3的倍数的特征教学反思
作为一名到岗不久的人民教师,教学是重要的任务之一,教学反思能很好的记录下我们的课堂经验,那么什么样的教学反思才是好的呢?下面是小编精心整理的3的倍数的特征教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
3的倍数的特征教学反思1
“能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:
1、确立了基本技能目标和发展性目标并重的教学目标。
本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。
2、理性处理教材,使教学内容生活化。
教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。
3、着力改变学生的学习方式。
学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的'第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。
4、合理定位教师角色,营造民主、和谐的学习氛围。
课堂教学中只有摆正了师生关系,才可能使学生得到发展。本节课学生始终是数学学习的主人,教师是数学学习的组织者、引导者和合作者。可以从以下两方面看出:一是从师生活动的时间分配上,二是从分层探究、有针对性的适当引导上。这节课从开始到结束,气氛始终处在民主、和谐之中,生活化的学习材料、平等的师生关系和开放的探究方式,
3的倍数的特征教学反思2
3的倍数的特征比较隐蔽,学生一般想不到从“个位上的数字之和”去研究。上课开始先让学生通过练习回顾旧知:2的倍数与5的倍数的特征。然后让学生猜想:3的倍数又有什么特征呢?这样能较好调动学生学习的积极性。由于受2的倍数与5的倍数特征的影响,有些学生很自然猜测到“个位上是0,3,6,9的数是3的倍数”、“各位上的数字加起来是3,6,9的数是3的倍数”等等,学生能想到这几点是非常不错的。
学生进行猜想后,我并没有判断学生的猜想是否正确,而是出现了百数表,让学生在百数表中圈出所有的3的倍数,让学生从表中发现3 的倍数的特征,把自己发现的在小组间交流。此时,我还是没有判断学生的发现是否正确,而是让学生打开课本自学,从课本中找3的倍数的特征,当遇到问题解决不了时,我们可以向课本求助。然后问学生“各位上的数字的和是3的倍数是什么意思?请结合举例说说。”接下来将数扩到百以上,通过各种方式举正反例通过计算来验证从而得出3的倍数的特征。最后比较验证之前的猜想与发现。当我们向课本找到结论时,我们也要质疑,通过举例来验证。鼓励学生对知识要敢于质疑,敢于通过各种方式去验证,培养学生良好的数学思维。
在教学中,我能有效获取课堂生成资源,同时也注重方法的指导。比如:同桌举例验证时,涉及到了“123456”是否是3的倍数,先给予学生思考的时间,让后问:还有更加简便的方法吗?老师有效引导,让学生去发现“去3法”能给我们的判断带来很大的方便。还有在方框里填数等。有较好的`教学机智与课堂驾驭能力,如:在百数表圈3的倍数时,我的课件中有个数“99”忘记没有圈好,学生发现了这问题。在这里,我是表扬了发现此问题的学生,老师故意说:我是特意没有圈的,看我们的学生观察是否仔细,考虑问题是否全面……,把原本的错误变成良好的教学资源。练习的设计业很有层次与梯度,联系生活实际。
本节课也有很多不足的地方:百数表中的数据太多,部分学生的发现是乱七八糟的;在举例验证的过程中,学生的计算还不够,学生亲自从算中去体会更好;总结不太及时,从及时总结中提炼、提升会更好。
3的倍数的特征教学反思3
本节课探究3的倍数的特征之前,我还是先让学生写出50以内3的倍数,然后让学生观察这些数有何特征,大部分同学找不着规律,个别同学可能是受上节课的影响,说出了:个位上是0、1、2、3、4、5、6、7、8、9的数就是3的倍数,但马上就被其他同学推翻了。
然后我就出示计数器,依次拨出3的倍数,让学生观察一共用了几颗珠子,让学生体会到有几颗珠子就是各个数位上数的.和,发现珠子的颗数正好是3的倍数,也就是各个数位上数的和是3的倍数,那么这个数就是3的倍数。说实话,学生对于这一规律,不是很容易接受,在后来的练习中,才慢慢体会到。
“想想做做”的五道题设计得比较好,体现了分层,特别是最后一道,学生通过交流讨论后,得出了先选数后组数的思路,练习的效果比较好。
3的倍数的特征教学反思4
《3的倍数的特征》是人教版义务教材新课程第八册的教学内容,对这节课的教学设计,有从2、5的倍数的特征中引入的、有让学生通过摆火柴棒研究的,其中不乏好点子好设计。但是,大部分老师都要抛出一个问题让学生思考:“火柴棒的总根数跟3的倍数有什么联系?”或者干脆问“3的倍数和数位上的数字的和有什么关系?”总觉得教师对学生的引导过于直接,对于五年级的学生,经过这样的提问,一般都能找到3的倍数的特征,也能用语言来表述。我认为,我们的关键不但要让学生找到3的倍数的特征,更应该引导学生怎样去发现数位上的数字的和与3的倍数之间的关系。我考虑,能不能在本节课中运用分类,让学生自主探究呢?以下是两个教学片段:
教学片段一:
让学生用30秒时间,写3的倍数,大部分学生都从小到大写了25个左右
老师板演了10个:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任务。
师:请你给自己写的3的倍数分类,看看能不能找到规律。限时2分钟。
(结束)学生回答。
生1:3、6、9;12、15、18、21、24……按位数分类。(有3人和他一样分)师:按位数分类,那么3位数里哪些是3的倍数呢:103、208是3的倍数
吗?(学生答不出)
生2:3、6、9、12、15、18、21、24、27、30;
33、36、39、42、45、48、51、54、57、60
63、66……
(有32人和他一样)
师:你分类的标准是什么?
生2:个位是0——9的都归为一类,共两类。
生3:共十类。个位是0的一类,个位是1的一类,个位是2的一类,到个位是9的一类。
师:懂了。3、33、63是一类;6、36、66是一类,共十类。那21253是不是3的倍数,能迅速判断吗?(生无语)
师:看来,分类的方法很多。但是,哪一种分类才能帮助我们发现3的倍数的特征,是有价值的呢?(学生陷入沉思)
以上学生的分类方法,都有不同的标准,从单一分类的角度来看,没有问题。但是对于寻求3的倍数的特征,却没有意义。大部分学生是从2、5的倍数的特征中受到启示,这是学生的经验,却是一种负迁移。课前,我也想到了,那么是不是就一定要先提醒学生,不要走弯路呢?我认为,负迁移也是一种宝贵的经验,经历过挫折,对知识的理解就会更加深刻,无需刻意回避。
教学片段二:
师:继续观察这些数,还有其它分类方法吗?限时5分钟。(陆续有学生举手,5分钟后,共有15位学生举手,巡视一遍。)
师:谁来介绍自己新的分类方法?
生1:3、21、30;
6、15、24、33、42;
9、18、36、45、63;
12、39、48、57;
……
师:你的分类标准是什么?
生1:第一类,每个数数位上的数字的和是3;第二类,每个数数位上的数字的和是6;第三类,每个数数位上的数字的和是9;第四类,每个数数位上的数字的和是12;以此类推。
师:谁来帮他“以此类推”?
生2:每个数数位上的数字的和是15,也是3的倍数;每个数数位上的数字的和是18,也是3的倍数。
生3:每个数数位上的数字的和是21,也是3的倍数;每个数数位上的数字的和是24,也是3的倍数。
师:你能用一句话来表达吗?
生4:每个数位上的数字的和是3、6、9、12、15、18等,这个数就是3的倍数。
生5:每个数位上的数字的和是3的倍数,这个数就是3的倍数。
师:很厉害。但是,我们需要验证。判断老师刚才写的3的倍数(前5个)105、111、156、273、300。
生4:1加0加5等于6,6是3的倍数,105也是3的.倍数。
生5:1加1加1等于3,3是3的倍数,111也是3的倍数。
……
(一个学生根据规律回答,其他学生用竖式验证。)
生6:3的倍数的特征是找到了,但这样的分类太乱。我一共分3类:
第一类:每个数数位上的数字的和是3:3、12、21、30;
第二类:每个数数位上的数字的和是6:6、15、24、42、51;
第三类:每个数数位上的数字的和是9:9、18、27、36、45……,
这样的数是3的倍数。
师:那老师的这些数:339、504、918、1527、2442属于哪一类呢?
生6:339,3加3加9等于15,然后1加5等于6,分到第二类;918,9加1加8等于18,然后1加8等于9,分到第三类;1527分到第二类;2442分到第一类。所有3的倍数没有超出这三类的。
师:厉害!(让其他学生说了两个四位数,用他的方法来判断是不是3的倍数,大概有三十个左右的学生能用这样的方法分析。老师又举了一个反例。)
师:谁能用几句话来概括?
生6:一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。
师:真佩服你们!
第二天,有学生告诉我他发现了一种更快判断3的倍数的方法,不用把数位上的数都加起来,比如538,3是3的倍数就不要管它了,只要5加8加一下,13不是3的倍数,538就不是3的倍数。我又说了一个五位数20xx,学生分析,6是3的倍数,不去管它,2加7是9,9是3的倍数,整个数就是3的倍数。
学生的探究能力如此之强,是我没想到的,学生快速判断3的倍数的方法,实际上已经综合了很多的知识,尽管不能很明确地用语言来表达,但是,方法是完全正确的,其实这又是一个学生新的探究的开始。
从本节课中,我有几点小小的感悟:
一、教师不要害怕学生探究的失败。学生第一次探究的失败,完全是正常的,这是他们运用已有的经验,进行探究后的结果。尽管这种经验的迁移是负作用的,但是从失败到成功的过程,记忆是深刻的。负迁移在教学中比比皆是,我们不但不能回避,而且要好好利用,要让学生积累对数学活动的经验,同时能将“经验材料组织化”。
二、教师要给学生创造探究的机会。学生的探究能力其实是老师意想不到的。最后一位学生对3的倍数的概括(一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。),尽管实际的意义不是很大,但是它更具有横向的关联,2的倍数特征是:个位是0、2、4、6、8的数是2的倍数;5的倍数的特征是个位是0或5的数是5的倍数。或许,这种类比联想更容易让学生理解新的知识,更何况是学生自己探究出来的。其实很多教学内容我们都可以让学生进行探究,关键是教师如何给学生提供一个探究的载体,一种探究的环境。
三、教师对学过的知识要经常地进行整合。新教材的特点是有些知识点分得比较散,所以教师要经常把学生学过的知识,在新知中不知不觉地再应用,再巩固。温故而知新,在复习与巩固中,学生会对旧知有更高的认识,更深的理解,也容易排除学生对新知的畏难思想。同时要经常地对各种知识进行串联,编织学生知识的网络,使学生认识到各种知识之间是相互关联相互作用的,以利于学生解决一些实际问题或综合性问题。
四、教师要经常在教学中渗透一些数学思想。分类是一种数学思想,同时也是一种数学思维的工具。人教版小学数学第一册学生就接触了分类《整理房间》,第七册《角的分类》、第八册《三角形的分类》,让学生对分类有了更多的理解。其实在生活中,无处不在的分类:超市货物的摆放、自己书本的整理、性别之间、班级之间等等。对于分类的标准,分类的原则,学生在不知不觉中有了感悟。借助分类,有40%的学生找到了3的倍数的特征,学生完全是在观察、尝试、验证的基础上探究的,是自主的行为研究。在小学数学中,渗透了很多数学思想,如集合、对应、假设、比较、类比、转化、分类、统计思想等,在教学中合理地运用这些数学思想,对学生学习数学的影响是深远的,也会让我们的数学探究活动更有意义,更有价值。
3的倍数的特征教学反思5
《2、5、3倍数的特征练习课》是一堂练习课,本节课是在学生已经学习了2,5,3倍数的特征的基础上进行教学的。为以后学习分数,特别是约分、通分,需要以因数倍数的知识的概念为基础,到进一步掌握公因数、最大公因数和公倍数、最小公倍数的概念,需要用到质数、合数的概念,而最基础的就是掌握2,5,3的倍数的特征。从开始学习2,5的倍数特征仅仅体现在个位数上,到学习3的倍数特征时从只看个位转向考察各位上的数相加的和,学生已经有了思路上的转变,思维的转折,观察角度的改变,以此让学生自主探索4的倍数特征,但由于与2,5,3的倍数特征又有些许不同,对学生依然有一定难度。
如果只是单一的做习题,势必有学生会感到枯燥无味,这样子学生的学习效果难以保障,对教师的功底与教学策略有很大的'挑战。因此课堂伊始,我直接开门见山式的先对前面学习的知识进行复习梳理,接着利用学生感兴趣也是正在使用着的工具——“手机”的锁屏密码为线索,通过提示让学生解密码的方式激发学生的学习兴趣,然后以破解后的密码1080,导出本节课我们要重点探究的4的倍数特征。让学生带着趣味,自主的去探索。由于有了前面探索2,5,3倍数特征的基础在,所以在探索4的倍数特征时放手让学生通过操作,观察,思考从而有所发现,体验探索的乐趣。接着通过计数器,让学生明白判断4的倍数特征背后的原理。最后在练习巩固中,逐渐熟练应用所学知识,感知数学知识和我们的生活紧密联系。如何让练习课不仅仅只是做练习,让学生能在练习中获得对知识的理解以及思维上实质的提升,仍然值得我在好好的去思考探索。
3的倍数的特征教学反思6
1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的'负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。
2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。
3的倍数的特征教学反思7
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
一、猜想:让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”。
二、验证::先让学生在百数图中找找看,显然像13、16、19等等的数不是3的倍数,学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的.个位上,那3的倍数究竟与什么有关系呢。
三、探究:在此基础上,让学生在百数图中找出3的倍数的数,如果把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)
12→2115→5118→8124→4227→72
我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?
如果把3的倍数的各位上的数相加,它们的和是3的倍数。
四、验证:下面各数,哪些数是3的倍数呢?
2105421612992319876
小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。这样结论的得出水到渠成。
3的倍数的特征教学反思8
2、3、5倍数的特征我设计的是一节课,但上完这节课上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,但我由于对教材的把握不够,时间用到2、5倍数上的较多。以至于对3的倍数特征探究不到位。
好的开始等于成功了一半。课伊始,我设计了抢“30”的游戏,目的是让学生从中找到3的倍数,但我发现这个游戏没让学生部明白要求没有能提高学生的兴趣。意义不到。数学学习过程中应该是观察、发现、验证、结论等探索性与挑战性活动。首先让学生独圈出写出100以内2、5的倍数,独立观察,看看你有什么发现?学生很容易发现他们的'特征,而这只是猜测,结论还需要进一步的验证。但我对这部分的处理太过于复杂零碎。以至于用的时间过多。比如说2、5倍数与其他数位的关系,着就不是本节课的重点。
小组合作,发挥团体的作用,动手实践、合作交流是学生学习数学的重要方式。我觉得我们班小组小组合作还有很多部足的地方,比如说学生的之一能力倾听能等等还需进一步训练。
3的倍数的特征教学反思9
《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。
3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的.倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。
1、瞄准目标,把握关键
在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、经历过程,授之以渔
猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。
3、追求本真,知其所以然
本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。
3的倍数的特征教学反思10
从以上的教学过程中,可以看到掌握2、5的倍数的特征不是本节课的唯一目标,在制定目标的时候,还从数学研究方法这个方面着手,在学生掌握知识的同时,更注重让学生了解科学的数学研究的过程。
我们知道,一堂课的知识目标是很容易达成的,但是如果要渗透数学思想方法或科学的研究方法,往往会给我们一线教师带来很多困难。在这节课中,教师引导学生通过猜想验证结论三个流程进行研究,最后得到正确的数学结果,并进行应用。
1、渗透范围意识。
当我们说要研究2、5的倍数的特征时,学生想当然地会认为只要一个数一个数地研究就可以了。如果让他们实际操作,他们很可能会写了几个数后,就下结论,当然这时候他们下的结论也很可能是正确的。大部分老师在这样的情况下,就会肯定学生的结论,然后进行练习巩固。
但是教师并没有满足于此,而是抱着科学严谨的态度。仅仅几个数就能得出结论了吗?答案显然是否定的,一项结论的得出不是这样草率的。如果教师如此这般教学,一次两次不要紧,长久以来,学生也会形成草率的态度,以偏概全,缺乏一种科学的严谨,这是很可怕的`。
所以我们看到,首先教师引导学生确定了小范围的意识,在数据比较多的时候,我们可以先确定一个范围,在有限的时间里研究这个范围中的数的特征,得到在1-100这个范围内5的倍数的特征,个位上的数字是5或0。这时候教师没有满足于此,而是引导学生认识到这个结论仅仅适用于1-100这个小范围,是不是在所有不等于0的自然数中都使用呢?还需要研究。所以接下来在教师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。只有进行了研究,才能得到正确的结论,最后在学习和生活中进行应用。
在这一过程中,学生感受到了科学严谨的态度,同时有了一定的范围意识,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。相信长此以往,学生会逐渐明确范围意识,建立科学严谨的态度的。
2、感受猜想与结论的不同。
在教学2、5的倍数的特征之前,教师找了几个学生访谈,想了解学生学习的前在状态,当然所找的学生是各种层次都有的。对于2、5的倍数的特征,应该说比较简单,所以中等学生和优等生都已经知道了它们的特征2的倍数肯定是双数,5的倍数末尾是5或0,只有个别学困生一无所知。同时有个奇怪的现象,所有知道这个结论的同学都认为这个结论非常正确,以后就能用这个结论来进行判断,不需要进行验证,当然他们的结论获得也仅仅是知道的过程,没有经历探究过程。如果长此以往,学生仅仅是知识的接受者,而不是知识的探究者,以后将只习惯于被动接受,而不会主动发现。
所以,在教学中,当学生找到1-100内2和5的倍数特征时,教师追问学生,是不是比100大的自然数中,也有这个特征呢?学生异口同声地都认为是。这里就需要教师帮助学生养成严谨科学的学习态度。我们看到,教师告诉学生是不是有这个特征,我们没有研究过,所以只是我们的猜想。当教师一点拨后,大部分学生还是比较认可的。确实,没有经过研究,怎么能知道是呢?
有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时教师才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有研究后,猜想才可能变成结论。
相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论,当然我们教师也要鼓励学生大胆猜想。
从这节课中,我们看到,当学生扩大范围,研究比100大的5的倍数的特征时,教师就引导可以用举例的方法来研究,寻找有没有不符合这一特征的例子,如果有,说明一开始的猜想是错误的;全班举了无数个例子,如果没有,那么在小学阶段,可以认为是正确的。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
随着时代的发展,随着新课改的不断深入,我们教师在制定教学目标时,不要再仅仅关注学生知识目标,更重要的是要关注学生的能力目标,只有从小培养,从小渗透,那么我们学生对数学的认识才会更深刻,也才会在数学上有更大的造诣。
3的倍数的特征教学反思11
这堂课主要目标是引导孩子经历探索“2的倍数的特征”的过程,培养学生抽象、总结及概括能力,初步体会“不完全推理”的一般方法。在课前独立研究前,我首先布置了这样的两个问题:思考“我们怎样去找2的倍数的特征” 、“我们采取什么方法去找2的倍数的特征?”然后再让学生按书上的要求在百数图中独立的找出100以内2和5的所有倍数。这样孩子很自然的想到“找几个2的倍数来看看”,孩子就能够理解我们为什么要在百数图上找2的倍数,找到这些数之后,也会自发地去思考这些数有什么共同特征,而不会像牵线的木偶任我们摆布。在预习作业中我还布置了另两个问题:自学书本,弄清偶数和奇数的含义;思考能同时是2和5的倍数的'数的特征。
但在课堂教学中还是出现了让人啼笑皆非的事,课始,我问学生,你知道这节课我们将会研究什么问题吗?令我意想不到的是在两个班中学生的回答如出一辙——“研究偶数和奇数”,有同学在位置上窃笑,我没有立即否定,接着问,那你知道什么叫偶数和奇数吗?(我的本意是在让学生作出正确回答后再顺势而导,偶数和奇数都是与哪个数有关,哪我们这节课只是研究2的倍数的特征吗?让他自己发现回答的不全面)可没想到的是又来了一个出人意料的回答:2的倍数是偶数,5的倍数是奇数。既然学生的预习效果如此不理想,我决定临时改变教学策略,跳出“学程导航”的模式,重新用老方法让学生在课上再一次经历探索的过程。但是从课堂的练习看,问题还是比较严重。
于是我就有些困惑,究竟是我的教学安排出现了问题,还是在预习作业的布置中语言的交代上不够清楚呢?我们虽然主张“先学后教”,让学生课前自主探究,提倡整体预习。但我还是认为,小学生的数学思维还处在形象思维向抽象逻辑思维转变的阶段,还是需要在一定的情景中在老师的引领下合作探究,而一味盲目地让孩子独立研究,而老师又不在旁边加以及时的指导和纠正,而在认知形成的初始阶段,一旦在认识上有偏差产生错误的结论,再想反它纠正过来往往是很困难的,因为第一印象很重要。现在强调课前预习我并不反对,毕竟学习目标的指向性更明确了,长期的培养,学生的学习方法肯定会得到提高,但对数学思想方法的培养上有些弱化,另外,缺少了在具体的情景下学习,总觉得知识的习得过于直接,学生容易遗忘。因此,数学预习应因学习内容而宜,因年级而宜。
3的倍数的特征教学反思12
《3 的倍数的特征》本节课的教学活动,注重学生实践操作,展开探究活动,组织学生进行交流和探讨,注重培养学生发现问题,解决问题的能力,让学生经历科学探索的过程,感受数学的严谨性和数学结论的正确性。我是从教学环节维度进行观课的,本节课有五个环节包括:一、复习旧知,直接导入。二、自主探究,合作验证。三、总结提升,共同验证。四、运用结论,巩固训练。五、全课小结,课后延伸。每个环节环环相扣,设计合理。下面就说一下自己的想法。
一、以旧带新,引入新课。
赵老师先复习了2、5的倍数的`特征,为这节课的学习打下了基础。赵老师以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。
二、亲身经历,探索规律。
本节课教师努力尝试构建数学生态课堂,让学生继续利用小棒摆一摆,进而发现不止是3根、6根小棒能摆出3的倍数,9根也能“只要小棒的根数是3的倍数,摆出来的数就是3的倍数。”教师将“动手摆小棒”升级为“脑中拨计数器”,将“直观性思维”升华为“理性思维”,通过小组交流、集体验证,学生的探索发现离“3的倍数的特征”只有咫尺之遥。整节课让学生经历“动手操作——观察发现——举例验证——归纳总结”的探究过程,实现课程、师生、知识等多层次的互动。
三、精心选题,巩固新知。
习题的设计力争在突出重点,突破难点,遵循学生认知规律的基础上,体现基础性、层次性、灵活性、生活性、趣味性。本节课教师设计了3道练习题。在巩固练习部分,第(1)、(2)题是基本题;第(3)题,教师努力拉近数学与生活的联系。把数学和生活有机联系起来,使学生体会到数学在现实生活中作用和价值,初步学会用数学的眼光去观察事物、思考问题,树立学好数学、用好数学的志趣。
四、回顾梳理,举一反。
在学生学习的过程中注意“学习方法”的指导,让学生感受到掌握方法才能举一反三,真正做到触类旁通。最后一个环节设计了让学生静静的回顾这节课的学习历程“动手操作——观察发现——举例验证——归纳总结”,使其在数学思想上做进一步的提升。
3的倍数的特征教学反思13
3的倍数的特征的教学与2、5倍数的特征难度上有不同,因为2、5的倍数的特征从数的表面的特点就可以很容易看出(根据个位数的特点就可以判断出来),但是3的倍数的.特征却不能从表面去判断,因而我特设以下环节突破重难点预习题。
1、给出一些数让学生先判断哪些数是3的倍数。并让学生说一说你是怎么判断的?
2、从以上的3的倍数进行思考:
(1)、3的倍数与它个位上的数有关系吗?
(2)、 3的倍数的各位上的数的和都是3的倍数吗?
新课时让学生从上面的练习中去发现了什么,从而归纳3的倍数的特征:一个数的各个数位上的数字和是3的倍数,这个数就是3的倍数
然后再让每个同学任意写一个3的倍数,再看看这个数的各个数位上的数的和是不是3的倍数。要求学生说出方法和思路。
经过以上这些活动后学生都能对一个数是不是3的倍数进行简单的判断。特别是学生对3的倍数特征的判断大多数的学生能先求出各个数位的数字之和是不是3的倍数,然后再进行判断,效果很好。
3的倍数的特征教学反思14
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
前一课时,学生在发现2、5的倍数特征时,都是从个位上研究起的,所以在复习旧知时,我也特意强调了这一点。接下来我引导学生猜想3的倍数特征是什么时,不少学生知识迁移,提出:个位上是3、6、9的数应该是3的倍数;3的倍数都是奇数。提出猜想,当然需要验证,很快就有学生在观察百数表后提出问题:个位上是3、6、9的数只是有些是3的位数,有些不是3的倍数;有些偶数也是3的倍数,而有些奇数却不是3的倍数。学生的第一猜想被自己否决了。既然没有这么明显的特征,那么在百数表里找出3的倍数,不少学生就开始了繁杂的计算,这个环节我给了他们时间慢慢去算,用意在于体会这种计算的不方便,从而去想有没有更好的方法去判断一个数是否是3的倍数。
找3的倍数的特征是本节课的难点,我处理这个难点时力求体现学生是学习的'主体,教师只是教学活动的组织者、指导者、参与者。整节课中,始终为学生创造宽松的学习氛围,让学生自主探索并掌握找一个3的倍数的特征的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
在完成100以内的数表中找出所有3的倍数后,我引导学生观察发现3的倍数的个位可以是0~9中任何一个数字,要判断一个数是不是3的倍数不能和判断2、5的倍数一样只看个位,打破了学生的认知平衡,然后我提出到底什么样的数才是3的倍数这一问题。这个问题的解决需要借助计数器,于是我给学生准备了简易计数器,让学生多次拨数后,观察算珠的个数有什么共同的特点。反应比较快的学生就有了发现:所用的算珠个数都是3的倍数。在学生提出这个猜想后,全班学生再一次进行验证第二个猜想,这个验证也是在突破难点,学生在验证中掌握难点。同时,我也让学生对比了之前所用的方法,体验这个新方法的快捷与简便,让学生的印象更深刻。这个教学环节在教师的引导下克服困难,解决了力所能及的问题,达到了新的平衡,开发了学生的创新潜能。
在教学过程中让学生自主探索,虽然用了很多时间,但我认为学生探索的比较充分,学生的收获会更多。
在上述教学过程中,虽然每个同学只操作了一两次,但是通过学生之间的合作交流,在教师的引导下,学生经历了一个典型的通过不完全归纳的方法得出规律的过程。学生在这一过程中的体验,无论是方法层面,还是思想层面均将对后继的学习产生深刻的影响。
在初步感知3的倍数的特征后,我提出了问题:一个数,在计数器上拨出它,所用数珠的颗数是3的倍数,它就是3的倍数,对吗?你是否认为我们研究出的结论对所有的数都适用呢?这两个问题的提出,意义在于通过“更大的数”和“任意找”两方面,使学生深切体验了不完全归纳法的这一要义,同时也培养了学生缜密思考问题的意识和习惯。
3的倍数的特征教学反思15
《3的倍数特征》进行了两次教学授课,第一次是新授,第二次是录课重复授课。下面就本节课前后两次上课进行如下反思:第一次上课,采用游戏的方式引入,提前给学生编号,根据编号做游戏。由于每个学生的编号不一样,所以在做游戏的时候,每个学生集中注意力,倾听游戏要求,激发了学生的学习兴趣。设置游戏的目的是复习2或5倍数的特征,同时,对3的倍数特征的学习产生求知欲。接下来是采用提出猜想,举出个例否定猜想来过渡。让学生充分地认识到依据2或5的倍数特征的思想已经行不通了,从而开始新的探索。在探索过程中借助“百数表”,让学生独立地圈出3的倍数,圈完后互相交流3的倍数的个位有什么特点,再次否定了之前的思维定式。由于个位上没有特点,所以引导学生从其他的角度观察,学生能想到横着观察、竖着观察,但对于斜着观察不能很好的发现,所以本节课中我关注到学生的思考困境,引导学生从斜着观察的角度思考探索。当学生斜着观察时能发现个位上的数字依次减1,十位上的数字依次加1,适时提出“什么是没有变的?”问题一提出,学生恍然大悟,发现:个位和十位上的数的和没有变!顺其自然的知道了3的倍数具有这样规律。经过研究每一斜行发现:个位和十位上的数的和不变,都是3的倍数。知道了这个规律后,下面开始延伸这个规律。一方面:验证百数表内其他不是3的倍数是否具有这个规律?另一方面:比100大的数,三位数、四位数、五位数等是否具有这个规律?通过两方面的验证,再次强调了这个规律是普遍存在的,而这时3的倍数特征已经归结为:一个数各位上的数的和是3的倍数,这个数就是3的倍数。知道了3的倍数特征之后通过练习巩固加强,练习的设计是三道题,这三道题设计为不同的层次,第一题是基础题,第二题是拔高题,第三题是解决问题。通过做题发现学生本节课掌握得不错。最后,对本节课的知识进行了延伸,通过出示课本第13页“你知道吗?”,让学生明白为什么2或5的倍数特征只看个位就可以了,而3的倍数特征需要看所有数位。从而达到学知识不但要知其然还要知其所以然。整个教学过程中,学生能在猜想、操作、验证、交流、归纳的数学活动中获得丰富的数学经验,同时这也有利于学生创造力的培养。通过本节课的教学以及学生的掌握情况,最终检测本节课的目标较好的达成。但反思这节课的不足,我觉得在每个环节上的过渡应该更加的自然。另外,在小组讨论的时候应多关注学生的交流,对学生进行适时地指导。基于第一节课的优点和不足,进行了第二次的授课即录课。由于学生们已经学习了过本节课,所以对于学生们来说已经是旧知识。要把旧知识重新来讲,如果照搬之前的授课方式已经远远不够了。如何更改,这给我提出来一个新的'问题。为此,这节课我做了适当的调整。本节课我更多关注的是数学方法和思维方式的培养。其中体现在:
1、学生在举例验证猜想的时候,让学生体会反例的作用,如果有一个反例的存在,就说明猜想的结论是错误的。
2、在探索3的倍数特征时,对于100以内3的倍数,应如何着手验证,怎么选取数来验证,这一环节让学生体会:在研究规律的时候,优先选择数比较多的这一组,让学生明白如果有规律更容易探索和发现。
3、在拓展规律的时候,采用举了大量的数据,证明了规律的普遍存在,让学生体会规律的适用范围。
4、在做练习的时候,第2小题,关注学生思考问题是否全面,关注学生的思考过程。
5、练习的第3小题,一道解决问题的题目,通过让学生读题、审题、分析题之后,再思考。这一道题学生展示了多种的做题方法,体现了方法的多样性,同时也说明学生的思维是活跃的。本节课中的不足,练习中第3题学生的做法没有完全的在黑板上板书,另外,本节课中学生会超前说出所有问题的答案,使得教师略显失措,我觉得这是因为我备学生还不够。在今后的教学中,我会改进自己的不足。我将更深入地研究教材、钻研教法,不断提高自己的教学水平,设计出学生更能接受和喜欢的课。
【3的倍数的特征教学反思】相关文章:
3的倍数特征教学反思12-07
《3的倍数的特征》教学反思04-11
《3的倍数特征》教学反思04-11
倍数的特征教学反思04-21
《3的倍数的特征》教案02-27
五年级数学3的倍数特征教学反思04-11
《3的倍数》优秀教学反思03-10
2和5的倍数的特征教学反思(通用10篇)11-24
公倍数的教学反思12-09