分数比教案

时间:2022-12-19 14:14:36 赛赛 教案 我要投稿

分数比教案(通用17篇)

  作为一名教职工,可能需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。那么写教案需要注意哪些问题呢?下面是小编收集整理的分数比教案,欢迎大家借鉴与参考,希望对大家有所帮助。

分数比教案(通用17篇)

  分数比教案 篇1

  教学目标:

  1、通过练习,能使学生进一步理解和掌握比较分数大小的基本方法,并形成相应的技能;

  2、使学生在自主探索、合作交流中,体验成功的愉悦,进一步树立学好数学的自信心,培养主动学习和独立思考的习惯。

  教学重、难点:

  用合适的方法比较分数的大小。

  教学过程:

  一、分类整理,复习引入

  师:比较分数的大小时,我们经常会遇到几种情况?

  第一类:同分母的分数相比较,如3/5和4/5;第二类:异分母的分数相比较,如3/5和4/9;第三类:同分子的分数相比较,如1/4和1/5。

  小组讨论:这三种类型的分数大小比较的基本方法是什么?你是怎样想的?

  方法一:同分母分数相比较,分子大的分数大;方法二:异分母分数相比较,要先通分,变成同分母分数,再比较大小;方法三:分子相同的分数,分母大的分数反而小。揭题--分数的大小比较练习(板书课题:分数的大小比较练习)

  二、自主探究,巩固反思

  1、完成练习十二第8题。引导学生根据数据的特点灵活的比较大小,4/5和8/15,可以先通分再比较;13/4和10/3,化成带分数,整数部分相同,可以比较分数部分;3/7和0.6,可以把3/7化成小数,也可以把0.6化成分数后再比较;5/8和2.5,以1为标准,所以5/8小于2.5。

  2、完成练习十二第9题。学生独立完成填写,然后交流思考过程。

  3、完成练习十二第10题。

  比较两个分数的大小:要求”谁的`平均步长一些?“可以先用除法分别求出两人的平均步长,再比较得到的两个分数的大小,最后写出答案。

  4、完成练习十二第11题。

  比较三个分数的大小:指导学生将三个分数两两比较,即:7/9﹥7/10,7/10﹥5/8,所以7/9最大,也就是陈东东投得准一些。

  三、思维拓展,总结质疑

  思考题:写出一个比1/5大又比1/4小的分数,并在小组里说说是怎样找到这个分数的。还能再找到这样的分数吗?师:通过这节练习课,你有什么新的收获?有什么经验跟大家分享吗?(生自由发言)

  分数比教案 篇2

  教学目标:

  1、通过回顾与整理,使学生进一步加深对分数意义的理解

  2、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题

  3、进一步理解分数的基本性质,掌握约分和通分的方法。

  4、通过小组交流的形式组织学生整理知识要点,体验自己学习的收获,建立合理的认知结构。

  教学重点:

  熟练解决求一个数是另一个数几分之几的`实际问题

  教学难点:

  帮助学生建立合理的认知结构。

  教学方法:

  讲练结合法

  教学过程:

  一、回顾与整理

  1、这一单元你学会了什么?

  学生交流。

  2、小组讨论书上的三个问题。

  指名汇报。约分和通分的根据是什么?

  约分要约到什么为止?什么是最简分数?通分一般用什么作公分母?

  二、练习与应用

  1、做第1题。

  下面的涂色部分可用哪些分数表示?还能说出其他分数吗?说说你是怎样想的?

  2、做第2、3题。

  学生独立完成。校对,说说自己的想法。

  3、做第4题。

  可以用直线上同一个点表示的数,有什么特点?

  你准备怎样找呢?学生完成约分,说说哪些分数相等?学生独立画点。

  5、做第5题。

  学生独立完成。指名汇报方法。

  6、第6题

  学生先独立练习

  引导比较A三道题目计算方法有什么相同?

  B算式中选择的除数有什么不同?

  C从中还能想到些什么?

  沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。

  7、第7题

  练习后加强对比

  引导学生区别清楚:一、第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二、第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。

  三、课堂总结

  通过今天的复习你有什么收获?

  分数比教案 篇3

  教学目标

  1、使学生学会用方程方法和算术方法解答两步计算的分数一般应用题、

  2、培养学生分析、解答两步计算的的能力和知识迁移的能力、

  3、培养学生的推理能力、

  教学重点

  培养学生分析、解答两步计算的的能力

  教学难点

  使学生正确地解答两步计算的分数一般应用题、

  教学过程

  一、复习引新

  (一)全体学生列式解答,再说一说列式的依据、

  两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?

  132-5

  =6.5-5

  =1.5(千米)

  根据:路程相遇时间-甲速度=乙速度

  (二)教师提问:谁来说一说相遇问题的三量关系?

  速度和相遇时间=总路程

  总路程相遇时间=速度和

  总路程速度和=相遇时间

  (三)引新

  刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)

  二、讲授新课

  (一)教学例1

  例1、两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇、甲每小时行5千米,乙每小时行多少千米?

  1、读题,分析数量关系、

  2、学生尝试解答、

  方法一:解:设乙每小时行 千米、

  方法二: (千米)

  3、质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?

  相同:解题思路和解题方法相同;

  不同:数据不同,由整数变成分数、

  4、练习

  甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?

  (二)教学例2

  例2、一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?

  1、学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系、

  由此得出:一批水果的重量 第一次+第二次

  2、列式解答

  方法一:解:设这批水果有 千克

  方法二:

  3、以组为单位说一说解题的思路和依据、

  4、练习

  六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 、六年级有学生多少人?

  三、巩固练习

  (一)写出下列各题的`等量关系式并列出算式

  1、甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?

  2、打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 、这部书稿有多少页?

  (二)选择适当的方法计算下面各题

  1、一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?

  2、甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?

  四、课堂小结

  今天我们学习的和以前所学的知识有什么联系?有什么区别?

  五、课后作业

  1、商店运来苹果4吨,比运来的橘子的2倍少 吨、运来橘子多少吨?

  2、一套西装160元,其中裤子的价格是上衣的 、上衣和裤子的价格各是多少元?

  教案点评:

  教学程序安排紧凑,教学方法得当,语言简炼,重点突出,整体安排符合学生认知规律,适合儿童特点。

  分数比教案 篇4

  教材分析

  本节课的教学是以整数乘法的三个运算定律及应用运算定律进行简便计算为基础。教材在教学整数乘法运算定律推广到分数乘法时,通过几组算式,让学生计算出○的左右两边算式的得数,找出它们的相等关系。出整数的.运算定律对于分数同样适用。接着再通过例6教学怎样应用所学的运算定律使一些计算简便,以培养学生的简捷思维能力,提高计算的速度。

  学情分析

  学生已经掌握了整数乘法的三个运算定律,并会用这些定律进行一些简便计算。由于在讲小数乘法时,整数乘法的运算定律已被推广和应用,因此学生可以通过比较,用类推的方法得到整数乘的运算定律对于分数同样适用。

  教学目标

  1、使学生知道分数乘加、乘减的运算顺序跟整数的运算顺序相同。

  2、使学生知道整数乘法的运算定律对分数乘法同样适用.使学生能够运用所学的运算定律进行一些简便运算.

  3.使学生知道在运算时应用了哪些运算定律,以培养学生的思维能力

  教学重点:

  利用乘法的运算定律,使得计算简便。

  教学难点:

  根据题目中的数的特征,选择正确、合理的简算方法。

  教学过程

  活动一:观察算式,发现规律。

  教师出示例5:让学生计算并观察每组算式,看看它们有什么关系?

  指名与全班交流。

  教师加以点拔。

  规律:整数乘法的运算定律对分数乘法同样适用。

  活动二:应用定律进行简算。

  教师出示例6:

  让学生独立试做,发现简便算法。

  然后指名汇报,说说在简算时分别用了哪些运算定律。

  活动三:巩固练习。

  1、完成14下面的做一做。

  订正时注意让学生说说每题用了什么运算定律。

  2、完成练习三的第一题。

  说说运用了什么运算定律。

  活动四:课堂。

  分数比教案 篇5

  教学目标:

  1、通过练习,能熟练地对分数的加减法进行运算。

  2、能正确进行分数、小数的互化。

  3、能结合具体情境,提出数学问题并解决简单分数加减法的实际问题。

  4、提高学生分析问题,解决问题的能力,体会到数学与生活的紧密联系。

  教学准备:

  若干长方形纸条。

  教学过程:

  一、引入课题。

  1、再现所学的知识。

  师:通过本单元的学习,你学到了什么?

  指名回答,引导学生回忆本单元所学的知识,根据学生的回答,教师板书如下:

  异分母分数加减法

  分数加减混合运算

  分数加减法分数、小数的互化

  分数加减法的实际应用

  二、指导练习。

  1、第1题,练习分数的加减法,请学生独自完成。

  2、第3题,练习有关分数的解方程,请学生独自完成,对有困难的学生个别指导。

  3、第4题,在学生解答此题的过程中,提示他们要找出弄脏的数字,首先应把两个数化为相同的表示形式。

  4、第6题。

  (1)先安排学生算一算。

  (2)然后组织学生寻找其中的规律。

  (3)尝试根据自己寻找的规律直接写出得数。

  (4)最后请学生独立出题,供同桌进行练习。

  二、实践活动。

  1、第2题,实践活动“垃圾分类”。

  (1)让学生统计家中一个星期丢弃的塑料袋的情况。

  (2)并分别计算出每天丢弃的数量占一个星期丢弃数量的几分之几。

  (3)根据每天的`数据,提出数学问题并解答。

  2、建造“分数墙”。

  (1)活动的目的是计算几个几分之一相加的和是1。

  (2)实现准备若干条长度相等的纸条,直接在纸条上进行分割,并填上相应的分数。

  (3)实际操作时,提醒学生注意由于纸条较薄,因此容易出现拼搭散乱的情况。

  分数比教案 篇6

  一、教学内容:

  人教版义务教育课程标准实验教科书小学数学五年级下册教材第61~62页,练习十一部分练习。

  二、教材分析:

  “分数的意义”一课是人教版新教材五年级下册的内容,是对小学生数概念的一次重要扩展。与旧教材相比,新教材在单位“1”这个概念的理解上进行了微调,将原先的“一个物体、一个计量单位,几个物体组成的一个整体都可以看作单位“1”这项内容调整为比较符合认知习惯的“一个物体、一些物体都可以看作一个整体,通常用单位‘1’表示”。

  三、教学目标:

  1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。

  2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的'能力。

  3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。

  四、教学重点:

  理解分数的意义

  五、学情分析:

  学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数,知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数及同分母分数的大小,会加减简单的同分母分数。通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,让学生经历整个概念的形成过程,帮助他们从中获得感悟,促使其主动参与建构。

  六、设计理念:

  本课的教学设计主要以构建主义基本理念为依托,注重学生的认知规律,关注学生的生活经验,让学生在做数学中体验分数的价值,激发学习的兴趣,培养良好的数感。 《数学课程标准》指出:“让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。”为了比较完整的建立起分数的概念,利用孩子们在三年级对分数的初步认识已有的知识为基础,提供平台让学生举例说明分数的含义,让学生在合作、探究中主动获取知识,找到把许多物体组成的一个整体平均分与把一个物体平均分之间的内在联系,抽象概括出分数的意义,并强调了单位“1”的概念,揭示了分数表示部分与整体的关系。教学过程中师生、生生之间的自我评价与相互评价,增强了学生的自信心和责任感,促进师生的共同发展。

  分数比教案 篇7

  教学内容:

  九年义务教育六年制试用教材第八册第三单元《分数的初步认识》

  教学目标:

  1、使学生初步认识分数,认识几分之一,几分之几;会正确地读、写分数,知道分数各部分名称。

  2、通过演示、操作、观察、比较,培养学生初步的逻辑思维能力。

  3,调动学生的积极情感,使学生主动探求,充分发挥学生的主动性。

  教学重点:

  为什么必须平均分才能用分数表示?

  教学过程:

  引入:

  1、同学们都认识什么数?

  2、这节课我们来初步认识分数。

  3、猜想:这种数为什么会叫分数?

  准备:

  (一)分与平均分

  问题:6个苹果可以怎样分?

  方法:对几种平均分的结果提问。

  小结:象这样每份同样多的分法是平均分。

  (二)分数的产生

  问题:3个苹果可以怎样平均分?

  平均分成的每份还能用整数表示吗?

  说明:这就要求产生一种新数----分数。

  新课:

  (一)认识二分之一和二分之二

  1、认识二分之一

  演示:把一个苹果平均分成2份。

  说明:2份中的1份是这个苹果的二分之一。

  2、认识二分之二

  演示:2份中的每一份都是这个苹果的二分之一。

  说明:这样的2份是2个1/2,也就是苹果的2/2。

  3、强化平均分

  演示:把一个苹果平均分成大小不同的2份。

  问题:2份中的1份还是这个苹果的1/2?为什么?

  说明:只有平均分成的两份,每一份才能用1/2表示。

  4、过渡:

  学生动手操作:折出图形纸的1/2;

  问题:怎样折出图形纸的1/2?

  方法:学生演示折纸的方法和结果。

  问题:如果大家继续平均分,能得到正方形的1/4吗?

  (二)、认识四分之一和四分之几

  方法:学生小组合作,动手操作

  展示折纸的结果。

  问题:为什么4份中的每一份都是这个正方形的1/4?

  它们有什么不同吗?

  这样的2份,3份是这个正方形的几分之几?

  方法:指一指哪是正方形的2/4;

  闭上眼睛想一想3/4是什么样?

  举起正方形的.4/4;

  问题:为什么4/4是整个的正方形?

  2/4,3/4,4/4都和谁有关系?

  说明:1/4这样的分数很重要。

  过渡:如果继续平均分,还能得到几分之几呢?

  (三)、认识三分之一和三分之几

  出示:一根钢管

  问题:要得到钢管的1/3需要怎样平均分?

  出示:一个圆

  观察:钢管的1/3和圆的1/3

  问题:你又发现什么?

  说明:把谁平均分了,得到的分数就是谁的。

  (四)加深理解

  出示:花瓣图,看图说分数

  小结:1/2,2/2,1/3,2/3,3/3......都是分数;

  几分之一都很重要,有这样的几个几分之一,就是几分之几。

  学生举例

  (五)看图自学

  1、看书:P178页(学生边看边说)

  2、说一说:对分数又有了哪些了解?

  3、反馈:看图写分数、读分数

  分数比教案 篇8

  教学目标:

  1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确 的计算分数的除法。

  2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

  3、能很好的计算分数乘除混合运算的题目。

  教学重点:

  分数除法的`计算的方法。

  难点:

  分数乘除的混合运算的运算的计算的正确率

  教学过程:

  一、复习回顾

  小组讨论

  1、怎么样来计算分数除法

  请学生进行讨论,讨论好以后 再请学生进行回 答。

  2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。

  请生说说你是怎么来理解这句话的。

  二、进行练习

  1、做课本66的1

  请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。

  学生做好了以后再请学生进行口答。

  对于做错的题目,让请学生自己来分析下错误的原因是什么?

  2、做第2题

  前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的?

  并请学生上黑板进行板演。

  进行集体订正。

  3、对比练习

  1) 城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?

  2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?

  4、做66页第4题

  请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

  三、布置作业

  做66页第5~7题

  3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。

  课后反思:

  通过今天的复习,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。

  在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。

  在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。

  分数比教案 篇9

  教学内容:

  教科书第38页例2、例3,第39页“练一练”,练习七第1-4题。

  教学目标:

  1、通过自主探索认识真分数和假分数,能判断一个分数是真分数还是假分数,理解假分数与真分数之间的关系,体会用假分数表示数量的合理性,加深对分数意义的理解。

  2、培养学生的观察、比较和分析、推理等思维能力。

  教学重点:

  理解和掌握真分数和假分数的意义。

  教学难点:

  正确理解假分数的意义,会用假分数表示数量。

  教学对策:

  要以学生对分数单位的理解为基础,通过涂色的操作,使学生经历假分数的产生过程,理解假分数与真分数的内在联系,体会用假分数表示数量之间关系的合理性、科学性。

  教学准备:

  教师准备教学光盘;学生准备水彩笔。

  教学过程:

  一、复习准备

  1.什么叫做分数?什么是分数单位?

  2.你能说出一些分数,并说明这个分数表示什么意义吗?

  二、教学新课

  1.认识真分数和假分数。

  (1)出示例2

  学生涂色表示相应的分数。

  把每个圆都看作单位"1",都平均分成几份?每份是几分之几?涂色部分各表示几分之几?每个分数里有几个1/4?

  要表示5个1/4,该怎样涂颜色?明确:用一个圆最多只能表示4个1/4,表示5个1/4要用两个圆。5个1/4就是5/4。

  通过刚才的涂色,你有什么发现?

  当涂色部分不满1个单位时,分数的分子比分母小;涂色部分正好满1个单位时,分数的分子和分母相等;涂色部分超过1个单位时,分数的分子比分母大。

  (2)教学例3

  出示例3,学生涂色。

  要表示每个分数,各要涂几个1/5?分别用了几个圆?你有什么发现?

  (3)分数分类

  比较例2、例3中的这些分数,你能给它们分一分类吗?说说你是怎样分的?

  (4)认识概念

  分子比分母小的分数叫真分数。分子和分母相等或者分子大于分母的分数叫假分数。

  和1相比,谁大,谁小?

  你能分别举几个真分数或假分数吗?

  你能再说说真分数、假分数的.意义,特点吗?

  2.练习

  (1)做"练一练"第1题。

  请学生说一说分别把什么看做单位“1”?

  (2)做"练一练"第2题。你是怎么判断的?

  (3)判断。(说说你判断的理由)

  真分数一定小于假分数。

  假分数都大于1。

  小于7/8的真分数只有6个。

  三、课堂练习

  1.练习七第一题

  学生独立描点

  真分数集中分布在0和1之间的这一段上,而假分数则分布在从1开始向右的部分,进而体会到真分数都小于1,假分数都大于1。

  2.练习七第二题

  3.练习七第三题

  4.练习七第四题

  独立完成

  学生说说是怎样比较他们的大小的?

  四、小结

  这节课学习了哪些内容?什么是真分数和假分数?

  课后反思:

  结合具体的分类引出真分数和假分数的概念,安排比较合理自如,既突出了学生的自主学习和个性差异,又体现了知识间的内在逻辑。教学中通过“放”与收的结合,突出了学生的自主性。这一内容学生掌握得不错。

  授后小记

  教学例题时,让学生自主对两个例题中出现的分数进行分类并说说分类的理由进而引出真分数和假分数的定义非常顺理成章。

  在此我还增加了一个环节,让学生验证一下真分数和假分数的数值与1相比的大小情况,学生发现:真分数都小于1,假分数都大于或等于1。这对学生以后分数的大小比较十分有利。

  分数比教案 篇10

  教学目标:

  1.使学生学会联系不同的知识,作出不同的推理,体会策略和方法的多样性。

  2.在运用不同的策略解决问题的过程中,感受知识间的内在联系,形成最优化思想。

  3.在解决问题的过程中,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

  教学重点:

  掌握用转化的策略解决分数问题的方法。

  教学难点:

  根据具体问题,确定转化后要实现的目标和转化的方法。

  教学资源:

  课件

  教学过程:

  一、回顾旧知,整理策略

  谈话:从三年级上册起,每一册数学都教学一种策略,你们知道我们学了哪些策略?(学生可能已经忘记,教师帮助回顾整理:依次是分析量关系的从条件向问题推理和从问题向条件推理,帮助理解题意的列表整理和画图整理,还有枚举转化假设与替换等策略)

  提问:这些策略你们都学会了吗?今天我们将合理的`选择这些策略来解决新的问题,大家愿意接受挑战吗?(板书课题:转化的策略)

  二、合作探究,运用策略

  1.教学例1(课件出示例1)

  学生读题,自主完成。

  谈话:这是一个稍复杂的分数问题,除了用刚才我们做的方法来解决,你们能否用以前学的策略来思考呢?(引导学生进一步分析)

  小组交流方法。

  汇报交流情况:(学生遇到困难可作适当的引导。)

  ① 根据男生人数是女生的2/3理解2/3这个分数的意义,可以画线段图,看出男生人数是美术组总人数的2/5。原来的问题就转化成美术组一共有35人,男生人数是总人数的2/5,女生人数是总人数的3/5,男生有多少人?女生有多少人?这是简单的求一个数的几分之几是多少的问题。

  ②根据分数2/3的意义,可以推理出男生人数和女生人数的比是2∶3。原来问题就转化成美术组一共有3/5人,男生与女生人数的比是2∶3,男生、女生各有多少人?这是按比例分配问题。

  ③根据分数2/3的意义,想到女生人数看作3份,男生人数是2份,于是产生解题思路:先算出1份是几人,再算2份、3份各是多少人。

  ④把作为单位1的女生人数设为x,那么男生人数就是2/3x,利用美术组一共35人,能够列方程解题。

  谈话:通过刚才的汇报和交流看出大家都有各自的想法,那你们最喜欢哪一种方法呢?为什么呢?(让多名学生回答,征求各自的看法。)

  刚才我们运用了不同的策略来解决这个问题,你们能检验一下自己做的是否正确吗?(引导学生交流检验方法)

  2.做第28页的练一练

  引导学生运用刚才学过的策略,用自己喜欢的方法来解决。

  要求学生说说你选择了什么策略,是怎样想的( 通过他们在交流中获得这些体验,让学生体会方法的多样性。)

  三、巩固练习 ,回顾策

  1.练习五第1题。

  要求学生根据示意图里的数量关系,写出分数,并转化成比。或者写出比,再转化成分数。(这道题可以看作沟通数学概念之间联系,组建概念系统的练习,有助于问题的转化。)

  2.练习五第2题。

  根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。(在线段图上可以联想到的数学信息越多,思维就越开放,问题转化的思路会越开阔,解决问题的资源也就越充分。)

  四、课堂小结 , 提升策略

  谈话:通过今天的学习,我们知道了在小学阶段学习了很多解决问题的策略,如果能合理选择,就能起到化繁为简的作用,帮助我们更好的解决问题。

  五、课堂作业

  练习五第3题。

  分数比教案 篇11

  教学目标:

  1、通过教学使学生理解单位“1”不仅是一个物体,也可以是一些物体。

  2、学生能掌握单位“1”平均分成若干份,表示其中一份或几份的数叫分数。

  3、学生知道单位“1”的几分之几是多少,某一个量是整体的几分之几。

  4、理解并掌握分数单位。

  教学重点难点:

  认识单位“1”,知道一些物体也可以看成是一个整体。

  教学流程预设:

  一、复习引入

  1、出示3/4,“认识它吗?”

  2、介绍分数的出现:当人们在测量、分物或计算中不能刚好得到整数结果时,常常用分数来表示.

  3、分数相关知识回顾:大家都了解分数的哪些知识?

  (1)、怎样读分数

  (2)、分数各部分名称(分子、分母、分数线)

  (3)、怎样写分数:请同学们在草稿纸上写一个你喜欢的分数,写完后同桌间互相读一读,并说说其各部分的名称。

  师:今天,我们继续来深入的了解分数。

  二、新授

  (一)、探索分数的意义

  师:首先,让我们来创造几个分数吧!请你用课前准备好的材料来表示一个分数,独立完成后组内成员互相说一说(每个人都必须说):

  (1)、你创造了哪个分数?(2)、这个分数表示什么含义?

  (学生交流,教师参与)

  1、班内讨论交流

  师:谁愿意来介绍你所创造的分数?

  生:若干,介绍。

  (教师提问:一个物体:

  ①你创造了哪个分数?表示什么含义?<建立模板>

  ②分子、分母分别表示什么含义?

  ③空白部分可以用什么分数来表示?

  一些物体:

  ①同“一个物体”的3个问题

  ②取其中的5份可以用什么分数表示?5/6是几枚扣子?

  ③3枚扣子可以用哪些分数来表示,分别说说它们的意义。)

  <用彩笔表示你是怎么分这些物品的,渗透“整体”概念>

  2、例子分类,总结

  师:大家说的都很不错。刚才我们创造了很多分数,下面我们来给这些物品分分类。

  生:一个物体;一些物体。(教师引导:老师是这么分的,谁能看出我分类的依据?)

  师:刚才大家在展示的时候,很多同学在用到一些物体的时候,用彩笔把所有物体都圈起来了,那为什么只有一个物体的时候我们一般都不圈呢?

  生:把它们看作是一个整体。

  师:我们发现,无论是一个物体或一些物体,都可以看成是一个整体。把这个整体平均分成若干份,其中的一份或几份就可以用分数来表示。

  (教师慢慢出示,考虑到学生的接受能力)

  这就是分数的意义,也是这节课重点要学习的内容。

  (揭题,全班齐读)

  师:一个整体可以用自然数“1”表示,通常叫做单位“1”。因此,分数的意义也可以表示成“把单位“1”平均分成若干份,其中的`一份或几份就可以用分数来表示。”

  师:我们思考一下,刚才同学们举的这些例子,分别都把什么看作单位“1”?

  生:......

  师:在我们身边的一些物品中,可以把什么看作是单位“1”?

  生:......

  师:所以说,单位“1”可以是一个物体,也可以是一些物体。

  3、练习

  课本P62做一做(本题把什么看作是单位“1”?)

  (二)、分数单位

  1、阅读“课本P62做一做”下面一段话,并回答其提出的问题。

  2、什么叫分数单位。

  3、“课本P62做一做”中所出现分数的分数单位,其包含了几个这样的分数单位。

  4、同桌间互相说说上课一开始所写分数的分数单位,以及其包含了几个这样的分数单位。

  三、练习巩固

  课本P631、2、3

  (1、说说这个分数的意义?

  (2、把什么看作单位“1”?

  (3、分数单位是什么,其包含了几个这样的分数单位?

  (4、3/8表示几个月饼?4个月饼可以用什么分数来表示?

  四、课堂小结

  师:今天我们又学习了关于分数的哪些知识?

  生:......

  分数比教案 篇12

  【教学内容】

  人教版《义务教育课程标准实验教科书数学》五年级(下册)第60—62页的例1及“做一做,练习十一1—3小题

  【教学目标】

  (1)在初步认识分数的基础上,使学生经历分数意义的抽象、概括过程,初步理解单位“1”和分数单位的含义,在操作活动中建构分数的意义。

  (2)培养初步的观察能力、抽象概括能力及与同伴合作学习的能力。

  (3)使学生初步了解分数在日常生活中的应用,增强自主探索、合作交流的意识,展示领袖学生在课堂上的风采,树立学生学习信心。

  【教学重点】

  抽象出单位“1”的概念,概括分数的意义并认识分数单位

  【教学难点】

  能比较透彻的理解分数的意义

  【教学准备】

  课件、例1的图片

  【教学流程】

  一、激活旧知,创境引题

  (1)、口算:

  0.75÷15=

  0.4×0.8=

  4×0.25=

  0.36+1.54=

  1.24 -0.46

  1.01×99=

  420÷35=

  25×12=

  135÷0.5=

  1 ÷ 2 =

  (2)、引导回忆,

  出示“真假让你辨”。(认为正确的打“√”,错误的打“×”,用手势表示。)

  ① (—)的分母是3,分子是2,中间一条横线叫分数线。(  )

  ② 妈妈把一块饼分成4份,其中的3份可以用( — )表示。(  )

  交流讨论第②题并引出“平均分”。

  小结:只有“平均分”了,才能用分数来表示。“平均分”是产生分数的前提条件。进而出示“平均分的饼图”并让学生试着用完整的语言来说一说平均分的过程。

  (3)引题导入:同学们对分数已经有了一些认识。今天这节课,我们想在这个基础上进一步来认识分数。(板书:分数的意义)

  (评析:《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学“分数的意义” 这一概念时,我注意从学生的学情出发,用领袖学生的记忆唤起大多数学生已有的知识经验,帮助全体学生找到新知与旧知的链接点,让全体学生主动地投入学习。)二、先学后教 感悟提炼 建构新知

  1、初步感知与理解

  (1)(出示例1)根据每副图的意思,试着用分数表示图中的涂色部分。(学生打开课本到第60页)先填一填,并想一想每个分数各表示什么?

  交流汇报:你认为这些图中分别是把什么平均分的?平均分成了几份?用分数表示的是其中的几份?

  师结合学生的回答指出:

  ①一个饼可以称为一个物体(板书:一个物体)

  长方形是一种图形,也可以称为一个物体。像这样,我们可以把一个物体平均分一分得到了分数。

  ② 1米长的线段可以称为是一个计量单位。(板书:一个计量单位)我们也可以把一个计量单位平均分一分得到了分数。

  ③ 引导思考:最后一幅图还是一个物体吗?(不是)这里是把6个圆看作一个整体,也可以说是由许多物体组成的一个整体。(板书:由许多物体组成的一个整体)平均分一分也得到了分数。

  (2)揭示单位“1”:

  ①通过刚才的分一分、说一说,我们发现在表示分数时,被平均分的对象是非常广泛的。它可以是一个物体、一个计量单位或由许多物体组成的一个整体。

  为了简明地表示这个被平均分的对象,我们就用自然数1来表示。这儿的1可以表示一个物体、一个计量单位,也可以表示由许多物体组成的一个整体。通常又把它叫做单位“1”。(板书:单位“1”)

  ②让学生举例说一说。这个单位“1”还可以表示些什么?

  ③扩展对单位“1”的认识:

  其实这个单位“1”的范围是非常广泛的,除了刚才大家讲到的很多例子以外,还有许许多多。大到地球、宇宙,小到纳米、微米都可以看作单位“1”。

  ④试着说一说刚才例1中的这些图分别是把什么看作单位“1” ?是把单位“1”平均分成了几份、表示这样的几份呢?

  2.引导提炼与概括:

  (1) 刚才得到的这些分数,我们都是把单位“1”平均分成3份、4份、5份等等,想一想:还能把单位“1”平均分成9份、10份、100份,甚至更多吗?

  揭示:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (2)关注重点:

  你觉得这句话中最容易疏忽的是什么地方?(师圈出“平均分”)

  (3)沟通联系:

  想一想: “把单位1平均分成若干份”这个“平均分成”的份数相当于分数中的什么?

  “表示这样的一份或几份”这个取了“其中的几份”又相当于分数中的哪一部分呢?

  3、认识分数单位

  揭示:其实分数也像整数、小数一样有自己的分数单位。我们把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。想一想:分数单位就是指什么?(教师可以结合前面教学中的分数加以举例。)

  (评析:建构主义教学论认为“学生的知识建构不是教师传授与输出的结果,而是通过亲历、通过与学习环境间的交互作用来实现的。”教学中,结合对分数意义的理解,我注意做好学生角色的有效转换,带着学生走进“分数”,特别是学生对于“单位1”的理解是一个难点,于是,我又大胆放手让领袖学生提出问题、分析问题、辨析问题,真正体现了学生是学习的主体,从而帮助全体学生实现思维的“加速”。)

  三、展示反馈,丰富感知

  1、尝试说一说(课本第61--62页“做一做”)

  说说每个分数的分数单位,以及各有多少个这样的分数单位。

  2、动手试一试

  完成教材第63页的“练一练”:

  用分数表示下面各图中的涂色部分,先填一填,然后再想一想:每个分数的分数单位是多少?各有几个这样的分数单位?

  学生操作并交流(略)。

  (评析:在学生初步理解了分数单位的基础上,我特别注意让学生运用多种感官参与丰富的学习活动,填一填、想一想、说一说,学生在这样的学习活动中不断地体验与感受,不仅帮助学生分散了难点,同时又发展了学生的数感,也在这一过程中更加展示了领袖学生的风采。)

  四、巩固拓展,发散思维

  1.先读出下面的分数,并说一说每个分数的分数单位。(a不等于0)

  设疑提问:一个分数的分数单位是多少,是由什么决定的?

  2、尝试完成练习十一的第4题:“在每个图里涂色表示 。”

  学生独立完成后试着让学生讨论与交流:三幅图都表示( ),为什么每次涂色桃子的个数却不相同呢?

  小结:由于每次单位“1”桃子的具体数量不同,所以每次需要涂色的桃子的个数也就不同。所以,我们在涂色时要看清楚把谁看作单位“1”,单位“1”的具体数量有多少。

  3、联系生活解决

  读一读信息中的'分数,并想一想每个分数表示的意义。

  (1)五年级甲班的三好学生占全班人数的( —)

  (2)地球表面大约有(—)被海洋覆盖。

  (3)一个婴儿每日至少有(—)的时间是在睡眠中度过的。

  (4)中国是一个地少人多的国家,人均土地面积仅占世界人均土地面积的(—)却养活了世界人口的(—)。

  4、拓展提高

  有12支铅笔,平均分给2个同学。每支铅笔是铅笔总数的,每人分得的铅笔是铅笔总数的。

  讨论:说一说为什么是“(—)”和“(—)”?

  小结:这两个分数都是以“12支铅笔”为单位“1”,但由于平均分的份数不同,所以表示相应的 1份的数量也就不同。

  五、总结全课

  今天我们认识了“分数的意义”,还认识了分数单位。你有一些什么收获呢?(学生畅谈收获)

  (评析:通过提供丰富的、有层次的一系列数学活动,使学生经历运用数学知识解决实际问题的过程,既加深了对分数意义的认识,又积累了丰富的数学活动经验,提高了学生的数学思考能力,同时又发展了学生合理的创造意识。)

  【反思】

  在本节课的教学中,主要尝试以下几点:

  一、课堂教学结构能适应并引导学生的学习

  课堂教学结构,很多时候都是老师进行精心地设计,帮助学生找准知识的生长点与链接点,促进学生顺利地实行知识的迁移。可是,当这些学生长大以后,在面对一个新的问题时,谁去帮他做这件事呢?还是需要他自己去主动调动已有的认知,找到新知与旧知的链接点。与其让他们长大以后再去做这件事,还不如现在就让他们去做?于是,在课堂上,教师尽量不帮学生作预先的设计,也没有创设多少的情境,而是改变以前的学习方式,充分发挥领袖学生的引导作用,让学生在具体的问题情境中唤起已有的知识经验,促进学生主动地回忆、交流、阅读与思考,并在这一过程中让他们一点一点地感悟学习方法。因为我一直认为在引导学生解决问题的过程中有意识地渗透一些有效的学习方法,对他们终身是有收益的。

  二、数学学习活动培养并发展学生的创造力

  怎样的学习才是有效的?边教学边思考边探索,我深深地相信:只有让孩子在体验中学习、在创造中学习,学生才会真正地理解知识,同时自身的创造力也才能得到真正的培养。在教学中,针对小学生以形象思维为主的特点,没有把书本上现成的分数的意义告诉学生,而是在学生产生了强烈的探索欲望之后,及时设计了一系列的操作活动,调动学生的多种感官来参与概念学习,想办法让学生在各种想像、交流、画图与操作中去体验并自觉得出分数的意义。这样,新知就在学生们不断地思考与动手中,慢慢地、不知不觉地内化到学生的认知结构中,同时,学生的学习具有了鲜明的个性与创造性。课堂上的每一个环节,都力求做到了多给学生一个机会,让学生自己去体验;多给学生一个环境,让学生自己去感受;多给学生一个困难,让学生自己去解决;多给学生一些自由,让学生自己去创造;多给学生一个舞台,让学生自己去演讲。

  三、动手实践、自主探索、合作交流是学生学习数学的重要方式

  学生在三年级的时候就对分数有了初步的认识,分数的意义对于小学生来说是一个比较抽象的概念,怎样让学生理解单位“1”的含义?引导学生一步一步地从具体的实例中逐步抽象归纳出分数的意义是本节课所要解决的2个重点问题。因此,在本节课的设计上我淡化形式,注重实质,注意数学与生活的联系,一切以学生的发展为根本,以提升学生的数学思维为核心,充分发挥领袖学生的引导作用,引导学生在动手实践、自主探究与合作交流中体会、领悟单位“1”的含义、进而逐步理解分数的意义。

  人类生活与教学之间的联系应当在数学课程中得到充分体现。为此在课前复习的过程中,我设计了学生生活中常见的几种。抛出一些问题。让学生回答,以此来产生疑问进入课堂。所以就产生了分数。使学生体验到分数是因为生活的需要而产生的,数学来源于生活。

  动手实践、自主探索、合作交流是学生学习数学的重要方式,数学活动应当是一个生动活泼的、主动和富有个性的过程。教学中,我让学生通过动手实践、自主探索、合作交流,在这个过程中去体会“在表示分数时,有什么相同的地方?有什么不同的地方?”从而抽象概括出分数的意义。在这个过程中培养学生动手能力,增强自主探索与合作交流的意识,使学生乐学、会学、创造性的学习,培养学生创新的能力。

  学生是学习的主人,教师是数学学习的组织者、引导者和合作者。因此,在课堂上,我把一些问题引导出来,而后让学生以小组为单位进行组织学习。并且,在课上,充分发挥领袖学生的引导作用,自己走下去去帮助需要帮助的,及时为他们解决难题。

  总体上讲,这堂课还算成功,但是,在教学后也出现了一些问题,少数学生可能对于这一抽象的现象不能很好接受,因此,个别学生可能还摸不着头脑。如何在以后接手班级时更好的教学好《分数的意义》,还希望同行们能给我一些更好的见意。

  分数比教案 篇13

  教学目标:

  能力目标:培养学生动手动脑能力,以及解决实际问题的能力。

  知识目标:提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。

  情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

  教学重点:

  解决实际问题。

  教学策略:

  在小组间交流合作的基础上,提高计算能力和计算速度。

  教学准备:

  小黑板

  教学过程:

  一、导入新课。

  同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。

  二、实施目标。

  1、出示题目:

  跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?

  2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?

  3、先让学生试着做一做。

  4、交流作法。(根据学生做题情况导入方程的方法)

  5、教师指导学生用方程的方法解题。对用其它方法解答的'同学,只要合理进行表扬。

  6、渗透用算术法解答此题。

  7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。

  三、巩固目标

  1、试一试第一题。

  指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。

  指导学生分清两问的不同,认清乘法和除法的区别。

  2、试一试第二题。

  独立解答,全班订正。

  四、课堂,教师和学生自评。

  分数比教案 篇14

  一、教学目标:

  1、了解分数的产生过程,理解分数和分数单位的意义,能对具体情境中分数的意义作出解释;

  2、感受数学知识是在人类生产和实践中产生的,体会数学在实际生活中的运用,培养学生对数学的兴趣和利用所学数学知识解决实际问题的能力。

  二、教学重难点:

  1、理解分数的意义;

  2、了解分数单位,并会找分数单位;

  三、教具学具:

  多媒体课件、小棒、一米长的绳子、小正方体、长方形纸等。

  四、教法学法

  讲授法、小组合作探究法等。

  五、教学过程:

  (一)复习导入

  师:三年级的时候我们已经学过分数的初步认识,板书出示,这个分数读作?你能说一说它各部分的名称吗?今天这节课我们继续学习分数的相关知识,板书“分数的意义”。

  (二)课堂新授

  1、介绍分数的产生

  生活中,在测量、分物或计算时往往不能得到整数的结果,这时我们可以用分数来表示。

  2、初步感知:

  PPT出示,把一个饼平均分成四份,其中的一份可以用哪个分数来表示?如果这样把一个饼分成4份,其中的一份可以用表示吗?为什么不可以?因为没有平均分,板书“平均分”,强调在谈到分数的时候我们要考虑到平均分。

  3、活动一、动手操作,再认识

  (1)准备。老师给每个小组准备了不同的学具,(出示学具)你能利用你手中的学具通过折一折、分一分、摆一摆等方法,表示出吗?找同学为大家朗读活动要求。

  (2)小组活动。小组合作,动手操作,教师巡视。

  (3)汇报展示。你能表示出一张纸的吗?4跟小棒的应该如何表示?你还用什么表示了?

  (4)总结,认识单位“1”。刚才我们都是把哪些物体平均分的?像把一张纸平均分我们可以说成把一个物体平均分;把一米长的绳子平均分我们可以说成把一个计量单位平均分;把4根小棒、八个小立方体平均分,我们可以说成把一些物体平均分。一个物体、一个计量单位、一些物体都可以看做一个整体,一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。板书单位“1”。介绍这个单位“1”同我们之前学过的1不一样所以要加引号。

  4、活动二、联系实际,加深对单位“1”的理解。

  (1)你举出用单位“1”表示一个物体的例子吗?你能举出用单位“1”表示一个计量单位的例子吗?你能举出用单位“1”表示一些物体的例子吗?总结,单位“1”可小可大,自然界中小到一粒尘埃,大到整个宇宙都可以用单位“1”表示。

  (2)动手操作,加深理解。老师这里也有一个表示的作品,露出来的部分占一个整体的,你能画一画,并说一说整体是怎样的吗?说一说,你能说一说你是如何画的?这里的把谁当做单位“1”?你画的部分应该用哪个分数表示?

  5、活动三、理解分数的意义

  (1)大家都理解、的含义了,你能用自己的'话说一说什么是分数吗?PPT出示:把单位“1”平均分成若干份,其中的一份或几份都可以用分数表示。分数,简言之,先分后数,分什么?数什么?我们一起来感受下吧。把十个圆看做单位“1”,平均分成5份,其中的2份可以用哪个分数来表示?

  (2)活动。你能任意写一个分数,并和同桌说一说你写的这个分数表示的意义吗?抽签决定第几小组给大家分享自己写的分数。教师板书。

  6、认识分数单位

  整数有计数单位个、十、百、千等,分数也有计数单位,分数的计数单位是什么呢?请看大屏幕,“把单位‘1’平均分成若干份,表示其中一份的数就是分数单位”。以为例,把单位“1”平均分成5分,表示其中一份的数是,所以的分数单位是。举例练习。

  (三)生活中的分数

  分数在我们的生活中随处可见,PPT出示:据统计五三班女生人数占全班人数的,你能说一说这里的所表示的意义吗?五三班在午托班吃饭的人数占全班人数的,你能说一说这里的所表示的意义吗?人从小到大,身体的比例一直在变化,新生儿的头长占身长的,5岁时头长占身长的,成年人的头长占身体的。

  (四)课堂小结

  通过这节课的学习,你已经知道了什么?你还有什么不明白的地方吗?你有什么问题要问吗?

  (五)课堂小结

  通过这节课的学习,你学到了什么?你还有什么疑惑?你有什么问题要问?

  分数比教案 篇15

  教学目的:

  1.知识:巩固真假分数的知识,并使学生理解带分数的意义,会读、会写带分数;能够正确地把假分数化成整数或带分数。

  2.能力:培养学生从不同侧面观察事物的能力。

  3.教育:教育学生用发展、变化的观点对待事物。

  教学重点、难点:

  带分数的认识;假分数化成带分数方法。

  教具准备:

  课件或挂图

  教学过程:

  一、复习

  读出下面的分数,再指出哪些是真分数,哪些是假分数。

  二、新课

  (一)教学例3带分数的概念

  1.(课件或挂图)生活情境--分橙子。小明说:“我吃了一个半。”引出问题:“一个半”怎么用分数表示?

  2.学生小组讨论后,交流汇报。

  可以用32来表示一个半,还可以看成是22(就是1)和12合成的数,写成112。我们把这样的由整数和真分数合成的数叫做带分数。

  3.教师介绍带分数各部分的名称和读法

  4.举一反三:用分数表示出其他学生吃的橙子。

  (二)教学例4把假分数化成整数或带分数

  有时根据需要,要把假分数化成整数或带分数。

  1.把44、84化成整数。

  (1)学生小组讨论后,交流汇报。让学生说一说是怎么想的。

  (2)教师化的不同方式:

  A.根据分数的意义:4个就是1。

  B.利用直观图。

  C.利用分数与除法的关系。(板书)

  2.把73、65化成带分数。

  (1)学生分小组讨论怎样把73化成带分数。提问:用哪种方法改写更好?怎样根据分数与除法的关系来改写呢?

  (2)汇报交流(学生说,教师板书)73=7÷3=213

  师:如果分子、分母都比较小,中间的“7÷3”可以省略,直接写出“213”。

  (3)让学生自己把65化成带分数。教师巡视时,注意检查学生的思考过程。做完后,指名回答。

  3.教师指明:“从例4可以看出,根据分数与除法的关系,通过计算可以把假分数化成整数或带分数.所以说,带分数只是一部分假分数(分子不是分母的倍数的)的另一种书写形式.”

  4.:“谁能说一说把假分数化成整数或者带分数的方法?”让几个学生叙述后,教师归纳:“把假分数化成整数或者带分数,要用分母去除分子。能整除的,所得的商就是整数;不能整除的',商就是带分数的整数部分,余数就是分数部分的分子,分母不变。”

  三、巩固练习

  1.教科书第70页“做一做”。

  生独立思考完成后,全班交流讲评。

  2.练习十三的第4、5题。生独立思考完成后,全班交流讲评。

  四、教师:让我们一起回忆这两节课学习的内容。(什么是真分数,什么是假分数,什么是带分数,把假分数化成整数或带分数的方法。)再次强调:带分数只是分子不是分母的倍数的假分数的另一种书写形式。

  五、作业

  练习十三的第7、9题。

  分数比教案 篇16

  教学目标:

  1、掌握解题思路。

  2、会正确解答稍复杂的分数应用题。

  3、培养探索精神与分析解决问题的能力。

  教学重点:

  稍复杂的分数应用题的解题思路。

  教学难点:

  寻找新旧知识之间的联系。

  教学准备:

  教学软件(逐步演示的线段图及学生提供的知识)、贴纸(出示例4)、投影片(提供练习题)、纸条(收集不同算法)

  教学过程:

  一、谈话引入

  师:同学们,上新课前老师先提一个问题,大家先思考,然后抢答。如果要你们查找广州市市长热线电话,有什么办法呢?

  师:(汇报完)同学们想到了查114,找报纸等不少的办法,不管什么方法,我们都是通过联系一些能找到市长热线电话的有关资料去查找,同样,解决数学问题也要联系我们学过的有关知识。

  二、教学例4

  1、引出例4。

  下面同学们就利用这种解决问题要联系有关知识的方法,来解决今天学习的分数应用题(贴纸出示例4,后板书课题)

  例4:出示一个发电厂原有煤2500吨,用去3/5,还剩多少吨?

  2、出示目标。

  解答应用题时,我们通常是怎样做的?(1理解题意;2联系学过的知识去分析数量关系;3会解答。板书目标:会分析、会解答)

  3、理解题意。

  那么下面大家就先默读题目,看一下你是怎样理解这道题的题意的,用自己的语言组织一下。(独立进行理解题意)汇报。(提问几个学生,教师边根据学生的回答边逐步计算机出示线段图)若学生不会答可补充问用去3/5表示什么意思?(表示用去的是原有的3/5)说明什么?(把原有的2500吨看作单位1)

  4、查找资源。

  刚才大家都能比较准确地理解题意,那么看到题目的条件与问题,你想到什么知识对我们解决这个问题有帮助?(独立思考小组交流、师参与引导汇报教师根据汇报计算机出示有关知识)

  1)求一个数的几分之几是多少用乘法计算。

  2)总量-用去量=还剩量

  3)用去3/5用去?吨

  4)用去3/5还剩2/5

  5、主动探索,尝试解决。

  (1)经过一段时间的学习,同学们现在都学会了准确去寻找解决问题的有关知识,根据这些知识你们能解答例题了吗?如果能的就直接解答;不能的再重温这些有关知识,然后尝试解答,(如果确实有困难的可以和老师交流一下怎样解,做完的想一想还能有其他方法吗?有的就写出来)

  (2)小组内互相说自己怎样想?怎样算?(组长组织,已经完成的先说,没做完的先听其他人说。交流过程中指名不同的同学出来板算两种不同的方法)

  6、归纳思路,提炼方法。

  (1)汇报:(指着算法)要求还剩多少吨,就要用原有的吨数减去用去的吨数,因为用去的吨数题目中没有直接告诉我们,所以要先用原有的2500吨乘以用去3/5求出用去的吨数,再求还剩的吨数;要求还剩多少吨,就是求2500吨的2/5是多少,因为题目没有直接告诉我们还剩2/5,所以要先用1-3/5求出还剩几分之几,再求还剩多少吨。

  2500吨

  (用去?吨)还剩?吨

  用去3/5(还剩几分之几)

  解法一:2500-25003/5解法二:2500(1-3/5)

  =2500-1500=25002/5

  =1000(吨)=1000(吨)

  (2)还有其他不同的.算法吗?(对可能的错误如25003/5要指出其错误的原因。对如这样的解法+25003/5=2500要加以肯定,但说明体现不了解题的优越性)

  7、小结。

  (1(指着两种解法)比较一下:两种解法有什么区别?有什么联系?先别急,下面先由同学们带着问题看书P83例4,把例4补充完整后,先想一想,用自己的语言归纳出来。(稍后)下面大家把自己的想法在组内交流一下。汇报。

  区别:两种方法解题思路不同,第一种主要用总量减去用去量得到还剩量,第二种用总量乘以还剩的占总量的几分之几得到还剩量。

  联系:都把原有的吨数看作单位1,都要用到求一个数的几分之几是多少用乘法计算。(边听边观察计算机)

  (2)回忆一下,我们刚才是怎样解答例4的?(理解题意,联想学过的知识帮助解决问题)师:所以以后遇到新的问题,我们要充分理解题意,然后联系有关知识去帮助解决。

  三、练习巩固,适当扩展。

  下面我们就用这种解决问题的方法来做一些练习。

  1、P84:做一做1。(先说说自己是怎样想的,汇报。再用两种方法只列式不计算。订正:做的怎样?有什么评价?)

  2、一条公路全长240米,修路队第一天修了全长的1/4,还剩多少米没有修完?(先自己想一想,再用两种方法列式解答,全班订正)

  师:我们说解决问题要联系学过的有关知识,那么刚才两道练习你用到了什么知识呢?(例4的知识)问题解决了,新的问题又来了,(出示第3(1)题练习)遇到新问题又怎么办呢?联系什么知识?下面就交给你们自己去想一想、做一做,只列式不计算。

  3、一条公路全长240米,修路队第一天修了全长的1/4,第二天修了全长的1/3。

  (1)还剩多少米没有修完?

  (2)两天一共修了多少米?

  (3)第二天比第一天多修了多少米?

  (用纸条收集不同的算法对答案并重点汇报240(1―1/4―1/3)怎样想。第二、三问独立完成,小组评价,全班订正)

  四、教学评价。

  这节课学习了什么?(分数应用题)有什么收获?(解决问题要联系学过的有关知识或方法)所以当我们日常生活中遇到问题时,要善于查找有关知识或方法来解决。

  分数比教案 篇17

  教学目标:

  1、使学生探索并掌握把假分数化成整数或带分数的方法,知道带分数是整数和真分数合成的数。

  2、使学生在探索中,进一步发展数感,培养观察、比较、抽象、概括等能力。

  教学重点、难点:

  掌握把假分数化成整数或带分数的方法,知道带分数是整数和真分数合成的数。

  教学过程:

  一、复习引入

  今天我们将继续研究假分数,谁来说说什么是假分数?(板书:假分数)你能举例说一些假分数吗?学生举出的例子老师分两栏板书,左边一栏写能化成整数的假分数,右边一栏写能化成带分数的假分数。

  二、教学新课

  1、教学例7。

  然后指左边一栏,你能将这些假分数化成整数吗?小组里交流说说你的想法。

  (2)交流汇报方法:

  A.根据分数与除法的关系,用分子÷分母

  B.根据分数的意义:4/4就是4个1/4,4个1/4是1;10/5是10个1/5,5个1/5是1,10个1/5是2。

  C.还可以画图看一看。

  哪种方法转化更简便?(分子÷分母)

  (3)观察一下,能化成整数的假分数有什么共同特点呢?(分子是分母的倍数)

  :能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,能化成整数。

  完成练习九的第一题。

  (4)那么:4/3、7/3、11/8能化成整数吗?为什么?(分子不是分母的倍数)

  (6)带分数的意义。

  出示数轴。

  你能在数轴上找到4/3这个点吗?

  (4/3是4个1/3,从0开始数出4个1/3。)

  (3个1/3是1,在1后面再数1个1/3就是4/3。)

  指出:分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。

  如4/3就是3/3和1/3合成的数,1/3,读作一又三分之一。

  说说5/3是几和几分之几合成的数?读作什么?数轴上的点在哪里?

  2、教学例8。

  (1)出示例8。

  (2)怎样把11/4化成带分数呢?

  尝试练习,巡视指导。

  (3)交流汇报方法:

  (可以画图;)

  (11/4有11个1/4,8个1/4是2,3个1/4是3/4,11/4是23/4)

  (11/4=11÷4=23/4)

  (4)你认为哪一种方法化成带分数快速一些呢?

  因此在实际运用中就可以用分子除以分母。

  11/4=11÷4(=2……3)=23/4(商作为带分数的整数部分,余数作为分子,分母不变)

  说说把假分数转化成整数或带分数的.方法。

  分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

  3、完成练一练。

  独立完成练习。

  汇报方法,说说是怎么想的?

  哪些假分数能化成整数,哪些假分数要化成带分数?

  三、巩固练习

  1、完成练习九第3题。

  独立完成练习,汇报方法,集体核对。

  2、完成第2题。

  读题,理解题意。

  尝试练习,说说你是怎样想到的?怎样改写?

  如果看图,你能直接用带分数表示吗?你是怎样看的?

  3、完成第4题。

  关键要看清什么?(把“1”平均分成了几份)

  怎样找比较快?说说你的方法。

  4、完成第5题。

  独立完成填空。

  把不是0的整数化成假分数时,怎样化?(用整数与分母相乘的积作分子)

  5、完成第6题。

  独立完成。

  汇报方法,说说想法。

  还有其它的比较方法吗?哪一种方法比较快?

  四、课堂

  今天学习了什么内容?你又有了什么新的收获?8/11能化成带分数吗?带分数是假分数的另一种表现形式。

【分数比教案】相关文章:

分数比教案12-13

分数的教案12-30

分数比教案最新12-13

《分数的意义》教案12-18

分数与除法教案12-15

分数的乘法教案01-20

分数的认识教案03-06

《分数除法》教案02-23

分数乘法的教案11-03

分数除法教案10-27