《比例的意义》教案

时间:2023-03-07 10:51:13 松涛 教案 我要投稿

《比例的意义》教案(精选22篇)

  作为一位优秀的人民教师,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?下面是小编精心整理的《比例的意义》教案,希望能够帮助到大家。

《比例的意义》教案(精选22篇)

  《比例的意义》教案 篇1

  教学内容:教科书第9—10页比例的意义和基本性质.练习四的第1—3题。

  教学目的:使学生理解比例的意义和基本性质。

  教学过程():

  一、教学比例的意义

  1.复习。

  (1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。

  (2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?

  教师板书出下面几组比,让学生求出它们的比值。

  12:16 :1 4·5:2.7 10:6

  学生求出各比的比值后,再提

  “请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?

  这就是这节课我们要学习的内容。(板书课题:比例的意义)

  2.教学比例的意义。

  (1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。

  教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)

  “你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。

  板书:第一次所行驶的路程和时间的比是80:2

  第二次所行驶的路程和时间的比是200:5

  然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40, 200:5=40。让学生观察这两个比的比值。再提问:

  “你们发现了什么?”(这两个比的比值都是40。)

  “所以这两个比怎么样?”(这两个比相等。)

  教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2=200:5或 = )像这样(指着这个式子和复习题的式子4. 5:2.7=10:6)表示两个比相等的式子叫做比例。

  指着比例式80:2=200:5,提问:

  “谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。

  “从比例的意义我们可以知道.比例是由几个比组成的?这两个比必须具备什么条件:因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

  根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的 比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一限看出两个比是不是相等?可以先分别把两个比化简以后再看。例如判断10;12和35:1:这两个比能不能组成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上举例边说边板书。)

  (2)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (3)巩固练习。

  ①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表 示;不能就用两手的食指交叉表示。)

  6:3和12:6 35:7和45:9

  20:5和.16:8 0.8:0.4和 : :

  学生判断后,指名说出判断的根据。

  ②做第10页的“做一做”。

  让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。

  ③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。

  ④做练习四的第3题。

  对于能组成比例的四个数,把能组成的比例写出来:组成的'比例只要能成立就可以。

  第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。

  二、教学比例的基本性质

  1.教学比例各部分的名称。

  教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书第10页看第6行到9行。看看什么叫比例的项、外项、内项。(学生看书时,教师板书:80:2=200:5)

  指名让学生指出板书出的比例的外项、内项。随着学生的回答教师接着板书如下:

  80 :2=:200 :5

  内项

  外项

  2.教学比例的基本性质。

  教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

  两个外项的积是80×5=400

  两个内项的积是2×200=400

  “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。

  “通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。

  最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

  “如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =

  “这个比例的外项是哪两个数呢?内项呢?”

  “因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: 学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200

  3.巩固练习。

  教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

  (1)应用比例的基本性质判断3:4和6:8能不能组成比例。

  教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以

  3:4和6:8可以组成比例。(边说边板书:3:4=6:8)

  (2)做第11页“做一做”的第1题。

  三、小结

  教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  四、作业

  练习四的第2题。

  《比例的意义》教案 篇2

  教学目标:

  1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

  2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:

  理解比例的意义基本性质。

  教学难点:

  应用比例的意义和性质判断两个比是否成比例。

  教学过程

  一、导入新课

  1、什么叫比?

  2、求出下面各比的比值(小黑板)

  12:16 1/4:1/3 和9:12 4.5:2.7 10:6

  二、教学新课

  1、教学比例的意义

  (1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?

  (2)归纳比例的意义

  (3)2:5和80:200能组成比例吗?你是怎样判断的?

  (4)完成第45页“做一做”

  2、教学比例的基本性质

  (1)在一个比例里,有四个数,这四个数分别叫什么名字?

  (2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

  (3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

  (4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  (5)指导学生完成第一46页“做一做”第1题。

  三、巩固练习

  四、课堂小结

  这节课你学到了哪些知识?

  创意作业:

  有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。

  x

  教学内容:

  比例的意义和基本性质 (省义务教材第十二册)

  教学目标:

  1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

  2、利用比例知识解决实际问题。

  3、培养学生自主参与的意识、主动探究的精神,激发学生的'审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学过程:

  一、 谈话导入,创设情境:

  出示CAI课件(一张微型照片)。你能看出这是杭州哪一个景点的照片?的确,照片太小了,那现在老师将这张照片按一定比例放大一些,。由此出现一张平湖秋月的风景照。【诱发审美注意】

  我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  二、 自主探究,学习新知

  (一) 教学比例的意义

  1、 8厘米

  出示

  6厘米

  4厘米

  3厘米

  (1)根据表中给出的数量写出有意义的比。

  (2)哪些比是相关联的?

  (3)根据以往经验,可将相等的两个比怎样?(用等号连接)

  教师并指出这些式子就是比例。

  2、 让学生任意写出比例,并让学生用自己的语言描述比例的意义。

  3、 教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

  4、 写出比值是1/3的两个比,并组成比例。

  (二) 教学比例的基本性质

  1、 比例和比有什么区别?

  2、 认识比例的各部分

  (1)让学生自己取。

  (2)组成比例的四个数叫做比例的项,两端的两项叫做比例的

  外项,中间的两项叫做比例的内项。

  板书: 8 : 6 = 4 : 3

  内 项

  外 项

  (3)让学生找出自己举的比例的内外项。

  ( )

  12

  2

  ( )

  =

  (4)找出分数形式比例的内外项位置又是怎样的?

  3、 出示 【启迪学生思维,展开审美想象】

  (1) 这个比例已知的是哪两项,要求的又是哪两项?学生试填。

  (2) 学生反馈,教师板书。

  (3) 你发现了什么?

  (4) 指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

  4、 用比例性质验证你所写比例是否正确。

  5、练习 8 : 12 = X : 45

  0.5

  X

  20

  32

  =

  求比例中的未知项,叫做解比例。

  如何证明你的解是正确的?

  (三) 小结:今天这堂课你有什么收获?

  三、 巩固练习

  1、下面哪几组中的两个比可以组成比例。

  4

  1

  12 : 24 和18 : 36

  0.4 : 和0.4 : 0.15

  14 : 8 和7 : 4

  5

  2

  2、根据18 x 2 = 9 x 4 写出比例。【体会到数学的逻辑美,规律美】

  3、从1 、8、0.6、3、7五个数中

  (1) 选出四个数,组成比例。

  (2) 任意选出3个数,再配上另一个数,组成比例。

  (3) 用所学知识进行检验。

  四、 实际应用

  不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

  同学们,如果你是汪骏强,你准备怎么办?

  执教者 方 艳

  《比例的意义》教案 篇3

  教学目标:

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  教学重点:

  成正比例的量的特征及其判断方法。

  教学难点:

  理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.

  教 法:

  启发引导法

  学 法:

  自主探究法

  教 具:

  课件

  教学过程:

  一、定向导学(5分)

  1、已知路程和时间,求速度

  2、已知总价和数量,求单价

  3、已知工作总量和工作时间,求工作效率

  4、导入课题

  今天我们来学习成正比例的.量。

  5、出示学习目标

  1、理解正比例的意义。

  2、能根据正比例的意义判断两种量是不是成正比例。

  二、自主学习(8分)

  自学内容:书上45页例1

  自学时间:8分钟

  自学方法:读书法、自学法

  自学思考:

  1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

  2、正比例关系式是什么?

  (1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

  (2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的量,二是一种量变化另一种量也随着变化,三是比值(商)一定

  (3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

  y/x=k(一定)

  (4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

  2、归类提升

  引导学生小结成正比例的量的意义和关系式。

  三、合作交流(5分)

  第46页正比例图像

  1、正比例图像是什么样子的?

  2、完成46页做一做

  3、各组的b1同学上台讲解

  四、质疑探究(5分)

  1、第49页第1题

  2、第49页第2题

  3、你还有什么问题?

  五、小结检测(8分)

  1、什么是正比例关系?如何判断是不是正比例关系?

  2、检测

  1、49页第3题。

  六、堂清作业(9分)

  练习九页第4、5题。

  板书设计:

  成正比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

  关系式:

  y/x=k

  (一定)

  《比例的意义》教案 篇4

  教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

  教学目的:

  1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

  2.使学生进一步认识事物之间的相互联系和发展变化规律。

  3.初步渗透函数思想。

  教具准备:投影仪、投影片、小黑板。

  教学过程():

  一、复习

  1.让学生说说什么是成正比例的量:

  2.用投影片出示下面的题:

  (1)下面各题中哪两种量成正比例?为什么?

  ①笔记本单价一定,数量和总价:

  ⑨汽车行驶速度一定.行驶的路程和时间。

  ②工作效率一定.’工作时间和工作总量。

  ①一袋大米的重量一定.吃了的和剩下的。

  (2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

  二、导入新课

  教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

  三、新课

  1.教学例4。

  出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

  让学生观察这个表,然后每四人一组讨论下面的问题:

  (1)表中有哪两种量?

  (2)所需的加工时间怎样随着每小时加工的个数变化?

  (3)每两个相对应的数的乘积各是多少?

  学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

  10 × 60 =600。

  30 × 20 =600。

  40 × 15 =600,

  “这个积600。实际上是什么?”在“加工时间”后面板书:零件总数

  “积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)

  “每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

  学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。

  2.教学例5。

  用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

  (1)理解题意,填写装订本数。

  “谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

  “这40本是怎么计算出来的?”(用600÷15)

  “如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

  (2)观察分析表中两种量的变化规律。

  让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

  “装订的本数是怎样随着每本的页数变化的?”随着学生的'回答,板书如下:每本的页数 装订的本数

  15 40

  20 30

  25 24

  一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。

  1,单价一定.数量和总价。

  2,路程一定,速度和时间。。

  3,正方形的边长和它的面积。

  1.时间一定,工效和工作总量。

  二、导入新课

  教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断

  两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我

  们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

  板书课题:正比例和反比例的比较

  三、新课

  1.教学例7。

  出示例7的两个表:

  表1 表2

  让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:

  在表l中: 在表2中:

  相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化

  一定。因此,路程和时间 ,路程是一定的。因此,速

  成正比例关系。 度和时间成反比例关系

  然后提问:

  (1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/

  (2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

  教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

  板书:速度×时间=路程

  =速度 =速度

  教师:当速度一·定时,路程和时间成什么比例关系?

  教师:当路程一定时,速度和时间成什么比例关系?

  教师:当时间一定时。路程和速度成什么比例关系?

  2.比较正比例和反比例关系。

  教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

  四、巩固练习

  1.做教科书第28页“做一做”中的题目。

  让学生自己填,并说一说为什么。

  2.做练习七的第1—2题。

  教师巡视,个别辅导,最后订正。

  五、小结

  教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

  《比例的意义》教案 篇5

  教学要求:

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:

  认识反比例关系的意义。

  教学难点:

  掌握成反比例量的变化规律及其特征。

  教学过程:

  一、铺垫孕伏:

  1.正比例关系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、自主探究:

  1.教学例1。

  出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

  每天运的数量(吨) 10 20 30 40 50

  所需的天数 30 15 10 7.5

  在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

  指名学生口答 讨论结果得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例2

  出示例2

  请同学们按照刚才学习例1的方法,自己学习例2,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积不变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

  3.概括反比例的意义。

  (1)综合例1、例2的共同点。

  提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的.量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

  4.具体认识。

  (1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

  例2里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3) 判断。

  现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。

  《比例的意义》教案 篇6

  教学目标:

  1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

  结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学关键:

  理解成正比例的两个量的意义。

  教学过程:

  一、复习准备:

  口答

  1、已知路程和时间,怎样求速度?

  2、已知总价和数量,怎样求单价?

  3、已知工作总量和工作时间,怎样求工作效率?

  二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  课件出示:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

  特点是:

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的。

  4、正方形的面积与边长的比是边长,是一个不确定的值。

  学生在小组内练说发现的规律,初步感知正比例的判定。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

  3、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

  4、正比例关系:观察思考成正比例的量有什么特征?

  小结:

  (1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的'比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

  追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

  (2)字母表达关系式。

  如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

  (3)质疑。

  师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  三、巩固练习

  (一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  2、根据小明和爸爸的年龄变化情况

  把表填写完整。父子的年龄成正比例吗?为什么?

  (二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

  1、判断下面各题中的两个量,是否成正比例,并说明理由。

  (1)每袋大米的质量一定,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长与长。

  2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

  3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

  4、画一画,你会有新的发现。

  彩带每米4元,购买2米、3米…彩带分别需要多少钱?

  ①填一填:(长度:米,价格:元)

  ②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

  板书:

  正比例的意义

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的

  路程÷时间=速度(一定)总价÷数量=单价(一定)

  =k(一定)

  《比例的意义》教案 篇7

  教学内容:教材第99~102页例1~例3。

  教学要求:

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:认识反比例关系的意义。

  教学难点:掌握成反比例量的变化规律及其特征。

  教学过程:

  一、铺垫孕伏:

  1.正比例关

  系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、自主探究:

  1.教学例2。

  出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

  每天运的数量(吨)1020304050

  所需的天数

  在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

  指名学生口答讨论的结果,得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例1

  出示例1。

  请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

  3.概括反比例的意义。

  (1)综合例1、例2的共同点。

  提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的'变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

  4.具体认识。

  (1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

  例2里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3)判断。

  现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

  5.教学例3。

  出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

  三、巩固练习

  用刚才我们说的判断方法来做几道题。

  1.做练一练。

  指名学生口答,说明理由。(可以写出数量关系式看一看)

  2.下题两种相关联量成不成反比例?为什么?

  一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  3.做练习十二第1题。

  四、课堂小结

  这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

  五、课堂作业

  练习十二第2~4题。

  《比例的意义》教案 篇8

  教学目标

  一、知识目标

  1、使学生理解比例的意义和比例的基本性质.

  2、认识比例的各部分名称,会组成比例.

  二、能力目标

  1、使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例.

  2、培养学生的观察能力和判断能力.

  三、情感目标

  1、对学生进一步渗透辨证唯物主义观点的启蒙教育.

  2、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学对象分析

  低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。

  教学策略及教法设计

  教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用.

  1.多媒体教学

  运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的.积极性.

  2.动手操作法

  引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化.

  教学步骤

  一、铺垫孕伏

  1、什么叫做比?

  2、什么叫做比值?

  3、求下面各比的比值:

  4、教师提问:上面哪些比的比值相等?( 和 这两个比的比值相等)

  教师: 和 这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接.(板书: = )

  二、探究新知

  (一)比例的意义

  例1、一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1、教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2、教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  或 .

  3、揭示意义:像 = 、 这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4、练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  ① 和 ② 和

  ③ 和 ④ 和

  填空

  ①如果两个比的比值相等,那么这两个比就( )比例.

  ②一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质

  1、教师以 为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2、练习:指出下面比例的外项和内项.

  3、让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以 为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4、学生自己任选两三个比例,计算出它的外项积和内项积.

  5、教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  (板书课题:加上“和基本性质”,使课题完整.)

  6、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7、练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  三、课堂小结

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习

  1、说一说比和比例有什么区别.

  比是表示两个数相除的关系,有两项;

  比例是一个等式,表示两个比相等的关系,有四项.

  2、在 这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  3、根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  (1) 和 (2) 和

  (3) 和 (4) 和

  4、下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业

  根据3×4=2×6写出比例.

  六、板书设计

  《比例的意义》教案 篇9

  素质教育目标

  (一)知识教学点

  1.使学生理解正比例的意义。

  2.能根据正比例的意义判断两种量是不是成正比例。

  (二)能力训练点

  1.培养学生用发展变化的观点来分析问题的能力。

  2.培养学生抽象概括能力和分析判断能力。

  (三)德育渗透点

  1.通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩证唯物主义观点的启蒙教育。

  2.进一步渗透函数思想。

  教学重点:使学生理解正比例的意义。

  教学难点:引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。

  教具学具准备:投影仪、投影片、小黑板。

  教学步骤

  一、铺垫孕伏

  用投影逐一出示下列题目,请同学回答:

  1.已知路程和时间,怎样求速度?

  2.已知总价和数量,怎样求单价?

  3.已知工作总量和工作时间,怎样求工作效率?

  二、探究新知

  1.导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。

  2.教学例1

  (1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米……

  (2)出示下表,并根据上述内容填表。

  一列火车行驶的时间和所行的路程如下表

  (3)边填表边思考:在填表过程中,你发现了什么?

  学生交流时,使之明确。

  ①表中有时间和路程两种量。

  ②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米……时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。

  教师点拨:

  像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:两种相关联的量)

  ③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。

  教师问:根据计算,你发现了什么?

  引导学生得出:相对应的两个数的'比值都是60或都一样,固定不变等。

  教师指出:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)

  ④比值60,实际就是火车的速度。用式子表示它们的关系就是:

  (4)教师小结:

  刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

  3.教学例2

  (1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

  (2)观察上表,引导学生明确:

  ①表中有数量(米数)和总价这两种量,它们是两种相关联的量。

  ②总价随米数的变化情况是:

  米数扩大,总价随着扩大;米数缩小,总价也随着缩小。

  ③相对应的总价和米数的比的比值是一定的。

  ④比值3.1,实际就是这种花布的单价。用式子表示它们的关系就是:

  (3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)

  4.抽象概括正比例的意义。

  (1)比较例1、例2,思考并讨论,这两个例子有什么共同点?

  (2)学生初步交流时引导学生明确:

  ①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量;

  ②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。

  教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)

  ③例1中路程与时间的比的比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。

  (学生答不出来时,教师引导、点拨,并补充板书:两种量中)

  (3)引导学生抽象概括出两例的共同点:

  两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。

  (4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  (补充板书:如果这成正比例的量正比例关系)

  这就是我们这节课学习的“正比例的意义”(板书课题)

  (5)看书19、20页的内容,进一步理解正比例的意义。

  (6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。

  (7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  (8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

  (9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  5.教学例3

  (1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

  (2)根据正比例的意义,由学生讨论解答。

  (3)汇报判断结果,并说明判断的根据。

  教师板书:

  面粉的总重量和袋数是两种相关联的量。

  所以面粉的总重量和袋数成正比例。

  6.反馈练习

  让学生试做第21页的做一做,并订正。

  三、巩固发展

  1.完成练习三第1题。

  先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?

  《比例的意义》教案 篇10

  教学内容

  教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。

  教学目标

  1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

  2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

  3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

  教学重点

  认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

  教学难点

  理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

  教学准备

  教具:多媒体课件。

  学具:作业本,数学书。

  教学过程

  一、联系生活,复习引入

  (1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

  (2)揭示课题。

  教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?

  教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。

  二、自主探索,学习新知

  1.教学例1

  用课件在刚才准备题的表格中增加几列数据,变成表。

  教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。

  教师根据学生的回答将表格完善,并作必要的板书。

  教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。

  板书:相关联

  教师:你们还发现哪些规律?

  学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:

  教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。

  板书:

  2.教学试一试

  教师:我们再来研究一个问题。

  课件出示第52页下面的试一试。

  学生先独立完成。

  教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?

  教师根据学生的回答归纳如下:

  表中的路程和时间是相关联的'量,路程随着时间的变化而变化。

  时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。

  路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)

  3.教学议一议

  教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?

  引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。

  教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。

  4.教学课堂活动

  教师:请大家说一说生活中还有哪些是成正比例的量。

  三、夯实基础,巩固提高

  (1)完成练习十二的第1题。

  教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?

  学生独立思考,先小组内交流再集体交流。

  (2)完成练习十二的第2题。

  四、全课小结

  教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

  《比例的意义》教案 篇11

  一、教学目标

  知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

  过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

  态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

  二、教学重点难点

  重点: 理解比例的意义和基本性质。

  难点:判断两个比是否成比例。

  三、教学过程设计

  (一)创设情境,提出问题

  1. 复习导入:

  (1)什么叫做比?

  两个数相除又叫做两个数的比。

  (2)什么叫做比值?

  比的前项除以比的后项所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  谈话:今天我们要学的知识也和比有着密切的关系。

  2、创设情境,提出问题。

  谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

  出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

  这是它两天的运输情况:

  一辆货车运输大麦芽情况

  第一天 第二天

  运输次数 2 4

  运输量(吨) 16 32

  根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

  谈话:谁来交流?跟大家说一下你的问题是什么?

  学生可能出现以下的问题:

  货车第一天的运输量与运输次数的比是多少? (16 : 2)

  货车第二天的运输量与运输次数的比是多少?(32 :4)

  货车第二天的运输量与第一天运输量的比是多少?(32 :16)

  (师根据学生的回答,将答案一一贴或写于黑板)

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、认识比例及各部分名称。

  谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

  思考:这个比值所表示的实际意义是什么?(每次的运输量)

  既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

  学生用等号连接,并请学生把这个式子读一下。

  试一试:剩下的这些比中,哪两个也能用等于号连接?在你的'练习本上写写看。(学生独立完成)

  介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

  学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

  自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

  2、比和比例有什么区别?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判断下面两个比能否组成比例?

  6∶9 和 9∶12

  总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

  4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

  那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

  5、学生先独立思考,再小组交流,探究规律。

  出示研究方案:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ③通过以上研究,你发现了什么?

  6、全班交流。

  (1)哪个小组愿意将你们的发现与大家分享?

  (2)还有其他发现吗?

  (3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

  7、验证发现,共享成功。

  师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

  8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

  9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

  10、比例的基本性质的应用:

  应用比例的基本性质,判断下面两个比能不能组成比例.

  6∶3 和 8∶5

  方法:a、先假设这两个比能组成比例

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  c、根据比例的基本性质判断组成的比例是否正确。

  (二)自主练习,拓展提升

  1、判断下面每组中两个比能否组成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  让学生根据比例的意义进行判断,教师结合回答板书:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、连线:自主练习第3题。

  3、填空:自主练习第6题。

  4、自主练习第10题:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

  2、3、4 和 6

  因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  练习时,给学生充足的时间让学生独立完成,然后交流沟通。

  (三)回顾总结

  在这节课中你又有什么新的收获?

  《比例的意义》教案 篇12

  教学过程:

  一、复习铺垫

  1、下面两种量是不是成正比例?为什么?

  购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。

  2、教学P42例3。

  (1)引导学生观察上表内数据,然后回答下面问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、水的高度是否随着底面积的变化而变化?怎样变化的?

  C、表中两个相对应的'数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

  D、这个积表示什么?写出表示它们之间的数量关系式

  (2)从中你发现了什么?这与复习题相比有什么不同?

  A、学生讨论交流。

  B、引导学生回答:

  (3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

  (4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)

  三、巩固练习

  1、想一想:成反比例的量应具备什么条件?

  2、判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  (6)你能举一个反比例的例子吗?

  四、全课小节

  这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

  五、课堂练习

  P45~46练习七第6~11题。

  教学目的:

  1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

  2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

  3、初步渗透函数思想。

  教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。

  教学难点:利用反比例的意义,正确判断两个量是否成反比例。

  《比例的意义》教案 篇13

  教学内容:

  比例的意义和基本性质。

  教学要求:

  使学生理解比例的意义,会用比例的意义正确地判断两个比是否 成比例,使学生理解比例的基本性质。

  教学重点:

  理解比例的意义和基本性质。

  教学难点:

  灵活地判断两个比是否组成比例。

  教 具:

  投影机等。

  教学过程:

  一、复习。

  1、什么叫做比?什么叫做比值?

  2、求出下面各比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、提示课题,引入新课。

  1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。

  2、引入新课。

  三、导演达标。

  1、教学比例的意义。

  (1)引导学生观察课本的表格后回答:

  A、第一次所行驶的路程和时间的比是什么?

  B、第二次所行驶的`路程和时间的比是什么?

  C、这两次比的比值各是什么?它们有什么关系?

  板书: 80:2=200:5 或 =

  (2)引出比例的意义。

  A、表示两个比相等的式子叫做比例。

  B、讨论:组成比例必须具备什么条件?如何判断两个比是不是组成比例的?比和比例有什么区别?

  C、判断两个比能不能组成比例,关键是看两个比的比值是否相等。

  D、做一做。(先练习,后讲评)

  2、教学比例的基本性质。

  (1)看书后回答:

  A、什么叫做比例的项?

  B、什么叫做比例的外项、内项?

  (2)引导学生总结规律?

  先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。

  3、练习:判断下面的哪组比可以组成比例。

  6:9和9:12 1.4:2和7:10

  四、巩固练习:第一、二题。(指名回答,集体订正)

  五、总结:今天我们学习了什么?

  比例的意义和比例的基本性质及怎样判断两个比是否可以组成比例的方法。

  六、作业:第二题。

  《比例的意义》教案 篇14

  设计说明

  本节课的教学内容包含“比例的意义和比例的基本性质”两部分。本节课的内容是这个单元的起始,属于概念教学,是为以后解比例,讲解正比例、反比例做准备的。学生学好这部分的知识,不仅可以初步接触函数的思想,还可以解决日常生活中的一些具体问题。遵循“自主探索与合作交流”的《数学课程标准》理念,本节课在教学设计上有以下特点:

  1.重视有效学习情境的创造。

  新课伊始,通过谈话激活学生对国旗的已有认识,引出本节课要用的中国国旗的三种不同规格的相关数据,激发学生的学习兴趣,使学生在熟悉的现实情境中,情绪饱满地进入到对比例知识的探究学习中。

  2.重视引导学生自主探究。

  教学比例的意义时,先引导学生依据三面国旗的长与宽写出多个比,再引导学生发现它们的比值相等,可以写成一个等式,引出比例,最后引导学生通过自己的分析、思考,进行归纳总结出比例的意义。

  3.重视引导学生合作交流。

  《数学课程标准》指出:“合作交流是学生学习数学的重要方式。”为此,我们在教学中,不但要引导学生进行自主探究,还要引导学生进行合作交流。以“比例的`基本性质”的探究为例,在教学中,通过小组合作交流,让学生思维互补,既有利于知识的学习,又有利于学生概括能力及语言表达能力的培养。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙渗透情感,导入新课

  1.课件出示国旗画面,学生观察,激发爱国情操。

  (天安门升国旗仪式、校园升旗仪式、教室场景)

  师:这三幅不同的场景都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽分别是多少吗?

  2.课件出示国旗的长和宽,并提出问题。

  天安门升旗仪式上的国旗:长5 m,宽 m。

  操场升旗仪式上的国旗:长2.4 m,宽1.6 m。

  教室里的国旗:长60 cm,宽40 cm。

  师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同的特点呢?

  3.导入新课。

  师:每面国旗的大小不一样,但是它们的长和宽中却隐含着共同的特点,是什么呢?这节课我们就结合国旗的知识来学习比例的意义和基本性质。

  (板书课题:比例的意义和基本性质)

  设计意图:通过谈话,激发学生的爱国情感和求知欲,在加强学生对国旗知识了解的同时,有效地引入学习资源,为学生探究比例的意义和基本性质提供第一手资料。

  ⊙合作交流,探究新知

  1.教学比例的意义。

  (1)自主尝试。

  课件出示教材40页主题图,根据图中给出的数据分别写出不同场景中国旗的长和宽的比,并求出比值。

  (2)汇报、交流。

  预设

  生1:天安门升旗仪式上的国旗。

  长∶宽=5∶=

  生2:操场升旗仪式上的国旗。

  长∶宽=2.4∶1.6=

  生3:教室里的国旗。

  长∶宽=60∶40=

  (3)感知比例的意义。

  观察写出的比,想一想,这些比能用等号连接吗?为什么?用等号连接的两个比的式子可以怎样写?

  预设

  生1:可以用等号连接,因为它们的比值相等。

  “2.4∶1.6=”和“60∶40=”可以写作“2.4∶1.6=60∶40”。

  生2:可以用等号连接,两个比的比值相等,说明这两个比也是相等的。

  生3:根据比与分数的关系,“2.4∶1.6=60∶40”

  也可以写成“=”。

  《比例的意义》教案 篇15

  1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。

  2.学会判断成正比例关系的量。

  3.进一步培养学生观察、分析、概括的能力。

  教学重点和难点

  理解正比例的意义,掌握正比例变化的规律。

  教学过程设计

  (一)复习准备

  请同学口述三量关系:

  (1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

  (学生口述关系式、老师板书。)

  (二)学习新课

  今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

  幻灯出示:

  一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?

  生:60千米、120干米、180千米……

  师:根据刚才口答的问题,整理一个表格。

  出示例1。(小黑板)

  例1 一列火车行驶的时间和所行的路程如下表。

  师:(看着表格)回答下面的问题。表中有几种量?是什么?

  生:表中有两种量,时间和路程。

  师:路程是怎样随着时间变化的?

  生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……

  师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。

  (板书:两种相关联的量)

  师:表中谁和谁是两种相关联的量?

  生:时间和路程是两种相关联的量。

  师:我们看一看他们之间是怎样变化的?

  生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。

  师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?

  生:路程由480千米变为420千米、360千米……

  师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)

  生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。

  师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?

  (分组讨论)

  师:请同学发表意见。

  生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。

  师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?

  师:根据时间和路程可以求出什么?

  生:可以求出速度。

  师:这个速度是谁与谁的比?它们的结果又叫什么?

  生:这个速度是路程和时间的比,它们的结果是比值。

  师:这个60实际是什么?变化了吗?

  生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的`商,速度不变。

  驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。

  师:谁是定量时,两种相关联的量同扩同缩?

  生:速度一定时,时间和路程同扩同缩。

  师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

  (学生口算验证。)

  生:都是60千米,速度不变,符合变化的规律,同扩同缩。

  师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

  师:谁能像老师这样叙述一遍?

  (看黑板引导学生口述。)

  师:我们再看一题,研究一下它的变化规律。

  出示例2。(小黑板)

  例2 某种花布的米数和总价如下表:

  (板书)

  按题目要求回答下列问题。(幻灯)

  (1)表中有哪两种量?

  (2)谁和谁是相关联的量?关系式是什么?

  (3)总价是怎样随着米数变化的?

  (4)相对应的总价和米数的比各是多少?

  (5)谁是定量?

  (6)它们的变化规律是什么?

  生:(答略)

  师:比较一下两个例题,它们有什么共同点?

  生:都有两种相关联的量,一种量变化,另一种量也随着变化。

  师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)

  师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

  生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

  师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)

  师:很好。请打开书,看书上是怎样总结的?

  (生看书,并画出重点,读一遍意义。)

  师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?

  师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

  生:(答略)

  师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

  (三)巩固反馈

  1.课本上的“做一做”。

  2.幻灯出示题,并说明理由。

  (1)苹果的单价一定,买苹果的数量和总价( )。

  (2)每小时织布米数一定,织布总米数和时间( )。

  (3)小明的年龄和体重( )。

  (四)课堂总结

  师:今天主要讲的是什么内容?你是如何理解的?

  (生自己总结,举手发言。)

  师:打开书,并说出正比例的意义。有什么不明白的地方提出来。

  (五)布置作业

  (略)

  课堂教学设计说明

  第一部分:复习三量关系,为本节内容引路。

  第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。

  第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。

  总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。

  板书设计

  《比例的意义》教案 篇16

  设计说明

  本节课教学的正比例是数学中比较重要的两个量的关系,它比较抽象、难理解,是今后学习反比例及初中学习函数知识的基础。结合本节课的教学内容及学情实际,本节课在教学设计上主要体现以下几个方面:

  1.有效利用教材图表,增强对相关联的量的形象感受。

  教学伊始,在复习铺垫的基础上,引导学生仔细观察图表。在观察中,使学生发现正方形的周长和面积随着边长的变化而变化及变化规律,充分体会到什么是相关联的量,为进一步学习正比例知识打下基础。

  2.科学调动多种感官,增强对知识形成过程的体验。

  在数学教学过程中,教师如果能够有效地调动学生的多种感官参与学习活动,让学生利用更多的大脑通路来处理学习信息,建立起对知识与技能的深刻记忆,成为学习的主人,就能促进学生提高学习效率。本设计努力为学生创设动眼、动手、动脑、动口的机会,使学生在观察、操作、分析、比较、讨论、交流中,不断探究相关联的两个量之间的关系,逐渐发现其中的`规律,体会正比例的意义。

  3.体会数学与生活的密切联系,关注对正比例意义的理解。

  因为正比例表示的是两个相关联的量之间的关系,是学生接下来学习反比例及今后进一步学习函数知识的重要基础。所以,本设计十分重视学生对知识的理解。通过创设具体情境,激发学生的学习兴趣,使学生积极主动地思考并结合熟悉的情境及数量关系理解正比例的意义。

  课前准备

  教师准备 多媒体课件

  教学过程

  第1课时 正比例的认识

  ⊙复习导入

  1.引导回顾。

  师:什么是相关联的量?请举例说明。

  (学生汇报)

  2.导入新课。

  师:两个相关联的量之间肯定存在着某种关系,我们今天要学习的正比例就是表示两个相关联的量之间的关系的,这种关系是怎样的呢?让我们一起进入今天的学习。

  设计意图:通过回顾旧知,进一步理解相关联的量,为在新情境中探究两个相关联的量之间的变化规律作铺垫。

  ⊙探究新知

  1.借助图表,进一步感知相关联的量。

  面积/cm2

  小组合作探究,交流下面的问题:

  (1)上面是正方形周长与边长、面积与边长之间的变化情况,把表格填写完整,并说说你分别发现了什么。

  (2)同桌合作填表。

  (3)仔细观察表格,讨论:正方形的周长是怎样随着边长的变化而变化的?正方形的面积是怎样随着边长的变化而变化的?

  预设

  生1:我从表中发现正方形的边长增加,周长也增加。

  生2:我从表中发现正方形的边长扩大到原来的几倍,周长就随着扩大到原来的几倍。

  生3:我从表中发现正方形的周长总是边长的4倍。

  生4:我从表中发现正方形的边长增加,面积也增加。

  ……

  (4)比较:正方形的周长与边长的变化规律和正方形的面积与边长的变化规律有什么异同?

  预设

  生1:相同点是都随着边长的增加而增加。

  生2:不同点是周长随边长变化的规律与面积随边长变化的规律不同。

  生3:在变化过程中,正方形的周长与边长的比值一定,都是4。

  生4:在变化过程中,正方形的面积与边长的比值是一个不确定的值。

  《比例的意义》教案 篇17

  教学目标:

  知识与技能:

  1.结合丰富的实例,认识反比例。

  2.能根据反比例的意义,判断两个相关联的量是不是反比例。

  过程与方法:

  通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

  情感态度价值观:

  培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。

  教学重点:

  认识反比例,根据反比例意义判断两个相关联的量是否成反比例。

  教学难点:

  认识反比例,根据反比例意义判断两个相关联的量是否成反比例。

  教具准备:

  电脑课件

  教学过程:

  一、复习引入

  1、计算

  2、判断下面各题中的两种量是否成正比例?为什么?

  (1)文具盒的单价一定,买文具盒的个数和总价。

  (2)一堆货物一定,运走的量和剩下的量。

  (3)汽车行驶的速度一定,行驶的路程和时间。

  3、说说什么是正比例。

  师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?

  二、出示学习目标

  1.能根据反比例的意义,判断两个相关联的量是不是反比例。

  2.通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

  3.培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。

  三、指导自学

  师:给你们讲个小故事:

  有一个贪婪的财主,拿了一匹上好的布料准备做一顶帽子,到了裁缝店,觉得这样好的布料做一顶帽子似乎浪费了,于是问裁缝:“这匹布可以做两顶帽子吗?”裁缝看了看财主一眼,说:“可以。”财主见他回答得那么爽快,心想,这裁缝肯定是从中占了些什么便宜,于是又问,“那做3顶帽子吗?”裁缝依然很爽快地说:“行!”这时,财主更加疑惑了,嘀咕着:“多好的一匹布啊,那我做4顶可以吗”“行!”裁缝仍然很快地回答。经过一翻的较量后,财主最后问:“那我想做10顶帽子可以吗?”裁缝迟疑了一会,然后打量着财主,慢慢的说:“可以的。”这时财主才放下心来,心想:这匹布料如果只做一顶帽子,那就便宜裁缝了。瞧!这不让我说到10顶了吧。我还真聪明!嘿嘿??

  过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!

  学习提示: 独立思考?

  1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”

  2、故事中相关的数量关系式是什么?哪两个是变化的量,怎样变?另一个是什么量?有什么特点?

  合作学习小组讨论上述的问题。看书合作学习

  1、把25页例

  2、例3的表格补充完整。

  2、每个表格中有哪些变量?有不变的量吗?分别是什么?变化有什么规律?相关的数量关系式是什么?

  3、三个数量关系式有相同点吗?是什么?你能把这种变化规律用一个含有字母的关系式来表示吗?

  4、你知道什么是反比例吗?

  四、学生自学

  五、检查自学效果

  让学生说说自学要求中的.内容。

  师归纳:两种相关联的量,一种量随着另一种量的变化而变化,在变化过程中两种量的积一定,那么这两种量成反比例。

  六、引导更正,指导运用

  你们还找出类似这样关系的量来吗?”

  学生:要走一段路,速度越慢(快),用的时间就越多(少)运一堆货物,每次运的越多(少),运的次数就越小(多)百米赛跑,路程100米不变,速度和时间是反比例; 排队做操,总人数不变,排队的行数和每行的人数是反比例; 长方体的体积一定,底面积和高是反比例。

  七、当堂训练 基础练习

  1、填空

  两种 _____ 的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。

  2、判断下面每题中的两种量是不是成反比例,并说明理由。

  (1)煤的总量一定,每天的烧煤量和能够烧的天数。

  (2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

  (3)生产电视机的总台数一定,每天生产的台数和所用的天数。

  (4)圆柱体的体积一定,底面积和高。

  (5)小林做10道数学题,已做的题和没有做的题。

  (6)长方形的长一定,面积和宽。

  (7)平行四边形面积一定,底和高。提高练习

  1、一长方形的周长为20厘米,若长是9厘米,则宽是1厘米。请你填写下表,并判断这个长方形在周长不变的情况下,长和宽是否成反比例,并说明理由。长/cm

  四、小结

  通过这节课的学习,你有什么收获?

  这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。板书:反比例

  相关联,一个量变化,另一个量也随着变化积一定

  xy=k(一定)

  《比例的意义》教案 篇18

  教学目的:

  1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

  2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

  3、培养学生的知识迁移的能力,增强学生的合作意识。

  教学重点:使学生掌握解比例的方法,学会解比例。

  教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

  教学过程:

  一、回顾旧知,复习铺垫

  1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  2、判断下面每组中的两个比是否能组成比例?为什么?

  6:3和8:4

  3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

  二、引导探索,学习新知

  1、什么叫解比例?

  我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

  2、教学例2。

  (1)把未知项设为X。解:设这座模型的高是X米。

  (2)根据比例的意义列出比例:X:320=1:10

  (3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

  根据比例的基本性质可以把它变成什么形式?3x=8×15。

  这变成了什么?(方程。)

  教师说明:这样解比例就变成解方程了,利用以前学过的`解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。

  (4)学生说,教师板书解比例的过程。

  教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

  3、教学例3。

  出示例3:解比例=

  提问:“这个比例与例2有什么不同?”(这个比例是分数形式。)

  这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

  学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6

  让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。

  4、解比例的过程。

  刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

  变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

  从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

  5、p35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。

  三、巩固深化,拓展思维

  p37第7题。

  四、全课,提高认识

  什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

  五、课堂练习,辅助消化

  p37~38第8~11题。

  六、课外补充,拓展延伸

  1、p38第12、13题。

  2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?

  3、把两个比值都是的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。

  《比例的意义》教案 篇19

  教学内容:P35~37 解比例

  教学目的:

  1、使同学学会解比例的方法,进一步理解和掌握比例的基本性质。

  2、通过合作交流、尝试练习,提高同学运用比例的基本性质解比例的能力。

  3、培养同学的知识迁移的能力,增强同学的合作意识。

  教学重点:使同学掌握解比例的方法,学会解比例。

  教学难点:引导同学根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

  教学过程:

  一、回顾旧知,复习铺垫

  1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  2、判断下面每组中的两个比是否能组成比例?为什么?

  6:3和8:4 : 和 :

  3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

  二、引导探索,学习新知

  1、什么叫解比例?

  我们知道比例共有四项,假如知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

  2、教学例2。

  (1)把未知项设为X。解:设这座模型的高是X米。

  (2)根据比例的意义列出比例:X:320=1:10

  (3)让同学指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

  根据比例的'基本性质可以把它变成什么形式?3x=815。

  这变成了什么?(方程。)

  教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。

  (4)同学说,教师板书解比例的过程。

  教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

  3、教学例3。

  出示例3:解比例 =

  提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)

  这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

  同学回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.56

  让同学在课本上填出求解过程。解答后,让他们说一说是怎样解的。

  4、总结解比例的过程。

  刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

  变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

  从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

  5、P35“做一做”。同学独立解答,订正时,让同学说说是怎么做的。

  三、巩固深化,拓展思维

  P37第7题。

  四、全课小结,提高认识

  什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

  五、课堂练习,辅助消化

  P37~38第8~11题。

  六、课外补充,拓展延伸

  1、P38第12、13题。

  2、4:8=12:24,假如将第二项减少1,要使比例成立,则第四项减少多少?

  3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。

  4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。

  《比例的意义》教案 篇20

  教学目标:

  1、通过正比例和反比例的对比练习,加深对正比例和反比例意义的理解,提高判断能力。

  2、通过讨论与交流,体会正、反比例的知识与日常生活的密切联系,并利用正、反比例的意义解决实际问题。

  教学重点:

  进一步掌握正、反比例关系的意义。

  教学难点:

  正确应用比例知识解答基本的正、反比例应用题。教具学具:课件

  教学过程:

  一,分层次设计练习。

  (一)、第一层次,基本性应用练习的设计

  1、判断下面每题中的两种量成什么比例关系。

  (1)、一个因数一定,积和另一个因数; 积一定,一个因数和另一个因数。

  (2)、平行四边形的面积一定,它的底和高。

  (3)、货物的总吨数一定,每次运货的吨数和次数。

  (4)、每袋茶叶的千克数一定,茶叶的总千克数和袋数。

  (5)、拖拉机每天耕地的公顷数一定,耕地总面积和天数。问:判断两种相关联的量成什么比例,我们关键是看它们的什么?

  2、揭题

  我们可以应用比例知识解答相应的应用题,这节课,我们联系正、反比例应用题。出示:正、反比例应用题(练习课)

  3、根据已知条件,将题目补充完整,使之成为用正或反比例解答的应用题,并列式。(口答)

  (1)、同学们做广播操,每行站15人,站了12行,?

  (2)、100克海水可以晒出3克盐,照这样计算,?

  4、对比练习:

  (1)解放军战士刘刚从兵营骑马去马场,每小时行60千米,要3小时到达。如果每小时行72千米,几小时可以到达马场?

  (2)解放军战士刘刚从兵营骑马去马场,3小时行180千米,照这样计算,5小时行多少千米?

  (1)读题

  (2)师:现在我们运用比例知识来解答这两道题,首先看第一题,请同学们找一找数量之间有怎样的关系式?两种相关联的量成什么比例关系? 逐步出示数量关系式——对应关系——列出等式。

  (3)按照第一题的讨论方法思考第二题。

  (4)比较:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?

  (5)小结。板书: 判断比例关系

  找出对应数值

  列出等式解答

  5、只列式不计算:(用比例知识解,写清解设??)

  (1)读一本故事书,小红每天读25页,要读12天;如果要10天读完,每天应读多少页?

  (2)用同样的砖铺地,铺18平方米要用618块砖;如果铺24平方米,要用多少块砖?

  (3)一间房子要用方砖铺地,需要用面积是9平房分米的方砖96块;如果改用面积是4平房分米的方砖要多少块?

  (4)安装一条下水管道,15天安装了120米;照这样计算,20天能安装多少米?

  (5)100克蜂蜜里含有克葡萄糖;照这样计算,千克蜂蜜里含有多少千克葡萄糖?

  (二)、第二层次,综合性应用练习的设计。

  1、解决生活中的问题

  把米长的竹竿直立在地上,量得它的影长是米,

  (1)同时量得学校旗杆的影长是米,学校旗杆高多少米?

  (2)量出自己身边一个物体的高度,你能不能求出它的影长?

  2、知识间的联系

  两个底面半径相等的圆柱,第一个圆柱的高是第二个圆柱的高的。第二个圆柱的体积是60立方分米,第一个圆柱的体积是多少?

  问:“ 第一个圆柱的高是第二个圆柱的高的 ”还可以怎么说? 思考:当两个圆柱底面积相等时,

  (1)圆柱体积与高成什么比例?

  (2)两个圆柱体积的比与对应高的比有怎样的关系?为什么?

  你能有几种方法解答?

  说明:按照分数与比之间的联系,有些应用题可以用分数和比例知识采用不同的方法解答。

  3、变式训练,加深拓宽

  (1)选择正确的解法:仪器厂现有5台机器,每天可生产1800个零件;如果用8台同样的机器,每天可生产零件多少个? X=1800X5 :5= X:8 同桌讨论:

  (1)为什么选择B?

  (2)用A解为什么是错误的?

  (3)它是什么关系的应用题?

  (2)如果将上题改成“??如果再增加8台这样的机器??”,求每天可生产零件多少个?

  (3)改上题问句为“每天可多生产零件多少个?”

  (4)假如把上题条件再改为“??用8台这样的机器,每天可多生产零件多少个?”

  (三)、第三层次,创造性应用练习的设计。

  1、一辆汽车从甲地开往乙地,按每小时40千米的.速度,要行驶小时;实际3小时行驶了150千米,这样行驶完全程要几小时? 学生先独立思考列式,然后指名反馈。同桌学生讨论各个算式。师生集体讨论。

  2、在含有铅375克和锡 237克的合金中,增加铅多少克,可使铅与锡的比为5:3?

  二、拓展练习

  1、4人小组活动。并做好记录。

  找一找生活中还有哪些成正、反比例的例子,与同伴交流。最后由小组汇报,全班交流。

  2、学以致用。

  (一)、判断.

  1.一个因数不变,积与另一个因数成正比例.

  2.长方形的长一定,宽和面积成正比例.

  3.大米的总量一定,吃掉的和剩下的成反比例.

  4.圆的半径和周长成正比例.

  5.分数的分子一定,分数值和分母成反比例.

  6.铺地面积一定,方砖的边长和所需块数成反比例.

  7.铺地面积一定,方砖面积和所需块数成反比例.

  8.除数一定,被除数和商成正比例.

  (二)、选择.

  1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.

  A.成正比例 B.成反比例 C.不成比例

  2.和一定,加数和另一个加数.

  A.成正比例 B.成反比例 C.不成比例

  3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是,成反比例关系是.

  A.汽车每次运货吨数一定,运货次数和运货总吨数. B.汽车运货次数一定,每次运货的吨数和运货总吨数. C.汽车运货总吨数一定,每次运货的吨数和运货的次数.

  (三)、思考. 如果,和 成比例,则 ∶ =∶

  四、总结

  你有什么收获?总结规律:如:涉及加减关系、平方关系、立方关系不成比例等。

  《比例的意义》教案 篇21

  教学目标

  1.理解比和比例的意义及性质.

  2.理解比例尺的含义.

  教学重点

  整理比和比例、求比值及比例尺.

  教学难点

  正、反比例概念和判断及应用.

  教学步骤

  一、基本训练.

  43-27

  5.65+0.5 4.8÷0.4 1.25÷ 100×1%

  0.25×40 2-

  二、归纳整理.

  (一)比和比例的意义及性质.

  1.回忆所学知识,填写表格【演示课件“比和比例”】

  2.分组讨论:

  比和分数、除法有什么联系?

  比的基本性质有什么作用?比例的基本性质呢?

  3.总结几种比的化简方法.【继续演示课件“比和比例”】

  比

  前项

  ∶(比号)

  后项

  比值

  除法

  分数

  (1)整数比化简,比的前项和后项同时除以它们的最大公约数.

  (2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

  (3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

  (4)用求比值的方法化简,求出比值后再写成比的形式.

  解比例:12 :x=8 :2

  4.巩固练习.

  (1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

  (2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?

  (3)解比例: ∶ =8∶2

  (二)求比值和化简比.【继续演示课件“比和比例”】

  1.求比值:4∶

  化简比:4∶

  2.比较求比值和化简比的`区别.

  一般方法

  结果

  求比值

  根据比值的意义,用前项除以后项

  是一个商,可以是整数、小数或分数

  化简比

  根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外)

  是一个比,它的前项和后项都是整数

  3.巩固练习.

  (1)求比值.

  45∶72 ∶3

  (2)化简比.

  ∶ 0.7∶0.25

  (三)比例尺.【继续演示课件“比和比例”】

  1.出示中国地图.

  教师提问:

  (1)这幅地图的比例尺是多少?(比例尺是 )

  (2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

  (3)比例尺除了写成 ,以外,还可以怎样表示?

  2.巩固练习.

  在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

  在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

  (四)正比例和反比例.【继续演示课件“比和比例”】

  1.回忆正、反比例意义.

  2.巩固练习.

  (1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

  ①收入一定,支出和结余

  ②出米率一定,稻谷的重量和大米的重量.

  ③圆柱的侧面积一定,它的底面周长和高.

  (2)木料总量、每件家具的用料和制成家具的件数这三种量

  当( )一定时,( )和( )成正比例;

  当( )一定时,( )和( )成正比例;

  当( )一定时,( )和( )成反比例.

  (3)如果 =8 , 和 成( )比例.

  如果 = , 和 成( )比例.

  (4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

  三、全课小结.

  这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的

  问题?

  四、课堂练习.

  1.填空.

  (l)根据右面的线段图,写出下面的比.

  ①甲数与乙数的比是( ). 甲数:

  ②乙数与甲数的比是( ). 乙数:

  ③甲数与甲乙两数和的比是( ).

  ④乙数与甲乙两数和的比是( ).

  (2)( )24= =24 ∶( )=( )%.

  (3) ∶6的比值是( ).如果前项乘上3,要使比值不变,后项应该( ).如果前项和后项都除以2,比值是( ).

  (4)把(1吨):(250千克)化成最简整数比是( ),它的比值是( ).

  (5) 与3.6的最简整数比是( ),比值是( ).

  (6)如果a×3=b×5,那么a∶b=( )∶( ).

  (7)如果a∶4=0.2∶7,那么a=( ).

  (8)把线段比例尺 改写成数值比例尺是( ).

  (9)甲数乙数的比是4∶5,甲数就是乙数的( ).

  (10)甲数的 等于乙数的 ,甲乙两数的比是( ).

  2.选择正确答案的序号填在( )里.

  (1)1克药放入100克水中,药与药水的比是( ).

  ①1∶99 ②1∶100 ③1∶101 ④100∶101

  (2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是( ).

  ①10∶8 ② 5∶4 ③4、∶5 ④ ∶

  (3)在下面各比中,与 ∶ 能组成比例的是( ).

  ①4∶3 ②3∶4 ③ ∶3 ④ ∶

  (4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是( ).

  ①9∶10 ②10∶9 ③1∶9 ④9∶1

  (5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是( ).

  ①1∶5 ②1∶5000 ③1∶500000

  (6)用3、5、9、15这四个数组成的比例式是( ).

  ①15∶3=5∶9 ②3∶15 ③15∶9=5∶3 ④9∶3=5∶15

  (7)在比例尺 的地图上,2厘米表示( ).

  ①0.4千米 ②4千米 ③40千米

  (8)大小两圆半径的比是3∶2,它们的面积的比是( ).

  ①3∶2 ②6∶4 ③9∶4

  五、布置作业.

  1.化简下面各比.

  0.12∶56 ∶

  2.写出两个比值都是3的比,并组成比例

  3.写出一个比例,使它两个内项的积是12.

  4.如图是用1∶20的比例尺画的一个机器零件的截面图,量出图中两个圆的半径,并计算这个零件截面的实际面积.

  《比例的意义》教案 篇22

  教学内容:教材第111~112页比例的知识和比例尺的计算、“练一练”,练习二十一第9一14题,练习二十一后面的思考题。

  教学要求:

  1、使学生加深认识比例的意义和基本性质,能判断两个比能不能组成比例,能比较熟练地解比例。

  2、使学生掌握比例尺的意义,能正确地进行有关比例尺的计算,培养学生运用知识的能力。

  教学过程:

  一、揭示课题

  在复习了比的知识后,这节课复习比例的知识和比例尺的计算。(板书课题)

  二、复习比例知识

  1、复习比例的意义。

  (1)提问:上面的比能组成哪些比例?为什么?

  什么叫做比例?(板书:比例:表示两个比相等的式子。)你能说出比例里各部分的名称吗?(板书各部分名称)

  (2)学生练习。

  让学生在练习本上任意写一个比和一个比例。指名一人口答所写的比和比例,老师板书。提问:比和比例有什么区别?说明:比和比例的意义不同,比表示两个数相除的关系、比例表示两个比的相等关系;组成比和比例的项不同,比只有两项,比例有四项。

  2、复习比例的基本性质。

  (1)提问:比例的基本性质是什么?(板书;比例的基本性质:外项的积等于内项的积。)请同学们按照比例的基本性质,在课本第111页上根据0.4:3=2:15,写出内项积等于外项积的式子。追问:比例的基本性质和比的基本性质有什么不同?

  (2)解比例。

  学习比的基本性质有什么作用?(板书:解比例)做“练一练”第2题。指名四人板演,其余学生分两组,分别在练习本上做前两题和后两题。集体订正,选择两题让学生说一说第一步的依据。提问:大家总结一下解比例的过程。指出:解比例要先根据比例的基本性质,写成积相等的式子,再求出等式里未知的因数x。

  三、复习比例尺计算

  1、说明:应用比的知识或者解比例的方法可以计算比例尺的有关问题。(板书:比例尺)

  2、复习比例尺的意义、

  请同学们自己阅读第112页上关于比例尺的内容,进一步弄清什么是比例尺,比例尺有几种形式。提问:什么是比例尺?(板书:图上距离:实际距离=比例尺)比例尺有哪几种形式?谁来举一个数值比例尺的'例子,并且说明它实际表示什么意思?(根据学生举例板书出一个比例尺,让学生说说图上距离是实际距离的几分之一,实际距离是图上距离的多少倍)

  3、学生讨论、操作。

  如果学校平面图的比例尺是1:1000,它表示什么意思?图上1厘米表示实际距离多少?你能画出线段比例尺来表示它吗?(让学生画在练习本上,然后交换检查)

  4、做“练一练”第3题。

  请同学们做“练一练”第3题。指名一人板演,其余学生做在练习本上。集体订正,让学生说说是怎样想的。指出:求图上距离或实际距离,可以先设未知数为x,再根据比例尺的意义列出比例,然后解比例求出结果,也可以根据比的前项和后项的倍数关系来求出结果。

  四、综合练习

  1、归纳复习内容。

  让学生说—说本节课复习的具体内容。

  2、做练习二十一第9题。

  学生先自己思考,然后指名口答。

  3、做练习二十一第11题。

  让学生写在练习本上。指名口答,老师板书。说说应怎样想。

  4、做练习二十一第13题。

  (1)做第(1)题。

  指名板演,其余学生做在练习本上。集体订正。提问:怎样求一幅图的比例尺?

  (2)讨论第(2)、(3)题。

  提问:求出这幅图的比例尺后,下面两题可以怎样解答?

  5、讨论练习二十一第14题。

  让学生读题。这两题有什么相同和不同的地方?想一想,解答这两题应该有什么不同?(强调要注意份数与数量之间的对应关系)

  五、讲解思考题

  让学生读题。提问:如果照按比例分配问题思考,还需要知道什么条件?现在已知的比的条件怎样?你能应用比的基本性质,把这个比改写成甲数、乙数、丙数三个数的比吗?请大家课后先把这两个条件化成甲、乙、丙三个数的比,再自己试一试,求出三个数各是多少。

  六、布置作业

  课堂作业;练习二十一第12题(1)、(3)、(5),第13题(2)、(3),第14题。

  家庭作业:练习二十一第12题(2)、(4)、(6)。

【《比例的意义》教案】相关文章:

《比例的意义》教案12-02

《正比例的意义》教案12-09

《比例的意义》教案(15篇)12-07

《比例的意义》教案14篇01-05

《比例的意义》教案(14篇)01-05

《比例的意义》教案(精选23篇)02-22

《比例的意义》教案15篇03-27

《比例的意义》教案汇编15篇12-30

《比例的意义》教案(汇编15篇)12-30