的面的相等;
2.正方体有个面,它们都是,正方形各面的相等;
3.这是一个,它的长厘米,宽厘米,高厘米,它的棱长之和是厘米;
4.这是一个,它的棱长是厘米,它的棱长之和是厘米.
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小.(板书课题:)
二、学习新课.
(一)长方体和正方体表面积的意义.
1.教师提问:什么叫做面积?
长方体有几个面? 正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2.教师明确:这六个面的总面积叫做它的表面积.
3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积.
4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积.
(二)长方体表面积的计算方法【演示课件长方体的表面积】
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的`;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.
2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长宽2
前后面:长高2
左右面:高宽2
3.练习解答例1.
例1.做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
4.巩固练习.
一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面.
列式:43+42.52+32.52
(三)正方体表面积的计算方法【演示课件正方体的表面积】
1.教师提问:正方体的表面积如何求吗?
学生:棱长棱长6
2.试解例2.
一个正方体纸盒,棱长3厘米,求它的表面积.
=96
=54(平方厘米)
答:它的表面积是54平方厘米.
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面.列式:
教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,
审题时要分清求的是哪几个面的和.
3.巩固练习:一个正方体的面积是1.2分米,求它的表面积.
三、巩固反馈.
1.一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?
2.一个正方体的棱长是5厘米,它的表面积是多少平方厘米?
3.判断正误,并说明理由.
(1)长方体的三条棱分别叫它的长、宽、高.
(2)一个棱长4分米的正方体,它的表面积是: =48(平方分米)
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小.
四、课堂总结.
什么是长、正方体的表面积?长、正方体的表面积如何计算?
五、课后作业 .
1.一个长方体的形状大小如下图:
它上、下两个面的面积分别是多少平方分米?
它前、后两个面的面积分别是多少平方分米?
它左、右两个面的面积分别是多少平方分米?
这个长方体的表面积是多少平方分米?
2.一个长方体铁盒,长18厘米,宽5厘米,高12厘米.做这个铁盒至少要用多少平方厘米铁皮?
六、板书设计
面积的教案 篇11
(一)教材说明
1.本单元教材内容
全单元教材主要由面积和面积单位、长方形和正方形面积的计算、简单的换算、解决问题等内容构成。
2.本单元教材的编写特点
(1)教材的设计思路由侧重于长(正)方形面积的计算到通过测量活动来有效地发展学生的空间观念。
(2)让学生在动手操作中学习面积和长(正)方形面积的计算。
(3)教材内容贴近学生的生活实际,富有现实意义。
(4)让学生在经历操作、估测等活动中体验数学的价值和合作学习的乐趣。
(二)单元教学提示
本单元教学的重点应放在让学生经历观察比较、动手操作、实践探索等数学活动过程,发展学生空间观念上。
1.在动手操作中认识面积的含义和面积单位。
2.突出学生的探究过程,引导学生主动掌握长方形的面积公式。
3.教学过程紧紧围绕发展学生空间观念这一主题展开。
(三)各节教材内容分析和教学建议
面积和面积单位
本节教材包括面积和面积单位两个内容,共由3个例题、2个课堂活动和练习六构成,主要目的是引导学生建立面积和面积单位的概念,为后面学习长方形和正方形的面积打下基础。
单元主题图:向学生展示了朝夕相处的教室,让学生看到教室里有很多的面。通过主题图的学习,为生的学习活动了良好的示范,有利于学生从中体会到学习面积的重要性。
例1:了观察物体的面和平面图形,让学生主要通过摸一摸、看一看来进行比较。让学生认识到物体的表面和平面图形都是有大小的,这种大小在数学上就称为物体表面或平面图形的面积。
例2:仍然是比较面积的大小,不过方法在例1的基础有了变化,通过比较的两面墙中贴瓷砖的大小、长方形和正方形的大小、树叶的大小等,让学生产生统一面积单位的需要。
例3:认识平方厘米、平方分米、平方米等面积单位。
长方形和正方形面积的计算
本小节主要包括探索长方形、正方形的面积公式,应用面积公式求面积,估计给定的长方形、正方形的面积以及比较长方形的周长与面积。这节教材突出了探索性、实践性和应用性。
例1:是用任意个1cm2的正方形拼长方形,在拼的过程中去发现用的正方形个数与拼成的长方形的面积的关系,拼成的'长方形的面积与长、宽之间的关系。
例2:是测量出给定的长方形的长和宽之后,再用1cm2的正方形纸片去覆盖长方形,并发现面积的平方厘米数与长、宽厘米数之间的关系。通过上述两次操作活动,引导学生归纳出“长方形的面积=长×宽”。
例3:先计算电视荧屏的面积,再计算遮电视机的方巾的面积,通过教师一句启发性的提问“正方形的面积该怎样计算?”很自然地过渡到正方形的面积公式。
例4:有两项任务:一是估测,二是比较长方形的周长和面积。
简单的换算
面积单位的换算是面积教学中的难点之一,本节教材内容限定在“简单的换算”之内。之所以说“简单”,是因为一是涉及的面积单位换算在两个相邻单位之间进行;二是较大单位的数是较小单位的数的100倍、10000倍;三是单位换算只在两个相邻的单名数之间进行,不出现复名数与单名数之间的换算。本节教材的内容包括探索面积单位之间的进率,进行简单的单位换算,共设计了3个例题和1个课堂活动。
例1:以求大正方形的面积的形式探索1dm2与1cm2之间的进率。
例2:hm2和km2三年级小朋友没有这些相关知识经验的感受,那么探索这两个单位之间的进率关系,以及hm2与m2、km2与m2之间的进率关系就更难了。因此,教材对这几个面积单位之间的进率关系作了淡化处理。用“同样地”三字告诉学生,像上面那么去推导也一定能得出1hm2=10000m2,1km2=100hm2。
例3:是面积单位的换算在生活中的应用。简单的单位换算涉及的内容不多,所以只设计了课堂活动,没有设计习。
解决问题
例1:表面上是“估计图中大约有多少只企鹅”,实际是通过估计面积来估计企鹅的只数。这个问题不是要学生得出一个准确的答案,主要是让学生经历估计过程,获得一些基本的估计方法。
例2:主要是体现解决问题,教学的重心应放在体现解决问题策略的多样化上。“给教室的地面铺方砖,需要多少钱?”选用不同价格的砖,需要的钱也就不一样。
实践活动在实践活动基地
活动内容比较多,涉及的知识不仅包括数学方面的,也包括生物、气象等多方面的,一方面让学生强调数学知识在现实生活中的应用,同时,又强调数学与其他学科的联系。整个活动可以分为活动准备、开展活动、活动3个部分。
面积的教案 篇12
教学目标
1、使学生理解并掌握正方形面积的计算方法、
2、通过正方形面积公式的推导,初步渗透事物之间具有内在联系,并可以互相转化的观点,培养学生思维的深刻性、
3、培养学生分析、推理、抽象、概括能力和动手操作的能力、
教学重点
理解并掌握正方形面积的计算公式,能正确地计算正方形的面积、
教学难点
正确理解正方形面积的计算方法、
教学过程
一、复习准备、
师:我们掌握了面积、面积单位和长方形面积的计算,请同学们回忆以下几个问题、
1、什么叫面积?
(物体的表面或围成的平面图形的大小,叫做它们的面积)
2、测量或计算面积时,常用的面积单位有哪些?
(平方厘米、平方分米、平方米)
3、闭上眼睛想一想,1平方厘米、1平方分米、1平方米各有多大?然后用手比划一下1平方厘米、1平方分米、1平方米的大小、
4、想一想长方形、正方形各有什么特征?
(长方形有四条边,对边相等,4个角都是直角、正方形四条边都相等,4个角都是直角)
5、要计算长方形的面积,必须知道哪两个已知条件?
(长和宽各是多少)
二、学习新课、
1、看图列式计算长方形面积、
投影出示长6厘米、宽2厘米的长方形、(单位:厘米)
(逐步移动长方形的宽,直至使长方形转化为正方形)
长6厘米、宽2厘米
6×2=12(平方厘米)
长6厘米、宽3厘米
6×3=18(平方厘米)
长6厘米、宽4厘米
6×4=24(平方厘米)
长6厘米、宽5厘米
6×5=30(平方厘米)
长6厘米、宽6厘米
6×6=36(平方厘米)
师:长6厘米、宽6厘米,这是一个什么图形?(正方形)
2、怎样计算正方形的面积?
学生通过研究,讨论得出正方形面积的计算公式、(老师板书)
正方形的面积=边长×边长
师:我们利用这个公式,解决一个实际问题、(出示例题)
例:有一块边长是5分米的正方形玻璃,它的面积是多少?
(学生独立完成,订正时老师板书)
5×5=25(平方分米)
答:它的面积是25平方分米、
三、巩固反馈、
1、量一个正方形手帕的边长,并计算它的面积、
(请一个同学量一下,告诉大家,正方形手帕边长3分米)
3×3=9(平方分米)
答:它的面积是9平方分米、
2、计算下面图形的面积、
投影出示、
(1)单位:厘米
2×2=4(平方厘米)
(2)单位:分米
9×9=81(平方分米)
答:正方形面积是4平方厘米、 答:正方形面积是81平方分米、
3、有一张方桌,桌面的边长是8分米、要配上一块与桌面同样大的玻璃,这块玻璃的面积应该是多少?
8×8=64(平方分米)
答:这块玻璃的面积是64平方分米、
4、一块长方形菜地的面积是120平方米、它的长是24米,它的宽是多少米?
想:根据长方形面积的计算公式考虑、
120÷24=5(米)
答:它的宽是5米、
5、怎样验算?
下面请同学们看一道思考题、(投影出示)
用一根长40厘米的细铁丝,围成几个不同的`长方形,再围成一个正方形,算一算围成的图形中哪一种面积最大?
分析:首先计算出长方形的长与宽的和、
40÷2=20(厘米)
(按长、宽都是整厘米计算)
长方形的长
长方形的宽
面积
19厘米
1厘米
19平方厘米
18厘
2厘米
36平方厘米
17厘米
3厘米
51平方厘米
16厘米
4厘米
64平方厘米
15厘米
5厘米
75平方厘米
14厘米
6厘米
84平方厘米
13厘米
7厘米
91平方厘米
12厘米
8厘米
96平方厘米
11厘米
9厘米
99平方厘米
10厘米
10厘米
100平方厘米
师:从上面情况,清楚看出当长和宽相等时,也就是围成正方形时,它的面积最大、
10×10=100(平方厘米)
答:围成的正方形的面积最大,有100平方厘米。
四、小结、
今天我们学习了正方形面积的计算、同学们掌握得很好,还有什么问题吗?
五、作业、
1、有一张方桌,桌面的边长是8分米、要配上一块与桌面同样大的玻璃,这块玻璃的面积应该是多少?
2、拿一张边长是10厘米的正方形纸板,剪下一个长10厘米、宽6厘米的长方形、剩下的部分是什么形?它的面积是多少平方厘米?
面积的教案 篇13
教学内容:
长方形面积的计算(《现代小学数学》第六册).
教学目标:
1.使学生掌握长方形面积计算公式的形成过程,并且会运用公式进行计算.
2.通过对长方形面积计算公式形成过程的理解,培养学生初步的空间观念及思维的深刻性.
3.培养学生合作学习的精神和动手实践的能力.
教学重点:
长方形和正方形面积计算公式的掌握和初步应用.
教学难点:
理解长方形面积计算公式的形成过程.
教学用具:
电脑、每个学生6个1平方厘米的小正方形、直尺、米尺、卷尺.
教学过程:
一、复习引入.
1.提问.
(1)我们已经学习了哪些面积单位?
(2)这些面积单位是怎样规定的?
(3)用手比划一下1平方厘米、1平方分米、1平方米的面积有多大.
2.说出下面图形的面积.(电脑演示)
画面一:
问:边长1厘米的正方形面积是多少平方厘米?
问:这个长方形的面积为什么是20平方厘米?
生:一排有5个1平方厘米,有4排,一共有20个1平方厘米.这个长方形的面积就是20平方厘米.
问:这个图形的面积是多少?你是怎样数的?
(先移动成为长方形再数)
设疑:这个长方形的面积是多少?为什么答不出?你能想想办法吗?
导语:有些长方形的面积用数方格的办法数不出来,有些面积比较大的,如长方形操场,教室地面,用摆的方法也很不方便.这就需要我们必须找到长方形面积的'计算方法.下面我们一起研究.[板书课题:长方形面积计算]
二、探讨新知.
1.理解长宽.(抢答)
问:长方形的长、宽各是多少?
问:为什么长是6厘米、宽是3厘米?
生:因为每个小正方形的边长是1厘米.
沿长边依次摆6个小正方形,长是6厘米.
沿宽边依次摆3个小正方形,宽是3厘米.
问:通过上面的练习,你能知道长、宽与什么有联系吗?
生回答后师总结:一排摆几个,长就是几厘米;摆几排,宽就是几厘米.表内板书:[长(cm)宽(cm)]
2.实践感知.
师:请你用6个1平方厘米摆一个长方形.(师巡视)
汇报你是怎样摆的?(生说师板书)
3.观察讨论.
讨论:仔细观察表格内长、宽、面积的数据,2人一组讨论:长、宽与面积之间有什么关系?
初步得出结论:长方形面积=长×宽
4.深入探讨.
师:所有长方形的面积都等于长乘以宽吗?我们再来研究一个例子.2人一组用12个1平方厘米摆成长方形,比一比哪组摆的方法多.1个同学做记录.
师巡视,汇报结果如下:(电脑演示,可让学生操作)
问:这些长方形的面积与它的长、宽有什么关系?
你能总结出长方形面积的计算公式吗?
[板书:长方形面积=长×宽]
如果用S表示面积,a表示长,b表示宽.字母公式是:
[板书:S=a×b]
5.释疑
师:复习中画面七那个长方形你能准确地求出它的面积了吗?
生:先测量长和宽再计算.
三、巩固练习.
1.直接列式计算.(口答)
2.判断对错.
(1)5×2=10(dm) ( )
(2)(5+2)×2=14(dm) ( )
(3)5×2=10(dm2) ( )
(4)2×5=10(dm2) ( )
反馈:(1)为什么错?
(2)求的是什么?(周长)你能指一指求的是哪里吗?
(3)求的是什么?请你指出来.
(4)为什么对?
3.动手实践.
师:教室里有很多物体的面是长方形的,请你测量并计算它们的面积.
步骤:(1)各组讨论分工(测量、记录、计算).
(2)汇报分工情况.
(3)分小组进行测量.
(4)反馈交流.
选测量正方形的小组,问:长和宽相等了,是什么形状?你能总结出求正方形面积的计算公式吗?
[板书:正方形面积=边长×边长S=a×a]
4.全课小结:这节课你学到了哪些知识?(看书、释疑)
5.思考题.
求阴影面积?单位:cm2
(多种方法解答)
板书设计:
面积的教案 篇14
教学内容:小学数学第十二册第126页
教学目标:
1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。
2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。
教学重点:进一步培养学生学会观察。
教学难点:进一步学会找隐蔽条件。
教学过程:
一、复习基本知识
1、我们已学过哪些平面图形?(请生回答,并出示图形)。
2、请生回答这些平面图形的面积怎样计算?用字母公式表示。
3、基本练习:求各图形面积。(单位:厘米)开火车
4、导入:今天我们继续复习图形的面积――组合图形的面积(板书)
二、变化练习
1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)
2、学生汇报:(边出示,边板书)
(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)
(2)正方形面积-角形面积列式:4×4-4×4÷2
(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2
(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2
(5)长方形面积+半圆的面积列式:3.14×22÷2+4×2
(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2
3、,并回答以下问题:
(1)由几个简单图形组成的图形叫做()。
(2)在你拼摆的`过程中,你发现图形的组合一般有几种情况?
(3)求组合图形的面积时,解答的步骤是什么?关键是什么?
三、强化练习
1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的面积。(单位:厘米)
6(1)先让学生独立思考,然后再请生回答。
(2)你有几种解法?并在大屏幕出示。
9
2、求下列各个阴影部分的面积。(单位:厘米)
(1)(2)
6
6d=6
A:先让学生做在自己的本子上。
B:并让学生说一说你是怎样解答的?
C:核对,并在大屏幕演示。
D::如果组合图形不能直接拆成几个简单图形,那该怎么办呢?
3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)
先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。
4、:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。
四、发散练习
如图:两个正方形摆放在一起,(大正方形边长为8厘米,小正方形边长为5厘米),图中有7个点,任意连接其中3个点,可以形成一个三角形,求三角形的面积?
(5分钟内看谁做得最多,方法最巧妙)
五、板书设计
平面组合图形的面积
(1)三角形面积+正方形面积(2)正方形面积-角形面积
列式:4×4÷2+4×4列式:4×4-4×4÷2
(3)半圆的面积+梯形面积(4)梯形面积-半圆的面积
列式:3.14×22÷2+(3+5×4÷2列式:(3+5)×4÷2-3.14×22÷2
(5)长方形面积+半圆的面积(6)长方形面积-半圆的面积
列式:3.14×22÷2+4×2列式:4×2-3.14×22÷2
面积的教案 篇15
教学目标
1、使学生理解圆的面积的含义.经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式.
2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。
3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。
教学重点
圆面积的公式推导的过程。
教学难点
理解圆经过无数等分剪拼后可以拼成一个近似的长方形。并且发现拼成的长方形的长相当于圆周长的一半。
教具、学具准备
有关圆面积的课件,彩色圆形纸片(每小组1个),剪刀(每组2把).学生每人准备一个圆形物品。
教学过程
一、创设情境,提出问题
【课件演示】花园里新建了一个圆形花坛,为了让花坛更漂亮,管理员叔叔打算给花坛铺上草坪,需要多少平方米的草坪呢?这实际上是要解决什么数学问题?
揭示课题:圆的面积
二、充分感知,理解圆的面积的意义。
提问:什么叫圆的面积呢?请大家拿出准备好的圆形纸片,用你喜欢的方式感受一下圆的'面积,告诉大家圆的面积指的是什么?
课件显示:圆所占平面的大小叫做圆的面积。
你认为圆面积的大小和什么有关?
三、自主探究,合作交流。
1、引导转化:
回忆学过的一些平面图形的面积的推导过程,这些图形面积公式的推导过程有什么共同点?那么能不能把圆也转化成学过的平面图形来推导面积计算公式?
2、动手尝试探索。
(1)分小组动手操作,剪一剪,拼一拼,看能拼成什么图形?
(2)展示交流并介绍:你拼成了什么图形?在拼的过程中你发现了什么?
如果我们再继续等分下去,拼成的图形会怎么样?
小结:随着等分的份数无限增加,可以把圆剪拼成一个近似的长方形。
你能否根据圆与剪拼成的长方形之间的关系想出圆的面积公式?
3、学生合作探究,推导公式
面积的教案 篇16
学习内容:
圆的面积(教材16、17、18、页)
学习目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积的计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3、在估一估和探究圆面积计算公式的活动中,体会“化曲为直”的思想,初步感受极限的思想。
学习重点:
经历圆面积计算公式的推导过程,掌握圆面积的计算公式。
学习难点:
了解圆的面积的含义,并能运用圆面积的知识解决一些简单的实际问题。
教学准备:
等分好的圆形纸片
学习过程:
一、自主复习
写出正方形、长方形、平行四边形、三角形、梯形的面积公式并回忆面积公式的推导过程。
二、自主预习
(一)感知圆的'面积。
任意画一个圆,用彩笔涂出它的面积。
我知道:圆所占平面的( )叫做圆的面积。
(二)、观察P16中草坪喷水插图,思考:喷水头转动一周,所走过的地方刚好是一个什么图形?说说这个圆形的面积指的是哪部分呢?圆的半径是多少?
(三)估一估
请你估计半径为5米的圆面积大约是多大?
先独立思考后观察分析书16页的估算方法。你还有其他的方法吗?可以记录下来。
三、小组交流自主预习部分
四、自主探索圆面积公式
1、思考:怎样计算圆的面积呢?我们能不能从平行四边形、三角形、梯形的面积公式推导过程得到启发呢?能不能也将圆通过剪拼成一个我们学过的图形呢?(提示:可以把圆转化成长方形来想一想)
2、动手操作:在硬纸上画一个圆,把圆平均分成若干(偶数)等份,沿半径剪开拉直,再用这些近似等腰三角形的小纸片拼一拼。
拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?
第一步:把圆平均分成8份,拼一拼,拼成了一个近似的( )
第二步:把圆平均分成16份,拼一拼,拼成了一个近似的( )
第三步:把圆平均分成32份,拼一拼,拼成了一个近似的( )
如果分的分数越(),拼成的图形就越接近于( )。)比较剪拼前后的图形,发现()变了,()没变。
3、我来推导:把圆转化成平行四边形后,平行四边形的底相当于圆的( ),高相当于圆的()。因为平行四边形的面积等于(),所以圆的面积等于( )。如果用S表示圆的面积,圆的面积公式表示为:()
4、公式的推导:
平行四边形面积=底×高
圆面积=
1、还可以怎样拼接成长方形动手试一试并完成下面的填空
把圆转化成长方形后,长方形的长相当于圆的( ),宽相当于圆的()。因为长方形的面积等于(),所以圆的面积等于()。如果用S表示圆的面积,圆的面积公式表示为:()
长方形的面积=长×宽
圆面积=用字母表示圆面积公式:
五、小组交流
1、圆面积公式的推导过程
2、如何计算圆的面积
六、全班交流教师总结
七、学习检测
1、填空。
求圆的面积必须知道()利用公式S =()来计算。
2、解决书16页上面喷水池转一周浇灌草坪面积?
3、计算,求圆的面积: (1)r=2cm(2)d=10cm
4、一个圆形花坛的周长是6.28分米,它的面积是多少平方分米?
八、交流展示
九、回顾反思
通过今天的学习,你学会了什么?还有那些疑惑?
面积的教案 篇17
教学目的:
使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。
教学重点:
应用所学的知识解决一些实际问题。
教学准备:
实物投影仪等。
练习过程:
一、基本练习
1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。
7.2÷0.122.4÷0.30.2×12.6×5
0.38×10000.8×2526.1-3.5-7.5
3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2
2.看图思考并回答。
(1)怎样计算梯形的面积?
(2)梯形面积的计算公式是怎样推导出来的?
(3)右图所示梯形的面积是多少?
二、指导练习
1.练习
(1)名数的改写方法是什么?根据学生的回答板书:
除以它们之间的进率
低级单位高级单位
乘它们之间的进率
(2)根据改写的方法将第6题的结果填在课本上。
3.6公顷=()平方米1平方米=()公顷
4平方千米=()公顷52公顷=()平方千米
160平方厘米=()平方分米=()平方米
0.25平方米=()平方分米=()平方厘米
(3)集体订正时让学生讲一讲自己的想法。
2.练习:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?
(1)生独立审题,分小组讨论解法。
(2)选代表列出解答算式,不计算。
(3)由学生讲所列算式的想法,
(4)指导学生讲“(100+48)×250”为什么不除以2?
(5)学生计算出它的`面积,集体订正。
三、课堂练习
1.练习:根据表中所给的数值算出每种渠道横截面的面积。
渠口宽(米)3.11.82.02.0
渠底宽(米)1.51.21.00.8
渠深(米)0.80.80.50.6
横截面面积
(平方米)
生独立解答出结果并填在课本上,集体订正。
2.练习一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?
面积的教案 篇18
学生分析:
初步认识圆柱和长方形、正方形面积的基础上学习的。学生能够辨认,并从日常生活中搜集到圆柱形物体或类似(近似)于圆柱的物体,但是对圆柱还缺乏更深的认识。
教学目标:
1、在观察、交流、操作等活动中,学生经历认识圆柱和圆柱侧面展开图的过程。
2、认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。
3、积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。
教学重点:
理解圆柱有无数条高,侧面展开后是一个长方形或正方形。
教学难点:
理解圆柱的侧面积的计算公式推导过程。
数学经验:
获得解决生活实际的活动经验,体验过程的快乐。
课前准备:
教师准备课件。学生准备一个圆柱体实物、纸及小剪刀等。
教学过程:
一、创设情境
1、让学生交流自己带来的物品,说出它的名字和形状。
2、生活中还有哪些物体的形状是圆柱的。
二、认识圆柱
1、让学生先观察圆柱体物品,再闭着眼睛摸一摸表面。然后交流摸的感受。
2、在学生交流的基础上,教师介绍圆柱的各部分名称。
3、让学生拿一个圆柱形实物,指出它的底面、侧面和高。
预设:根据学生的回答,看学生指出的高的位置,进一步强调圆柱的高有无数条(圆柱里面和表面)。
4、认识两个底
重点在引导学生如何知道两个底的关系。
学生可能说到以下方法:
(1)测量底面直径(或半径)来验证,两个底面直径(或半径)相等,两个圆大小就一样。
(2)可以用卷尺或线绳测量周长来验证。
(3)把两个底剪下来
(4)可以用圆柱体物体的一个底面描一个圆,用另一个底面比一比,如果重合,就说明两个圆大小一样。
三、圆柱侧面积
1、创设情境
如果让你给一个圆柱的侧面包装,你怎么做?
设计意图:给学生创设一个真实的环境,想办法去解决生活中的实际问题,激发学习兴趣。
2、动手操作,探究侧面积的计算公式。
让学生根据手里的圆柱,实际包装一下试试。
预设:学生能够根据实物和纸,包一包,得出侧面是一个长方形或正方形。
设计意图:让学生在动手操作的过程中,经历、体验知识获得的过程。
3、说一说:(1)长方形纸的长和宽分别与圆柱的什么有关系?
(2)长方形的面积和圆柱的侧面积有什么关系?
4、议一议:该怎样计算圆柱的侧面积呢?
四、尝试应用
1、同组共同测量出组内一个圆柱的`周长和高。
2、让同组学生根据测量的数据尝试计算出它的侧面积,并组内交流计算方法和结果。
设计意图:用自己获得的知识再去解决实际问题。
五、课堂练习
1、练一练第1题。先让学生读题,并判断用哪张纸比较合适。交流时,重点说一说是怎样判断的。
2、练一练第2题。让学生自己计算罐头盒包装纸的面积,然后交流学生的计算方法和结果。
六、课堂小结
你知道了什么?谈一谈感受。
七、课堂作业
练一练第3题。求下面各圆柱的侧面积。
(1)d=8cm h=6cm(2)r=3m h=1、5m
第二部分:课后反思
生成1:探索两个底的关系。
教师预设:学生可能说到以下方法:
(1)测量底面直径(或半径)来验证,两个底面直径(或半径)相等,两个圆大小就一样。
(2)可以用卷尺或线绳测量周长来验证。
(3)把两个底剪下来。
(4)可以用圆柱体物体的一个底面描一个圆,用另一个底面比一比,如果重合,就说明两个圆大小一样。
学生生成:其一,预设的第二种方法,学生没有说出,但学生吴铮(学生认为是中下等学生)却间接的说出用滚动法测出两个底面的周长是否相等来验证两个底是否大小相等。其二,学生对于教师预设的这几种方法基本呈现出来。
教师反思:
设计这一环节的几种方法,教师最初的想法只是为了应付教案,对于学生是否能想到这些方法,没有真的从学生的角度去考虑。在实际的教学巡视中,发现学生的一些想法其实挺让我们感动的,关键在于我们是否真的俯下身来,去发现学生的真实想法,尊重他们的潜力,正如教研室的评价一样"巡视说起来容易,但是做起来并不是那么简单、形式而已"。这也提示我们,在课堂中有时需要教师发现的眼睛,需要我们给学生相的时间、空间,给学生说的权利,表达的愿望和机会,这才能让我们了解他们的真实想法。
生成2:动手操作,探究侧面积的计算公式。
让学生根据手里的圆柱(自带的圆柱型学具),实际包装一下试试。
教师预设:
学生能够根据实物和纸,包一包,得出侧面是一个长方形或正方形。
学生生成:大多数学生,基本上是在圆柱型物体的侧面用纸包一圈,然后用剪刀剪下来,得出侧面是一个长方形。学生杨俊(学生认为是中上等生)带的是一个塑料的圆柱型,所以他用剪刀把这个圆柱沿侧面的高剪开,然后展开成长方形。这就是很好的现场说教,不再需要任何课件的支持。
教师反思:
课堂真的需要交还给学生,学生的思维真的具有很大的潜能,就看我们能不能创造这个环境和机会,有时学生的思想和做法也能给教师提供一定的教学策略。
失败处:
一是在动手操作,探究侧面积的计算公式环节中,思索在"什么情况下圆柱侧面展开图是正方形?"忘渗透、引导了。看来匆忙备课、一次性备课还是不利于课堂教学,超周备课、二次备课有利于我们对教材的进一步理解,更有时间考虑自己的设计是否全面。
二是时间的控制上出现了前松后紧,在学生的认识圆柱的特点、探究侧面积的计算公式环节还有些沉不住气,给学生的时间,空间还是不到位,欠把握最佳时机或火候。课堂真的需要我们的耐心,正如吴正宪老师说的等一等。
面积的教案 篇19
活动目标:
1、能与同伴协商、分工,合作完成活动任务。
2、通过测量、比较面积的大小,初步体验面积守恒。
3、能积极尝试和比较主动地学习。
4、让幼儿体验数学活动的乐趣。
5、通过各种感官训练培养幼儿对计算的兴致及思维的准确性、敏捷性。
活动准备:
场地布置:面积大小相同、形状不同底块场地。
物质准备:塑胶板70块记录单、笔若干
活动过程:
一、集体活动:
1、给每个幼儿人手5块塑胶板,让幼儿用塑胶板自主地拼图。然后,请幼儿根据拼出的场地的'形状,想想它们分别像什么?再请幼儿比较这些场地的面积大小。
2、引导幼儿讨论:你们拼出的场地的面积大吗?让幼儿通过铺垫子去发现5块场地是否一样大。
二、操作活动:给5块场地铺垫子并记录用了多少块板。
引导幼儿讨论如何分工合作完成任务。
出示记录单,引导幼儿将操作结果记录下来。
3、通过给不同的场地铺垫子,比较结果发现5块场地面积的大小。
三、活动评价:初步体验面积守恒。
1、幼儿分组介绍操作过程和结果:你是和哪些小朋友合作的?怎样合作?分别给哪些场地铺垫子的?用了多少块垫子?
2、引导幼儿比较自己或别人的操作结果,并讨论:你认为着5块场地一样大吗?为什么?
小结:大家都用一样大小的垫子去铺场地,虽然场地的形状不一样,但每一块场地都是用了12块垫子,说明这5块场地一样大
教学反思:
在执教的过程中缺少激情,数学本身就是枯燥的,那在教孩子新知识的时候,就需要老师以自己的激情带动孩子的学习,在今后的教学中这方面也要注意。
面积的教案 篇20
【教材分析】
教学主要内容:面积的含义,比较两个面积相差不大的正方形和长方形图形面积的大小,画出规定面积方格数的图形,解决生活中的一些实际问题。
教材编写特点:利用学生熟悉的生活中的一些物体表面的大小比较,让学生认识什么是面积,在此基础上,让学生比较两个面积相差不大的长方形、正方形面积的大小,学生通过动手操作用自己喜欢的办法去比较,然后合作、交流得出"你觉得哪种方法更好些呢?"这一问题的结论,最后让学生画规定面积的图形,解决一些生活中的实际问题,加深学生对"什么是面积"这一概念的认识,培养学生的动手能力,发展学生的空间观念及创新思维。
教材内容的数学核心思想:物体的表面或封闭图形的大小就是它们的面积,要准确地比较不同图形面积的大小,应用统一的单位去比较。
【学生分析】
学生在日常生活中经常听到"面积"这个词,有自己对"面积"的模糊认识或错误认识,但对究竟"什么是面积"没有正确的认识,在学习该内容时,"什么是面积"这一抽象概念的认识对学生来说十分困难,学生会把已往学过的"周长"与"面积"不自觉地联系起来,含混不清或是错误的认为一个物体的大小就是这个物体的面积等。
学生学习的兴趣:各种操作活动,有挑战性的问题。
学习方式:合作、讨论、交流
学法:自主探索、动手操作、大胆质疑、发现新知、获得新知、运用新知。
【学习目标】
1、知识与技能:理解"什么是面积"能举例说出生活中的"面积",会用比较好的方法比较两个图形面积的大小,解决生活中的实际问题。
2、过程与方法:自主探索发现"什么是面积",经历比较两个图形面积大小的过程,合作、讨论、交流、体验比较策略的多样性,找出更优的比较方法,然后通过动手操作、观察、比较,去解决生活中的实际问题,提高自己的创新能力。
3、情感、态度与价值观:体验数学来源于自己对生活的`各种事物的认识,并能运用数学解决生活中的实际问题,培养学生学习数学的兴趣。
【教学过程】
一、创设情境,获取新知(15分钟)
1、"面积"同学们在平常生活中听到过吗?你能谈谈你心目中的"面积"吗?
让学生畅所欲言,教师不做任何评价。
(设计意图:学生对"面积"的认识到哪种程度,有哪些错误理解,通过学生的回答,老师能做到心中有数,便于后面有针对性地去引导学生正确认识"什么是面积")
2、活动:
①摸老师准备的两本书的封面(语文、数学)说说,你有什么感觉?
②观察老师的手掌面和你的手掌面,或者摸摸老师的手掌面和你的手掌面,你有什么发现?
③观察黑板上老师画的三幅图,你想说些什么?
师生共同评价.
(设计意图:通过这些活动激发学生的学习兴趣,参与热情,鼓励学生大胆发表自己的见解,为认识"什么是面积"做好铺垫)
3、教师引导小结:刚才同学们感受并观察到了书的封面有大、有小,手掌面有大、有小,一些封闭图形也有大有小,这些物体表面或封闭图形的大小就是它们的面积。
4、举生活中的实例说说"什么是面积"?
(设计意图:帮助学生认识"什么是面积",加深学生对"什么是面积"的理解,培养学生的表达能力,让学生感受到生活中的数学)
5、请觉得自己原来认识的"面积"是错误的同学站起来,谈谈你的收获。
(设计意图:让学生自主发现自己的错误,改正自己的错误,加深学生对"什么是面积"的正确理解,突破教学难点)
二、动手操作,合作交流,解读探究(15分钟)
1、教师课件展示:教材中的正方形和长方形,提问:这两个图形谁的面积大呢?
当学生回答发生争论时,教师提问:怎样才能准确地比较出它们的面积大小呢?
(设计意图:让学生感受到面积相差很大的两个物体或图形,我匀可以用观察的方法直接比较出结果,当两个图形的面积相差不大时,我们就不能凭肉眼观察了,得找出更合理的办法才能比较出结果,激发学生的思维热情,调动他们动手尝试的欲望。)
2、独立思考,用自己喜欢的方法动手比一比。
3、小组内交流各自的方法。
4、小组汇报:(教师随机用课件展示学生的方法)
参考比较方法:
①用学具盒中的圆片摆,正方形只能摆9个,而长方形可以摆10个。
②用折一折、剪一剪,再拼一拼的方法。
③用学具盒中的方格纸来比。
④自己动手画方格。
⑤算一算(有的学生可能会用公式计算)。
5、提问:
①你觉得哪种方法更好些,为什么?
②如果用大小不同的格子能比较这两个图形的面积吗?为什么?
(设计意图:让学生经历比较的过程,通过小组讨论、交流体验比较两个图形面积大小、策略的多样性,鼓励学生大胆设想,勇于创新,从而体验到成功的喜悦。)
6、画一画,说一说
①在方格纸上画出3个面积是7个方格的图形。
②展示有创意的作品,学生评价。
③说说通过这次动手画,你发现了什么?
(设计意图:展示学生作品,让学生体验成功感,学生自己评价,培养学生欣赏数学的美的能力,发展学生的空间观念)
三、应用迁移,巩固提高(5分钟)
1、教材练一练第二题,独立完成
指名回答,说说你是怎么比较出结果的?
2、教材练一练第3题,自己数一数,同桌说一说。
学生汇报自己的数法(教师随机用课件演示)。
(设计意图:此题有半格的情况出现,要引导学生正确地数出整格和半格,从而掌握在方
格纸上比不规则图形大小的方法。)
3、教材练一练第4题
比一比,看谁比的快。(教师用课件演示)
(设计意图:用比赛的形式练习能调动学生的积极性。)
四、总结反思,拓展升华(5分钟)
1、说一说:什么是物体面积?怎样比较两个物体面积的大小?
2、应用:(课件展示)
比一比空白部分与阴影部分的周长,再比一比空白部分与阴影部分面积。你从中发现了什么?
(设计意图:学生容易把"周长"与"面积"的概念混淆不清,这一设计有利于学生区别"周长"与"面积",并让学生自己去发现问题,把整节课推入高潮。)
【面积的教案】相关文章:
面积的教案11-19
圆的面积教案09-21
面积单位教案11-14
《面积计算》教案03-09
《面积》教案范文03-07
面积和面积单位教案3篇02-04
【精选】面积和面积单位教案4篇08-21
面积和面积单位教案(通用9篇)05-27
面积和面积单位教案范文10篇10-17
【实用】面积和面积单位教案四篇10-10