《分数乘法》教学反思
作为一名人民教师,我们要有很强的课堂教学能力,借助教学反思可以快速提升我们的教学能力,那么问题来了,教学反思应该怎么写?下面是小编为大家收集的《分数乘法》教学反思,仅供参考,大家一起来看看吧。
《分数乘法》教学反思1
1、注重启发引导与学生的主动参与相结合
在本节课中,我信任学生对学好数学的愿望和潜能,把学习的主动权交还给学生,同时创设愉快、民主、活泼、开放的课堂气氛,尊重学生的人格,尊重学生对学习方法的选择,鼓励学生用自己的方法去掌握数学知识。如在推导分数乘法的意义过程中,让学生通通过计论、交流,发现分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算等。在课堂中,我也积极地创设出有利于学生主动参与的教学情境,如写出几道分数乘法的计算题,让学生口述各题的意义,从而激发学生的学习兴趣,充分地调动学生学习积极性,给学生留有思考和探索的余地,让学生能在独立思考与合作交流中解决学习中的问题。
2、面向全体又尊重学生的个性差异,促进全面发展
新课标指出:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。在教学中,我注意面向全体学生,使所有学生在数学知识掌握、数学能力发展、思想品德及个性心理品质养成等方面都能有所发展。同时,由于学生的个性素质存在差异,教学中,我也尊重了学生的这种个性差异,要求不同的学生达到不同的学习水平。在本节课中,我有意识地提问学困生,直到他们都懂了才放手,这样既解决了学困生学习难的.问题,帮助他们克服了学习上的自卑心理。。同时,对于一些学有余力的学生,我也为他们提供了发展的机会,难度比较大的题,让他们来解决或去帮助有需要的同学,这样既防止他们产生自满情绪,又让他们始终保持着强烈的求知欲望,使他们在完成这种任务的过程中获得更大的发展。
《分数乘法》教学反思2
教学了《分数乘法(一)》。我将本课的教学目标定位为理解分数乘法的意义及算理、算法。与本课相联系的学生的学习起点是整数、小数乘法的意义,算理与算法。分数加减法的算理算法。我在复习铺垫环节,抓住了“分数”、“乘法”两个关键字。在备课时,可以从两个角度进行思考:第一,分数乘法的算理、算法基础是分数加减法;第二,因为是乘法所以又涉及到乘法的意义。因此在教学时,我对分数的`加减法进行了深入复习,对乘法的意义也进行了强调。由此,再迁移出分数乘法,学生觉得很轻松。
另外,许多同学在预习时已经会算,即已经通过自学知道算法是什么,但这仅是限于机械地记忆,没有理解其背后的本质。因此,在教学过程中,我认为教师可以结合画图,帮助学生数形结合去理解乘法的意义和算法。算理和算法在本课中,我认为已经浑然一体,不需分割。在解释算理的过程中,学生即总结出了算法。
《分数乘法》教学反思3
在教学了分数乘法的基础上又学习了分数加减法混合运算的计算题,以往学生又有非常丰富的整数、小数的简便计算的经验,我原以为这部分知识很简单。没有想到,错的人还真不少。我真佩服学生们的“创造能力”。问题主要有以下三种:一是乘法和加减法计算方法混淆,不少学生做加法时分母加分母,分子加分子,而在我强调之后又出现个别的学生乘法计算时分子和分子进行约分的笑话。二是不能灵活运用运算定律来使计算简便,特别是分数乘法分配律的相关计算,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数更是一塌糊涂啦!三是一般计算题和简便计算题混淆,将不能用简便方法的`也给你发明个“简便”方法出来,随意添加括号的现象很普遍!
针对这些现象我采取了以下措施:一引导学生回顾分数乘法和加减法的意义,追溯求本,理解各自的意义;二联系分数乘法和加减法各自的计算方法,并采取针对性练习;三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;四是加强审题的训练,让学生学会判断。五是加强对比练习,认真分析哪些可以简便,哪些不能简便。其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。
《分数乘法》教学反思4
本单元的教学,分数乘法解决问题是一个重点内容。既“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。
具体做法:在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。
在教学中,我强调以下几点:
(1)让学生用画图的方式强化理解一个分数的.几分之几用乘法计算。
(2)强化分率与数量的一一对应关系。并根据关键句说出数量关系。
(3)帮助学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。
对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
教学中也显露出一些问题。主要存在于:
1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。
2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。
3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练。
《分数乘法》教学反思5
分数乘法应用题大致可分为两部分。一部分应用题中的已知数是分数,但数量关系和解答方法与整数应用题相同。另一部分应用题是由于分数乘法意义的扩展而新出现的。本节课教学的就属于“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。教学本课后我的感受是:
1、开始结合复习题让学生回忆一下一个数乘分数的意义。对分数的意义进一步加深。
2、复习求一个数的几分之几是多少的文字题,这学习相应的分数应用题做准备。
3、在教学中我只注重了根据分数意义来分析题意,而忽视了对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的`上面。为以后应用题教学作好辅垫。
4、在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。特别是多向同年级的老师学习,提高自己的教学水平。
5、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。
《分数乘法》教学反思6
最近学习了分数乘法这一章,目前学习的是分数乘整数的意义以及计算法则,还有分数乘分数的意义和计算法则,以及分数乘法的简便运算,还有小数乘分数。
在最近的学习中,存在些许问题。
一是计算练习不够。这一单元主要是让学生在理解算理的.基础上掌握计算方法,能熟练的计算。一个数乘分数的教学中,对于算理没有突出,只是让学生机械的记住了求一个数的几分之几是多少可以用这个数乘几分之几表示。每天的计算量不够,导致部分学生对于法则遗忘较快,特别是在后期学习小数乘以分数时,学生转化成分数乘分数以后,不会计算了。
二是重要的概念方法没有强调。例如,求一个数的几分之几是多少可以用这个数乘几分之几表示。很多学生不能完整流畅的说出这句话,数学语言缺乏。在以后的教学中,像这样的重点语句一定让学生一字一句的抄写下来,熟记。
三是没有重视板书和格式。教师上新课时,一定要事先设计好板书,哪些是重点,哪些是重要格式,需要学生模仿的,这些内容一定要突出。注重课堂辅导,重点照顾那些有学习障碍的后进生,争取把问题在课堂上解决。
《分数乘法》教学反思7
这节课主要是让学生通过具体的情境初步理解“求一个数的几分之几可以用乘法计算”。在以前没学分数乘法的时候,我们是先求出1份的量,再乘法相应的份数解答求一个数的几分之几是多少的问题,今天的学习既是对分数乘整数意义的拓展,可以看作是一次方法上的优化和提升。从课堂反馈看刚开始的时候有一小半的学生还是不习惯用分数乘法计算,还是运用分数意义的认识去解决问题,但经过一系列的训练后大多数的学生列式已经很自然的把单位“1”的量与它的几分之几相乘。
本课教学的导入部分,我选择了复习导入的方式,我把课后的“练一练”提前,改变题目要求,让学生运用分数的认知相关知识解决问题,学生非常熟练,在这个部分。我的教学意图非常明确:复习分数的相关知识、强化单位“1”。为解决例2问题、学习新的方法做好铺垫。
在教学例2时,我首先带领学生理解题意,重点带领学生理解1/2、2/5的意义,从而确定单位“1”。在解决问题的环节,我首先出示问题(1)红花有多少朵?学生独立解决,学生根据以前所学知识,当然列式10÷2=5(朵)这时候我再揭示:像这样求10的1/2是多少还可以用乘法计算。这时出示:10×1/2让学生独立计算得到与第一种计算方法一样的结果。然后,我引导学生进行比较这两个算式有什么联系?问题一提出来,学生的反应不是很强烈,很多学生不知道应该怎样去回答这个问题,这时,我就直接告诉了学生,实际上如果我将问题设计的`更有坡度一些,能再等一等让学生多思考了一会儿,我想信学生一定会明白了原来两个算式都是求一个数的二分之一是多少。这样就很好的把旧的方法与新的方法进行很融洽的衔接。实现了方法上的跨越。
基于问题(1)的教学,问题(2)抛出以后,我直接让学生独立完成,在学生汇报环节,果然与我预期的一样,学生列出了两种不同的算式10÷5×2、10×2/5。在这个部分的教学,我主要把教学重点放在两种计算方法的意义与联系上,我采取小组讨论的方法,让学生去分析这两种算法的本质联系。但在汇报环节,我有些操之过急,没有给学生更多表达的机会,自己就把答案分析给学生听了。
在整个教学环节中,我一直加强的“单位1”概念的强化和训练,我始终抓住一句话,“是谁的几分之几?把谁看作单位1”,另外还教学生在条件中找单位“1”的一些方法,为后面的学生作一个铺垫。因为,本节课的所有习题都是用同一个数乘以几分之几,这样学生在列式时就会不考虑单位“1”而直接就用整数与分数相乘,加深学生对单位“1”的理解。这样就可以避免学生形成思维定势:因为学乘法而用乘法。
巩固练习环节,我把“练一练”再次出示,不过这次改变题目要求:用乘法列式计算。让学生再次练习,使学生体会到今天所学方法的实际作用。巩固练习部分我还安排了练习拔的第6题:一瓶饮料一共900毫升,这道练习需要学生解决的问题一共有4道,其中问题(1)是3瓶饮料多少毫升?其它三道问题都是用不同的表达方式求900毫升的几分之几是多少。因此在共同解决四道问题以后,我让学生找出其中一道与其他几道表示意义不同的。并且分析原因,目地就是强化分数乘整数的不同意义。
本次课的教学,有以下几个问题值得深思:
一、备课设计时要多了解学生情况。由于刚接班不久,学生的基础、能力等方面的情况掌握不多,在教学时,不敢放手,导致学生的思维、表达缺乏深度。
二、要在教会学生学习方法上多下功夫。本次课的教学在这方面进行了一些探索,但不够。今后要加强这一环节的引导。提高课堂教学的实效性。
《分数乘法》教学反思8
我上了一节分数乘法应用题。课后我感到既有成功的喜悦也有不足,具体体现在以下几个方面:
一、数形结合的思想
由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得中观重要了纵观教材中,数形结合思想的渗透也有着不同的层次,例如分数乘法 ( 一 ) 和分数乘法 ( 二 ) 中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法 ( 三 ) 中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的'结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
二、是充分重视学生“说”的训练。
在以前应用题的教学中,对“说”的训练重视的不够,表现为学生只会做题不会说,这个片断,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法,以及方法是怎样想出来的。引导学生把思考过程有条理的说出来,为了深化学生的思维,避免死记硬背、机械模仿,解题后要求说出算式的依据,在说中及时得到反馈,进行矫正、补充,这种“说”的训练,不仅能帮助学生正确分析数量关系,提高分析、解决问题的能力,还能促进语言与思维的协调发展。
三、是很好地解决了“大部分学生会,怎么教“的问题。
因为学生已经掌握了一个数乘分数的意义,在此基础上学生本节内容并不难,为此我引导学生主动探索,培养他们学习应用题的兴趣。在以往的教学中,往往要求学生死记数量关系,找出谁是单位“ 1 ”,谁是分率,知道要求是分率对应的问题用乘法计算等,学生只会用一种方法,长此以往,对灵活解题是不利的,在这节课中,问题开放,采用四人小组合作,引导学生探索、相互研究,大胆发表不同的见解,让学生在“说”中学到知识,增长本领。
《分数乘法》教学反思9
《分数乘法》这一单元学习的主要内容有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要内容是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法。在教学如何引导学生理解分数乘法的意义和计算方法时,我进行了一些思考。
一、利用学生已有的知识水平与生活经验,实现新知识的迁移。
在教学分数和整数相乘时,根据学生的已有的知识基础,课前复习设计了复习整理整数乘法的意义和同分母分数的加法的.计算法则。在教学分数和整数相乘的计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学1/5×3,首先要让学生明确,要求3个1/5相加的和,也就是求1/5+1/5+1/5是多少,并联系同分母分数加法的计算得出1+1+1/5,然后让学生分析分子部分3个1连加就是3×1,并算出结果,在此基础上,引导学生观察计算过程,特别是1/5×3与3×1/5之间的联系,从而理解为什么“用分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练3/7×2,然后进行集体交流,理解分数与整数相乘的计算方法。
二、在具体的情境中,引导学生理解分数乘法的意义。
通过具体情境,来呈现对分数乘法意义的多种解释,帮助学生理解分数乘法的意义则显得重要。如:教科书第22页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,一定要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但一定要让学生联系本题情境理解算式所表示的意义。
三、分数乘法的教学中,在书写顺序中应该不区分被乘数与乘数。
小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既可以解释为3个5,也可以解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。本册教材第22页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式可以是1/5×3也可以是3×1/5。然后运用分数乘整数的意义解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
这是一节计算课,看似很简单。可是,从学生的作业反馈情况,并不理想。从学生第一次完成的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。所以我应出示对比练习,让学生体会在过程上约分的优越性与简便性。从而养成优化方法的习惯。
《分数乘法》教学反思10
又一个学期开始了,本学期在复习了一下本已经学过了的新知识后,结合站、校统一月考安排,对班里学生的学习情况做了个单元测试。从而分析教师应该如何对学过的知识进行加强练习,有的放矢。 在批完所有的试卷后来看,一些填空、判断、选择的概念部分失分最严重,80分以下的学生基本都要丢10以上,80—90分之间的也要达到5分以上,其次是脱式计算部分,80分以下的学生也要错上一两题,有的甚至错上四五题,这些方面的丢分决定了他们在本次测试中只能达到那个分数。当然90分以上的学生或多或少都存在以上的问题,只不过少严重一些罢了。
结合试卷,反思教学,问题颇多。比如在填空部分的补充数量关系式,绝大部分学生能找到单位“1”的量,却找不到分率的对应数量,全对的人很少,这说明了我在教学的时候学生的理解还是很肤浅的,只是能到达听懂的层次,没有给学生自己充分地表达时间,甚至在自己的本子上写写的.机会,导致测试时不知何从下手。而在计算部分,学生失分一直较严重,说明在练习课上,我还得加强时效性,课的内容还要加强备学生,有些计算可能对学生来说只是无味的重复,针对性不强,在平时课上应当注重口算练习。在应用方面,一定要让学生有一个很明确的解题思路,确定关键句,找准单位“1”很重要,然后列出数量关系式解答。这单元只是涉及到了分数乘法部分,加上下一单元的分数除法,学生一定会更加混乱,所以一个清晰的解题思路很重要。也体现了这是我平时教学中的一个难点,如何更有效地去突破,这需要我好好向同行们请教的。
《分数乘法》教学反思11
分数乘法这个单元主要学习分数与整数相乘、分数与分数相乘、分数练乘三个环节。每个环节都要解决一些实际的问题。
在分数与整数相乘中课分成学生理解求几个几分之几是多少?求一个数的几分之几是多少?分数乘分数则引导学生把分数乘分数的计算方法的掌握。所以教学起来要注重每一堂要教的是什么?怎么教?
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。
此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的规则进行计算(按分子和分子相加,分母和分母相加),到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。
本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的`能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。
《分数乘法》教学反思12
教学就是一个摸索的过程,年轻人有朝气但缺经验,老教师有经验但缺热情。虽然教了几次六年级对于很多资料的教法却一向没有定型也不能定型。
原先对于分数乘法只是从做法上进行教学师生都感觉很简单,一般第一单元测试基础差、思维差的.同学也能考到90多分,所以为了节约时间,让学生不只是乘,而把乘法这个单元一带而过,和分数除法一齐学习,在比较中让学生明白道理,选取做法。但综合到一齐学习,学生刚开始也是错误百出,只能机械地告诉学生单位1已知用乘法,单位1未知用除法,加上学生约分出现约分不彻底,成了一锅浆糊慢慢理。但是,这样好像也能比进度慢的老师成绩好一点,但对于基础特差的学生似乎有点残酷。
我决定在分数乘法这一单元让学生彻底明白道理,深入每位学生心里,一步一个脚印地学习。于是在学新课之前,我先对五年级的公因数、公倍数问题进行复习,发现这个难点依然值得深入复习,学生对互质数等基本概念都忘了,特殊数的最大公因数更是错误百出。深入对约分环节打好基础,也为整个小学阶段的复习打下坚实的基础。
然后让学生应用中多说道理,同桌互为老师讲一讲道理,避免学生理解表面化,真正理解了分数乘整数的好处。分数乘分数让学生折一折、涂一涂,操作中自然理解更深入,学习更有兴趣。虽然多耗点时间,但这样学习才能真正面向全体,基础更扎实,后续学习更高效而有兴趣。
知其然更要知其所以然,说着容易,但体此刻教学的每一步并不容易。
《分数乘法》教学反思13
本节课是分数乘法式题的教学,教者有意安排了一道带分数乘法的式子题,旨在进一步提高学生的计算能力。但这节课在诸多方面已经远远超越了教者的本意,达到了一个新的境界,这是一节非常成功的数学课,本人认为这节课有以下几方面的优点:
1、改变了单纯的知识传授者的身份
在本节课中,教师积极创设了有利于学生自主学习的环境: “猜一猜,”真是这个“猜一猜”点燃了学生思维的火化,开放了学生思维的空间。教者并没有直接告知学生如何去计算,不只是单纯的进行
知识灌输,不再是用原有的 “教师中心”的做法,已经站到了学生的中间,从学生的经验出发组织学生的学习,为学生提供了更多的发展机会。
2、倡导个性化的知识生成方式
新课程实施旨在扭转 “知识传授”为特征的局面,把转变学生的学习方式为重要的着眼点,以尊重学生学习方式的独特性和个性化为基本信条、新课程要求在学科领域的教学中渗透 “自主、探究、与合作”的学习方式。在本案例中,教者不再仅仅是 “教教材”, 当问题出现后,不再是教者面对知识的独白,并没有告知学生如何去做,而是让学生先 “猜一猜”,说说自己的想法。当学生提出不同的见解后,又积极引导学生对有价值的`“经验、见解”深入进行探究,共同寻求解决问题的方法。这已经超出了个人化行为,成为群体合作行为,与学生建立了真正的对话关系,超越自己个体的有限视界,填平 “知识权威”与 “无知者”之间的鸿沟。这一切有助于学生个性化的知识生成,更有助于学生形成 “不断进取 ,不断创新”的精神世界。
3、把握生成,与境俱进
记得一位教育专家曾经说过这样一句话: “每一节课都有生成,只是教师有没有注意吧了。”在本案例中,教者能做到 “与境俱进”,能在预设“猜一猜”的基础上,抓住生成,及时灵活处理具有 “生成
价值”的问题与回答,就话答话, “与境具进”,及时引导学生针对
提出的话题展开探讨。整个教学充满灵动、智慧、活力,课堂教学真正做到 “开放”与 “灵活”,充分促进学生自主和富有个性化、创造性地学习。
课改大潮轰轰烈烈,涤荡着每一个角落。当前的课堂教学如何实施,我想本案例很值得我们学习和借鉴。
《分数乘法》教学反思14
分数乘除法应用题是较复杂的分数应用题的基础,教者在本节课中的目的主要是为了让学生弄清分数乘法和除法应用题的区别和联系,能够应用“单位“1”的量×分率=比较量“这个数量关系,根据已知量和未知量来判断是分数乘法还是除法应用题。教材为此也安排了例2这个例题:
例2:长江流域约有120种矿产资源,可供开发的占。长江流域的矿产资源种数约占全国的30。3756
(1)长江流域可供开发的矿产资源有多少种?
(2)全国的矿产资源有多少种?
其中第(1)题是一道分数乘法应用题,第(2)题是一道分数除法应用题。教材的编排意图是通过两题的比较,去找到二者的区别和联系。为此,我在教学中的'流程也很简明:先学生自己两道题,然后再讨论两道题的联系和区别,最后教师总结。整个过程充分体现了学生的主动性,充分给予时间和空间,让学生参与了知识的形成过程,体验成功的快乐。
然而,我教学中却发现:学生要发现两道题的区别和联系并不容易,课后从学生的作业情况看效果也不是很理想。是什么阻碍了学生知识的形成呢?我在课后经过分析,认为是教材编排的这个例题对于本课的知识目标形成的针对性不强,或者说是例题中包含的其他东西太多干扰了学生对两题的对比。
首先,两道题中包含了3个量即长江流域的矿产资源、长江流域可供开发的矿产资源和全国的矿产资源。这三个量中有两个量都是单位“1”,虽然这并没有超出学生的现有的认知水平,但是却使问题复杂化了,对于本课的教学目的起到了一个干扰作用。
其次,本例中的第(1)题中的单位“1”的量是长江流域的矿产资源,是已知量。而第(2)题中的单位“1”的量是全国的矿产资源,是未知量。两道题的数量关系分别是:长江流域的矿产资源×=长江流域可供开发的资源和全国的矿产资源×30=长江流域的矿产资3756源。两道题的数量关系和单位“1”的量都不一样,也不利于学生比较。这也造成本节课目标达成的难度增加。
最后,例题中文字较多,特别是几个量的文字叙述较多,这也给部分学生,特别是理解能力较差的学生增添了麻烦,他们也许要为弄清题意费上一阵时间。
综上所述,我认为教材在编写这个例题也许太过注重联系生活实际等方面的原因,造成对本课的目标达成难度增大。这个例题是不合适的。为此我设计了这样一个区别比较的例题:
例2:(1)果园里有60果桃树,李树是桃树的,李树有多少棵?
(2)果园里有60果李树,李树是桃树的,李树有多少棵?
这样的设计我认为有这样几个好处:
1、单位“1”不变,都是桃树。
2、数量关系都是一样:桃树×=李树。既然单位“1”不变,数量关系都一样,为什么却一个是乘法,一个是除法呢?学生再通过565656比较,很容易就发现第1题的单位“1”是已知量,求比较量,当然用乘法。第2题的单位“1”是未知量,求单位“1”,当然是用比较量除以分率,是用除法。
通过这样的例题设计,我认为简明扼要,利于学生认清分数乘除法应用题的区别和联系,更好掌握分数乘除法应用题,为后面的较复杂的分数应用题打下基矗
《分数乘法》教学反思15
《分数乘分数》的教学重点是巩固理解分数乘法的意义,探索分数乘分数的计算算理与法则。
在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个的教学过程分为三个层次:
一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
二、以1/5*1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后再根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。可以说整体教学的效果还好。
通过今天的课,我对数形结合的'思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
【《分数乘法》教学反思】相关文章:
《分数乘法》教学反思10-04
分数乘法教学反思12-26
分数乘法教学反思范文10-09
分数乘法一教学反思11-30
分数乘法3教学反思12-01
分数乘法教学反思优秀02-14
分数乘法教学反思(精选23篇)03-30
分数乘法3教学反思模板11-22
数学分数乘法教学反思优秀12-26