- 相关推荐
初中趣味数学教案
作为一无名无私奉献的教育工作者,时常需要编写教案,教案是备课向课堂教学转化的关节点。那么优秀的教案是什么样的呢?下面是小编收集整理的初中趣味数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
初中趣味数学教案1
教学目标:
1、通过解题,使学生了解到数学是具有趣味性的。
2、培养学生勤于动脑的`习惯。
教学过程:
一、出示趣味题
师:老师这里有一些有趣的问题,希望大家开动脑筋,积极思考。
1、小卫到文具店买文具,他买毛笔用去了所带钱的一半,买铅笔用去了剩下钱的一半,最后用去剩下的8分,问小卫原有( )钱?
2、苹苹做加法,把一个加数22错写成12,算出结果是48,问正确结果是( )。
3、小明做减法,把减数30写成20,这样他算出的得数比正确得数多
( ),如果小明算出的结果是10,正确结果是( )。
4、同学们种树,要把9棵树分3行种,每一行都是4棵,你能想出几种
办法来用△表示。
5、把一段布5米,一次剪下1米,全部剪下要( )次。
6、李小松有10本本子,送给小刚2本后,两人本子数同样多,小刚原来
有( )本本子。
二、小组讨论
三、指名讲解
四、评价
1、同学互评
2、老师点评
五、小结
师:通过今天的学习,你有哪些收获呢?
初中趣味数学教案2
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的.和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( )。
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
2、判断
(1)一个三角形中最多有两个直角。 ( )
(2)锐角三角形任意两个内角的和大于90。 ( )
(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )
(4)三角形任意两个内角的和都大于第三个内角。 ( )
(5)直角三角形中的两个锐角的和等于90。 ( )
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。
2、汇报结果。
3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
初中趣味数学教案3
教学目标:
1、引导同学们领略数学隐藏在生活中的迷人之处;
2、培养同学们对数学的兴趣。
教学内容:
生活中的数学。
教学方法:
启发探索、小游戏
教具安排:
多媒体、剪纸、小剪刀三把
教学过程:
师:同学们,从小学到现在我们都在跟数学打交道,能说说大家对数学的感受吗?
学生讨论。
师:同学们,不管以前你们喜不喜欢数学,但老师要告诉大家,其实数学很有趣,它不仅出现在我们的课本,更隐藏在生活的每个角落,只要我们仔细探究,就会发现它在我们的周围闪着迷人的光,希望大家从今天开始,喜欢数学,与数学成为好朋友,好好领略好朋友带给我们的美的享受。事不宜迟,现在我们马上开始我们的数学探究之旅。首先,我们来玩个小游戏:
请大家拿出笔和纸,根据下面的步骤来操作,你会有惊人的发现。(PPT演示)
[1]首先,随意挑一个数字(0、1、2、3、4、5、6、7)
[2]把这个数字乘上2
[3]然后加上5
[4]再乘以50
[5]如果你今年的生日已经过了,把得到的数目加上1759;如果还没过,加1758
[6]最后一个步骤,用这个数目减去你出生的那一年(公元的)
师:发现了什么?第一个数字是不是你一开始选择的数字呢?那接下来的两个呢?如无意外,就是你的年龄了。是不是很有趣呢?至于为什么会这样课后大家仔细想想自然就明白啦,这就是数学的魅力所在了。接下来我们来尝试帮助格尼斯堡的居民解决下面的问题(PPT演示):格尼斯堡建造在普蕾尔河岸上。7座桥连接着两个岛和河岸,如图所示:
网路图
居民们的一项普遍爱好是尝试在一次行走中跨过所有的7座桥而不
重复经过任何一座桥。同学们,你们能帮助他们实现这个想法吗?拿出纸和笔设计的路线。
学生思考设计。
师:同学们行吗?事实上,著名数学家欧拉已经证明不能解决这个问题了,可是这是为什么呢?别急,我们继续看下去。
1944年的空袭,毁坏了大多数的旧桥,格尼斯堡在河上重新建了5座桥,如图:
B
现在请同学们再尝试一下,在一次行走中跨过所有的5座桥而不重复经过任何一座桥。
学生思考。
师:同学们,这次行得通了吧?那么为什么呢?有没有同学可以说一下他的想法?
其实,我们的欧拉大师经过研究大量类似的网络,证明了这样的事实(PPT演示):要走完一条路线而其中每一段行程只许经过一次,只有当奇数结点的数目是0或2时才是有可能的,在其他情况下,如果不走回头路,就不能历遍整个网络。
他还发现:如果有两个奇结点,那么经过整个路线的形成必须从一个
奇结点开始,到另一个奇结点结束。
师:我们来看一下是不是这样的?第一个图奇结点的个数为3,第二个图奇结点的个数减少到2个了,看来真的是这样的。
现在请同学们自己在练习本上解决这个问题:(PPT演示)
下面是一幅农场的大门的图。如果笔不离纸,又不重复经过任一条线,有没有可能画成它?
学生思考讨论。
师:我们看到它的奇结点个数为4,由欧拉的证明我们知道不能一笔画成。
那如果农场主将门的形状做成这样呢?(PPT演示)
学生尝试。
师:是不是可以啦,为什么呢?
生:奇结点个数为2.
师:这种不用走回头路而历遍整条线路的情况,不仅仅具有趣味性,在现实生活中具有很重要的实用性,比如,我们的邮递员和煤气抄表员,不走回头路意味着可以节省很多宝贵的时间。看来,数学并不像
某些时候想的.那样没什么用处了吧?
下面我们继续我们的奥秘之类吧。
今天我们班有同学生日吗?如果你生日,爸爸妈妈给你买了一个正方形的蛋糕,你要把它切成不同形状的平均大小的7块,怎么切?能行吗?尝试一下。
其实很简单,你只需要把正方形的周边(即周长)分成7个等长,定出蛋糕的中心,从周边划分等长的标记切向中电,(如图所示)即可。
为什么呢?这里我们用到三角形等高等底面积相等的性质。
吃完了蛋糕,我们来观赏一下百合花。(PPT演示):
一个乡村的池塘里种了美丽的百合花,百合花生长得很快,使它们覆盖的面积每天增加一倍。30天后,长满了整个池塘,那么池塘只被百合花覆盖一半时是多少天呢?同学们,你知道吗?
学生讨论。
师:答案是29天,多么神奇,是吧?潜意识里我们很难接受答案就是29天,只与30天差一天。但用数学我们很容易很清楚地知道是29天,奥秘就在“它们覆盖的面积每天增加一倍”这句话里面。你看,数学是多么聪慧、多么神奇的家伙!
其实,除了以上我们看到的一些有趣的数学影子外,我们的日常生
初中趣味数学教案4
教学内容:在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。
教学目标:1、通过对"扑克"有趣的研究,培养起学生对生活中平常小事的关注。
2、调动学生丰富的联想,养成一种思考的习惯。
教学重难点:"扑克"与年月日、季度的联系。
教学过程:
一、谈话引入
师:同学们,这个你们一定见过吧!这是我们生活中比较常见的"扑克"。谁愿意告诉我们,你对扑克的了解呢?
生:......
(教师补充,引发学生的好奇心。)
师: "扑克"还有一种作用,而且与数学有关!
生:......
二、新课
1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬
2、大王=太阳 小王=月亮 红=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天数
所有牌的和+小王+大王=闰年的天数
5、扑克中的K、Q、J共有12张,3×4=12,表示一年有12个月
6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。
7、一种花色的.和=一个季度的天数
一种花色有13张牌=一个季度有13个星期
三、小结
生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。
【初中趣味数学教案】相关文章:
幼儿大班趣味数学教案03-15
小学趣味数学教案(精选11篇)12-20
趣味的数学教案(通用18篇)04-23
幼儿大班趣味数学教案(精选14篇)07-11
幼小衔接趣味数学教案范文(精选17篇)11-30
初中数学教案11-04
《趣味抽奖》幼儿园大班数学教案12-26
初中趣味运动会项目01-24
人教版初中数学教案12-30