平行四边形的面积教学反思
作为一位刚到岗的教师,我们要在教学中快速成长,借助教学反思可以快速提升我们的教学能力,那么应当如何写教学反思呢?以下是小编为大家收集的平行四边形的面积教学反思,仅供参考,希望能够帮助到大家。
平行四边形的面积教学反思1
《平行四边形的面积》一课是多边形面积的起始课,是后续三角形面积、梯形面积的基础。本课是在学生学习过长方形面积的基础上学习的,由于学生有了长方形面积的计算基础,只要学生能找到利用割补法把平行四边形转化成长方形的方法,这节课的重点就突破了。本节课我利用让学生比较两张纸片的大小,引出平行四边形面积的计算,让学生探究平行四边形面积的计算方法。
在以往的教学过程中,很多学生会出现“底×邻边”的错误做法,所以在教学设计时,我把这种情况进行了预设,但是在课堂上全班学生没有一个学生这么回答。由于担心学生在以后的练习中会出现类似错误,同时为了让学生明白不能用“底×邻边”的错误做法,在课堂上我主动提问学生为什么要用“底×高”而不能用“底×邻边”的方法呢?通过利用平行四边形框架进行演示,让学生明白,在平行四边形框架拉伸的过程中,底和邻边的长度没有变,但是平行四边形的面积在逐渐缩小。说明平行四边形的面积和底、邻边的长度没有关系。
为了让学生明白计算平行四边形的面积时底和高的对应关系,我设计了三个动手操作的环节。首先给学生出示一个底是5厘米、高是3厘米高的平行四边形,让学生思考,看到这个平行四边形你想到了什么图形?学生很容易就想到了长是5厘米,宽是3厘米的长方形。第二次给学生出示一个底为7.5厘米,高为4厘米,另一条邻边的`高是6厘米,再让学生思考并动手操作这个平行四边形可以转化成什么样长方形,大部分学生直接说出是长是7.5厘米,宽是4厘米的长方形。有几个同学说可以沿着6厘米的高剪下来,也可以拼成长方形,只能说出长是6厘米,但不知道宽是多少。让学生明白不可能剪出长是7.5厘米,宽是6厘米的长方形。第三次给学生出示一个底是30厘米,高是15厘米,另一组边是18厘米,高是25厘米的平行四边形。学生分别想出了剪成长30厘米,宽是15厘米和长是25厘米,宽是18厘米的长方形。通过这三个环节,让学生明白计算平行四边形的面积时必需是底和高是对应关系,不能随便计算。
本节课的不足之处是,在课堂上自己说的太多,让学生思考回答的少,学生回答时还总是怕学生说不好,帮助学生说,在以后的教学中要多放手,学会耐心等待,学生的能力得到锻炼了,学生的积极性也会大大提高的。
平行四边形的面积教学反思2
教学内容:
苏教版五年级上册第二单元第一课时。
教材分析:
本册教材中《平行四边形面积的计算》,是在学生掌握学过的几何知识的基础上安排的。要想使学生理解掌握好平行四边形面积公式,须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,与学习三角形和梯形的面积公式有着直接的关系。学生学完长方形面积及平行四边形的认识后,知识需进一步深入探索,因此本节课是几何知识的一个比较重要的、典型的知识点。表现其一:平行四边形的面积计算的推导过程,要用到猜想实验探究,突破原有认知,体会并应用忽略次要因素、抓住主要因素这一科学思维方法,这不仅有利于学生掌握分析数学问题的方法,也有助于培养学生的探究能力;其二,这是一个贴近日常生活的实际问题,能激发学生的学习兴趣和体会数学的生活化。本节内容的学习也为以后的三角形面积、梯形面积打下基础。
教学目标:
1、知识与技能:使学生经历平行四边形面积计算公式的推导过程,能正确地运用公式进行计算。
2、过程与方法:引导学生操作、观察、比较,发展学生的空间观念,使学生初步知道转化的数学思想方法。
3、情感态度与价值观:培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:
理解平行四边形面积公式的推导过程。
教具准备:
课件,平行四边形纸片,长方形纸片。
教学过程:
一、激趣与质疑
1、师:说出学过的平面图形。
生:长方形、正方形、平行四边形、三角形、梯形、圆形。(课件出示)2、师:在这些图形中,你会计算哪些图形的面积?
生:长方形、正方形,长方形面积=长×宽,正方形面积=边长×边长。
(课件出示)
二、合作与探究
1、教学例1:(1)第1组图:师:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
生1:相等,用数格子的方法。生2:相等,用平移的方法。(2)第2组图
师:用刚才第二位同学的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。板书)
生:能。把小三角形平移到右边就变成了右边的图形。(3)揭示课题:师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)
2、课件出示题目:美羊羊有一块长5米、宽4米的长方形菜地,灰太狼有一块底4米、高5米的平行四边形菜地,灰太狼说:“美羊羊,你的地离我家近,我的地离你家近,我们俩把菜地换一下吧?”,聪明的你想一想,比较一下这两块菜地面积的大小。美羊羊能答应吗?
(1)指名学生读题。(2)初步猜想:
师:你认为这两块菜地的面积哪个大?哪个小?并说说这样猜想的根据。学生交流。
生1:平行四边形面积大,长方形面积小。生2:一样大。
师:下面我们一起来探究平行四边形的面积怎样计算。 3、教学例2:
(1)课件出示一个平行四边形
师:你知道这个平行四边形的面积吗?用什么方法?生:数方格。
师:你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。(3)学生交流操作情况,汇报:生1:第一种:①沿着平行四边形的高剪下左边的直角三角形。 ②把这个三角形向右平移。 ③到斜边重合。生2:第二种:①沿着平行四边形的任意一条高将其剪为两个直角梯形。 ②把左侧的'梯形向右平移。 ③道斜边重合。
师:那么还有没有第三种方法?(没人回答)师:沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。(4)教师用课件进行演示并小结。
师:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。
(5)小组讨论:①转化后长方形的面积与原平行四边形面积相等吗?②长方形的长与平行四边形的底有什么关系?③长方形的宽与平行四边形的高有什么关系?
(6)学生总结:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。形成下面的板书:
长方形的面积=长×宽
平行四边形的面积=底×高
3、教学例3:
(1)师问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。转化成的长方形长/ cm平行四边形底/ cm宽/ cm面积/ cm2高/ cm面积/ cm 2
(2)学生动手操作,反馈交流。
(3)师:如果用字母a表示平行四边形的底,用字母h表示平行四边形的高,那么用字母来表示平行四边形的面积公式:
S= a×h或S= a·h或S = ah(板书)。
三.巩固与展示
1、计算出灰太狼的平行四边形菜地面积与美羊羊的长方形菜地面积比较。 2、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。
3、指导完成练一练:强调底和高的对应关系。
4、课件出示4个等底等高的平行四边形,比较其面积大小。得出结论:等底等高的平行四边形面积相等。
四.评价与扩展
通过今天的学习活动,你学会了什么?有哪些收获?
板书设计:
平行四边形面积的计算
转化
已学过的图形新图形
割补、剪拼
因为长方形的面积=长×宽所以平行四边形的面积=底×高用字母来表示平行四边形的面积公式:
S= a×h或S= a·h或S = ah
平行四边形的面积教学反思3
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”
《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是
(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;
(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透
在教学设计方面,我先是创设情境,激发学生的学习兴趣,进出课题:《平行四边形的面积》,再让学生通过数方格,动手操作等、验证平行四边形的.面积公式,最后通过练习,巩固知识,解决实际问题。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的面积推导方法,也为今后推导三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、我的遗憾
1、课堂氛围不够浓厚,可能是学生太紧张,我在课前也没有让学生放松心情,课前可以给学生讲笑话或者故事,让学生放松心情,课堂氛围会好一点。
2、有些引导语不是很贴近学生,有时候学生不会很快回答出来,需要思考的时间,或者后时候不知道怎么回答,这是因为老师的引导语或者提问的表达方式不够恰当。
3、最后一个小故事与本节所讲的内容联系不是很大,没有用到本节所讲的知识,运用的是平行四边形的不稳定性,对于学生来说,有一定的难度,最后一题的设计不是很合理。
4、板书字体不够工整,漂亮,还需要多练习,多改进。
5、课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种和第二种,后一种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的面积教学反思4
20xx年10月24日,我参加了经开区数学基本功比赛,执教《平行四边形的面积》这节课,实施教学后一些问题让我陷入思考。下面从我备课及执教的经历谈起。
首先,对于内容的分析,我在教学设计中已经阐明,因此不再赘述。对于学情,我以本校五年级学生为参照,调研了本校学生对此知识的想法,根据学生问卷的回答情况发现了这样的问题:
1、长方形的面积公式学生基本都能写对,但出现与算周长混淆的情况,并且已经想不起来长方形的面积是由数方格推导出来的。
2、求平行四边形的面积时出现这样几类情况。
(1)用算周长的方法计算,占15%;
(2)用邻边相乘的方法计算,占35%;
(3)知道转化成长方形,但不能正确计算,占23%;
(4)其他(包括不知道怎么算),占27%。
虽然我深知读懂教材、读懂学生的重要性,但理解有限,在设计与执教过程中,反映出以下三个问题。
一、学情分析能力不足
我虽然进行了学情分析,但由于自己的理解有限,我没有分析到其实学生对于找原来的平行四边形与转化后的长方形之间的等量关系其实是不理解的,是一个难点,导致我以如何向学生渗透转化思想为重心了。
二、课堂调控能力有限
在实施教学的时候由于学生的学情不同,执教班级学生基本已经知道平行四边形的面积等于底乘高,加之我的现场调控能力有限,因此并不能顺着学生的思维进行教学,跟我设计的初衷产生了水土不服的现象,但后来我仔细回想了执教过程中的一些学生表现,优等生知道公式,并不代表所有学生都知道,应该具备一些调控能力让所有学生经历验证的过程,但错过了,这一点也说明我的课堂调控能力是需要加强的。
另外一个问题是找等量关系时,我由于时间的限制,代替了学生的观察发现,带领学生直接演示了原来的平行四边形与转化后的长方形之间的'关系,推导出了公式,这点挺遗憾的。
三、数学语言不严谨
在此次教学中,我的数学语言不够严谨,比如数学上专业的术语“平移”等说得不规范。
针对以上问题我想教师的调控能力这些非一日之功,在以后的课堂教学中我会尽量注意记录自己的问题与语言,不断反思,从而慢慢提高,增强自己上现场课的经验。
对《平行四边形的面积》的设计,我没实现的是,找等量关系过程对学生是一个难点,我对突破这个难点的想法如下。
预设教学片段:
师:同学们,把我们的长方形还原为平行四边形,你能标出平行四边形的底和对应的高吗?请同学们动手标一标吧。
师:同学们,把平行四边形转化成长方形,你能找出原来的平行四边形和转化后的长方形有哪些相等的关系吗?小组讨论并相互说说你的发现。
当然,这是我的初步想法还没有进行实际教学,因此不知道这些能不能突破难点。
通过本次讲课,让我真正乐趣无穷的是对课不断地思考,发现课的奥妙,有遗憾,有困惑、有思考……我想这些都是成长,教学时间那么长,我想读懂教材,读懂学生,这不容易的事总会慢慢理清,然后,不断成长!
平行四边形的面积教学反思5
《平行四边形的面积》是五年级上册第六单元多边形面积的起始课,后面三角形面积、梯形面积和组合图形的面积都是在此基础上学习的。
本节课的重点是:运用转化的方法推导出平行四边形的面积公式并能正确地说出平行四边形的面积公式的推导过程。在本节课的教学中,为了突破重点,设计了以下的活动:
1、设计了比较两个图形大小的小游戏,体会转化思想在数学中的应用。
2、设计了数一数,剪一剪,拼一拼求平行四边形纸片面积的活动,通过小组合作,借助适当的工具,运用转化的方法,把平行四边形转化成长方形,推导出平行四边形的面积公式并能正确地说出平行四边形的面积公式的推导过程。
3、通过大量的实际问题,能应用平行四边形的面积公式解决生活中的问题,并在解决问题的过程中理解平行四边形的面积是用相对应的底和高相乘,等底等高的两个平行四边形的面积相等。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”。在数学教学中,更要注重数学思想方法的渗透。学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。
在这节课中,以“猜猜谁的面积大”的小游戏,渗透了“转化”的思想方法。然后我设计了数一数,剪一剪,拼一拼求平行四边形纸片面积的活动,逐步引导学生观察思考:长方形的.面积与原平行四边形的面积有什么关系?
长方形的长和宽与平行四边形底和高有什么关系?再思考后,学生得出结论:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
学生掌握了推导平行四边形面积的方法,也为今后推导三角形、梯形等面积公式和其他类似的问题提供了思维模式。
这个求证过程也促进了学生猜测、验证等思维能力的发展。学生在本节课的学习中有点紧张。在说推导过程时,没有说出最完整的推导过程,有点遗憾。与我的语言引导也有关系,在今后的教学中,我会注意语言的引导。
平行四边形的面积教学反思6
《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以下体会。
反思这节课,具体概括为以下几点:
第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。
第二、重视操作探究,发挥主体作用。
为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗?怎样变化?如果任意拉这个平行四边形,你会发现什么?什么情况下它的面积最大?通过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的能力。
第三、渗透“转化”的思想。
“转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,形成积极主动的探究氛围。
第四、联系实际设计习题,学习内容始终充满生活气息。
存在的一些问题和困惑:
1、应变课堂能力的教学机智不够灵活需要多锻炼。
如新知猜想时耗时过多。
2、学生数学知识的底蕴要加强。
学生拿着平行四边形,不知道如何动手操作,把平行四边形转化成长方形。这也与我前面的铺垫、启发不到位有关,当学生不能独立作出来时,老师要及时给予指导和启发,可以这样启发:同学们看一看,平行四边形的高与底边是什么位置关系?如果能利用这一点来转化呢?沿着什么剪?
就“平行四边形的面积”的教学而言,平行四边形的面积公式是什么,不是什么?平行四边形的面积为什么是“底×高”,为什么不是“底×邻边”?通过把平行四边形不断“拉扁”,引导学生逐步了解高与面积之间的内在联系,理解高对平行四边形面积的影响,在让学生获取知识的同时,悄然无声地渗透了函数思想。
其实,澄清错误与建立正确认识同样重要。不急于引导学生对正确情况的'接受,而更多地让学生自己在尝试解决问题的过程中发现问题,产生矛盾冲突,并引导学生参与对问题和错误的剖析。平行四边形面积为何是“底×高”,为何不是“底乘邻边”?疑问的解答,需要的是观察、比较、分析等充满挑战性的过程,在这样的过程中,学生一步步澄清平行四边形的面积“是什么,不是什么”,明白“这样才是正确的,那样为什么是错误的”,就会获得真正的数学理解,推理能力也能得到发展。“推拉转化后,面积发生变化”的表象得到强化,进一步澄清学生潜意识中“平行四边形的面积=底边×邻边”的错误认识。在不断地对比、交流过程中,错误经验得以纠正,模糊认识得以澄清,数学思维得以发展,创新意识和学习能力得以提升。但是在澄清与对比分析中,时间运用的也较多,对于“精讲多练”的目的没能达到。这种剖析,在日常教学中都是分多个课时进行,完全揉入一节课,甚至微型课,需要我思考如何从别处挪出时间出来,精心雕琢方有进步。
平行四边形的面积教学反思7
平行四边形面积的计算是五年级上册第五单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。
课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是与自己的'设想大相径庭。
(1)数方格中的得与失。
教材中所设计的数方格的过程是紧跟上图中的花坛来的。把两个花坛按比例缩小后画在了方格纸上,让学生把方格纸上的1格看作1平方米来数。这与学生以前的数法有了细微的差别。再加上平行四边形中有不满1格的情况,怎样才能把面积准确的数出来是学生需要认真思考的问题。所以,我认为,没必要让已经遇到新问题的学生再添上不必要的负担,哪怕是微小的负担。所以,我打乱了图形与花坛原有的联系,没有让学生按课本上的方法去数,而是让学生按照以前的方法,单纯把这两个图形按每个格1平方厘米的方法来数,数的过程中提示学生:“可以把不满一个格的按半个来数,如果你有更方便的方法就更好了。”有利于有能力的同学向转化的方法靠拢。
学生数好以后,说一说数的结果。再让学生说说你是怎样数的?可惜的是由于紧张,这个环节给漏了。这成为本节课的一大败笔。事后我自己安慰自己:其实,只要数出来了,怎样数不重要,重要的是观察数据找规律。但客观上讲,这让我失去了一个渗透割补法的机会。在数方格的过程中,聪明的学生肯定能想到把左侧沿着方格线剪开移到另一侧,把所有的方格变完整再去数。这时,我就可以随即告诉学生,这种割下来补到图形另一侧的方法叫割补法。这样教学可以为学生以后把平行四边形转化成已经学过面积计算的图形做好方法上的准备。
(2)面积推导中的意外收获。
在推导平行四边形面积计算公式时,我鼓励学生大胆想象,通过动手剪一剪、拼一拼的方法,把平行四边形转化成会计算面积的图形,课前,我并没有对学生抱太大的希望。学生能说出两种方法就很不错了。为此,我还专门准备了一个演示的课件,以备不时之需。但学生的表现出乎了我的预料。
“老师,我是这样拼的。我从平行四边形左上角开始,把多出来的一块向里折,就出现了一条线,然后沿着这条线剪下来,把它拼到平行四边形的另一边,就出现了一个长方形。”王昱璇说。
“老师,我的方法和他的不一样。我是直接把平行四边形对折,然后沿着折线剪开,也能把平行四边形拼成一个长方形。”熊耀方法很独特。
“我是把平行四形两边都剪下来,然后得到了一个长方形。”付玉提出了自己的做法。
“你觉得合适吗?”我把判断的权利交给了学生。
“不行,虽然也能变成长方形,但是,这个长方形和原来的平行四边形相比少了两块。”刘子谦认真分析道。
“我们的目的是把平行四边形变个样,所以不能让它缺损。”我肯定了刘子谦的说法。
“谁能帮忙改一下?”
“只要把剪下来的两小块加上就可以了。”易凡把剩下的两块小心翼翼地加在了一侧,又把它拼成了一个新的长方形。
“我把平行四边形沿着对角线剪开,也拼成了一个长方形”刘子谦补充说。 他的方法立刻引起了争议。
“老师,我不同意他的说法。我刚才就是沿着对角线剪开的,根本不能拼成一个长方形,我又拼成了一个平行四边形。”易凡拿着自己失败的作品站上来说。
“为什么都是沿着对角线剪开的,这两位同学拼得结果却不同呢?”我把两位同学的作品同时放在展台上,让大家观察。
“两个平行四边形的形状不同。”学生很快就找到了原因。
“能拼成长方形的这个平行四边形,它的对角线有什么特点?”我继续引导。
“这条对角线,恰好是平行四边形的高。”
“看来,只有沿着高剪开才能把平行四边形拼成长方形。”我适时总结。
通过这一环节,使学生明白只要沿着平行四边形的高剪开都能把平行四边形拼成一个长方形。平行四边形的形状变了,但是面积没有发生变化。为后面研究平行四边形与拼成的长方形之间的关系,推导平行四边形面积计算公式做好了知识储备。
这是我比较得意的环节。但功劳不在我,而在我的学生。
平行四边形的面积教学反思8
一、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在我这节课中,我让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的.长的关系,高与宽的关系,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
二、注重师生互动、生生互动
整个教育界现在都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。所谓“互动”就是在课堂教学中师生要有交往,生生要有交往,不能是教师的“满堂灌”、“满堂问”、“满堂练”。师生应该互有问答,学生与学生之间要互有问答。在这节课中,教师始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。在这节课中,每一个环节,都对学生提出明确的要求,引导学生思考,动手操作,推理与表达,并让小组到台前汇报,充分展示,开展小组学习竞赛。
三、练习的设计,由浅入深,环环相扣。
1、是让学生应用公式计算平行四边形面积,通过板演强调书写格式。
2、是让学生判断三个平行四边形的面积计算的对与错,让学生明白计算平行四边形的面积要用对应的底和高相乘。
3、是计算两组平行四边形的面积,通过评价让学生指导第二个平行四边形可以用两种方法来计算。
4、是判断在一组平行线之间的两个平行四边形的面积是否相等,明白等底等高的两个平行四边形的面积相等。
5、让学生知道已知平行四边形的面积与高,求底要用面积除以高;知道面积与底求高要用面积除以底。
6、让学生课后探究,把平行四边形拉成长方形,面积有没有变化,周长有没有变化,拓展学生思维。
不足:
课堂上有效的评价语言在本节课中的体现不够完善。自己觉得在引导和组织学生上欠缺一些,教学过程当中教学机智不够灵敏,这也是我今后所要重点刻苦钻研的一部分。
平行四边形的面积教学反思9
课堂教学,作为教学的一种基本形式,其优越性而为人们所普遍接受和采用。无论是现在,还是将来,课堂都是学校教学的主阵地,数学教学的主要目标都必需在课堂中完成。因而如何提高小学数学课堂教学效率一直是大家所关心的问题。回顾一学期的教学,有得也有失。自认为胜利之处主要有:
一、体现同学是学习活动的主体。教学过程中我注意摆正自身的位置,始终把同学放在主体的地位。注重知识的形成过程,并揭示知识的实质。能让同学先说、先做、先想的尽可能让同学去说、去做、去想。我则尽量为同学的说、想、做,营造恰当的氛围,创设必要的情境,让同学在参与学习活动的过程中学到知识,增加才干,提高素质。如在教学三角形的面积计算时,我先让同学通过数方格的方法计算图中三角形和平行四边形的面积,通过观察、比较、讨论,得出猜测:三角形的面积是与它同底同高的平行四边形面积的一半。然后,分别用两个完全一样的锐角三角形、钝角三角形和直角三角形拼成平行四边形,通过操作来验证。爱因斯坦说过“学习是一种经历,是一种体验。”在这个过程中,我只把自身“导演”的角色扮演好,让同学去体验“剧情”的发展,去体验解决问题的全过程,从而体会到了解决问题的乐趣,培养他们更强的解决问题的能力。
二、体现教学与生活的密切联系。数学教学中强化数学意识的培养,使同学清楚地认识到数学来源于生活,学到了数学知识又应用于生活。把数学知识的应用价值揭示出来,并通过应用,既可以加强对数学知识的理解,培养分析问题和解决问题的能力,又可以激发同学学习数学的'积极动机,发生兴趣。如学习了平面图形的面积计算后,让同学算一算墙面粉刷的面积以和所需涂料;解决一些简单的地面铺设地砖、草皮的问题。在学习求小数的近似数前,我用生活中买菜时用四舍五入来去零头的现象导入,练习时设计了一些求近似的光速、人口数问题,使同学感到学有所用。
平行四边形的面积教学反思10
“平行四边形的面积”的教学反思 “平行四边形的面积”一课是 “多边形的面积”这一单元第一小节的内容。根据新课标的要求及教材的知识特点,并结合我班学生的具体情况,我制定了以下的教学目标:
1、了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。
2、通过操作、观察、讨论、比较活动,让学生初步利用图形转化来推导平行四边形面积的计算方法,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。
3、通过活动,激发学习兴趣,使学生在数学活动中获得成功的体验,建立自信心、培养团结协作的精神,感受数学与生活的密切联系。
学生先前已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力还不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。本节课中,我采取多种手段引导学生积极参与学习过程。本节课教法上最大的特点是让学生动手操作,把静态知识转化为动态,把抽象数学知识变为具体可操作的规律性知识,指导学生理论联系实际,开展讨论,
使他们自主、快乐地解决问题。另外,我还力图体现学生学法的转变:从被动接受学习变为在自主、探究合作中学习,让学生亲身体验知识的形成过程,促使学生思维的发展,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、创设有效的'问题情景
在课的开始就以我校要建设两块绿地,一个是长方形,一个是平行四边形,现在要将种植任务平均分给五年级的四个班,如果让你来分配任务,你打算先解决什么问题?这一生活中的实际问题引出平行四边形面积的计算问题。让学生带着浓厚的兴趣开展新知的探究。这样的设计有助于学生感受数学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,提高学生理解数学并运用数学解决问题的能力。
二、注重学生数学思维的发展
在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生将平行四边形转化成长方形,在学生体会转化这一数学思想方法的同时,引导学生进一步观察、思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生易于得出结论。
三、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,我注重学练结合,习题的设计既有梯度又注重变式,同时利用教具和多媒体课件进行直观演示,帮助学生理解和掌握。
本节课的不足之处:
1、在公式的推导环节的教学中应该再强调一下转化后的长方形的长和宽与原来平行四边形的底和高之的关系,从而便于那些学习能力稍差的学生更好地理解平行四边形面积公式的推导过程。
2、教师的语言应该再精炼一些,避免重复自己的问话或是重复学生的回答,从而可以节省一部分时间。
3、在练习中应再多给学生留一些思考的时间,尽量使每个学生都能有正确解题的体验,增强自信心。
在今后的教学中我会注意以上问题,不断改进,使我的课堂教学更加精彩。
平行四边形的面积教学反思11
《平行四边形面积》的教学目标是经过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。
教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生应对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,供给了很好培养学生独自思考本事的素材,但对学生的要求较高,鉴于本班的学生情景,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情景的'教学设计,我是这样设计的:
1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,能够经过数格子的方法去计算面积,也能够转化为规则图形去计算的,课堂上不少学生就是用转化的方法去解决的,这就为新课埋下伏笔。
2、上一环节不规则图形转化后为正方形和长方形,那里就复习下正方形和长方形面积公式。
3、比较等底等高的平行四边形和长方形面积谁大?经过图形出示。学生讨论得出结论:能够把平行四边形转化成长方形,这样就能够用底X高得出面积。
4、补充其他转化策略,明确平行四边形面积=底X高。
5、练习巩固。
先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的转化思想,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学贴合学习规律。
平行四边形的面积教学反思12
在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。
平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的联系,引发对新知的.自主探索。
呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)
呈现第二个问题:“这两个图形有什么联系吗?”
(学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)
对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:
生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的”。对于周长相等,大家都达成了共识;生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;生3:“不对,平行四边形的边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的比较产生了异议。
师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。
平行四边形的面积教学反思13
本节课的教学目标是使学生在理解的情况下掌握平行四边形面积的计算公式,使学生能够正确的计算平行四边形面积,并通过对图形的认真观察、比较和自我动手拼拼剪剪等实际操作,来进一步发展学生的想象力,初步建立学生的空间思维能力,通过剪切和平移的动手操作,充分培养学生的分析理解能力、实际操作能力、抽象概括归纳能力和用所学知识解决实际问题的综合能力。
在本节课的教学中,我基本完成了预定的教学目标,取得了较好的教学效果,讲完《平行四边形的面积》这一堂课后,总体感到这节课还是成功的,但深思后也感到这节课还有些不足和遗憾,我就这堂课作如下反思:
在教学中做到了让每个孩子都参与到学习中来,从分发挥了学生的主体作用。本堂课的教学我充分让每个学生主动参与学习,让学生感受到参与到探究学习中的乐趣。首先,通过孙悟空看守蟠桃园的故事导入,让学生大胆猜测:长方形的树地和平行四边形的树地哪块大?然后让他们每个人说明自己的理由,可以用不同的方法来验证自己的观点。我重点讲转换的方法。发给学生图片,让每个学生自己动手剪拼,剪成已经学过的图形。引导学生自愿参与学习全过程,去主动探求知识,达到强化学生主动参与的目的,引导学生采用不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用小组合作、讨论、交流等方式要求学生把自己总结的过程叙述出来,达到开发学生思维,培养学生的语言表达及归纳总结能力的目的。加强培养学生的空间想象能力,初步建立空间思维,这对于培养学生解决生活中实际问题的能力有着重要的作用。
在学习中能向学生逐步渗透“转化”思想,让原有积累的经验和知识成为学习新知的坚实基础。我在本堂课教学时引导学生采用“转化”的思想,来分散教学中的难点,加深学生对公式的理解和记忆。我通过引导学生大胆猜想平行四边形的面积可能与什么有关,该如何计算,然后引出学生能将平行四边形转化成已学的什么图形进行推导它的面积。让学生能够很自然的想到把这个平行四边形转化成一个长方形,并探究出它们之间存在的内在关系。通过同学间探究出的'图形间的关系,使学生初步建立“转化”思维,为以后的几何图形的学习奠定基础,在充分发挥学生空间想象力的同时,也培养了他们的自主创新意识和实际动手操作的能力。这样既能突出本节课的学习重点,又有效地化解了本节课的教学难点,使学生能更好的理解和掌握平行四边形面积的计算。通过本节课的学习,让学生初步掌握图形间的相互转化,为以后在学习过程中推导三角形、梯形面积的计算公式时做了良好的基础铺垫。虽然整个教学过程算是基本合格,但在教学过程仍然存在着一些不足的地方,比如教师在课堂上没有充分发挥学生的自我探究能力和思维拓展能力。课堂上总结时没有放开由学生来归纳概括。还有,由于时间掌控分配不合理,导致学生在提出问题时,没有在课堂上及时解答,这些都是我在今后的教学中需要努力改正的地方。
总之,在今后的教学实际中,我会在课下多学习新的教学模式,积极主动向有经验的教师学习,通过多种方式来提高自己的教学能力,努力改正教学方法,让自己早日成为一名让家长放心、让学生信任,并且自我业务能力过硬的一名合格的好教师。
平行四边形的面积教学反思14
本节课中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
一、创设卡通情境,激发探究欲望
卡通人物是学生喜闻乐见的,所以我选用咖啡猫来创设情境。创设学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去,使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。著名数学家华罗庚说过:“人们对数学早就产生了枯燥乏味、神秘、难懂的印象,原因之一便是脱离了实际。”所以在教学中,教师要善于把这些有价值的问题置于学生熟悉的.、感兴趣的实际生活情境中,使数学知识成为学生看得见、摸得着、听得到的现实,让数学贴近学生的生活,学生就会真正体会到生活中充满了数学,感受到数学的真谛与价值,从而喜欢数学。而本节课的情境创设正是在这种理念的支撑下,把问题赋予儿童化的色彩,使学生觉得好象不是在学习新的知识,而就是为了帮咖啡猫解决问题而寻找方法,所以学生都很乐意也很愿意主动去探究。
二、在动手中学习,在动手中思维
“学习任何知识的最佳途径是通过自己的实践活动去发现,因为这样发现理解最深,也最容易掌握。”学生学习数学知识是主动建构过程,也就是说,学生学习数学只有通过自身的操作活动和主动参与的去做才能产生效果。现代教育理论主张让学生动手去“做”科学,而不是用耳朵“听”科学。这节课我给了学生足够的时间和空间去动手操作,都是学生的智慧,然后让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正使学生在动手中学习,在动手中思维,学习主人翁的地位充分展现。
三、初步体验科学探究的方法
科学探究的方法是创新能力的必要基础,是每个公民必须具备的基本素质。纵观整个教学过程,初步体现了“提出问题——大胆猜测——反复验证——总结规律——灵活运用”这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的创新过程。因此,我在把握教材内涵的基础上,把教材的知识结论变成学生主动参与、探究问题、发现规律的创新过程,培养了学生科学探究的精神,不仅使学生的智慧、能力得到发展,而且获得了深层次的情感体验。
本课教学中也有待于修正的地方,在学生动手操作,想想能不能把平行四边形转化为以前学过的图形时,学生的思路非常活跃,但有些同学没有明确转化的目的是为了计算平行四边形的面积,有的说能转化为两个三角形,有的说能转化成两个梯形……没有想转化后的图形面积会不会计算,所以教师在这时,应重点强调:能不能把平行四边形转化为原来学过的长方形,这样目的明确了,当学生转化为长方形后,就易于发现两个图形之间的关系,从而推导出平行四边形面积计算公式。所以,教师在备课时,应该充分备学生,多想想学生的理解、学生的思维、想法,这样才能使课堂教学更紧凑,让学生充分利用上课时间,学习最多的知识。
平行四边形的面积教学反思15
数学教学的价值目标不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得思想方法,经历解决问题的过程。本节课遵循这一原则进行设计,结合教材内容及学生实际,有以下几点思考:
一、创设情境,方法巧妙迁移
数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的“数格子”的方法解决问题。让学生积极主动地投入到数学活动中去。我创设了学生熟悉的生活情境,学生很喜欢,很快的就投入到学习中去,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,结合求面积的实际操作性,进而引发学生的猜测,并进一步引导学生将平行四边形的面积转化成长方形的面积进行推导。
二、学生自主合作探究
苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中我先是给学生提供学习单,由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,通过发现提出求平行四边形面积的猜想。接着是读活动要求,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,很好的掌握了平行四边形公式的推导过程,学生获取知识的能力、观察能力和操作的能力得到培养。
三、拓展方法,渗透数学思想
教学时,以学生的验证推导为主,先引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。学生探究出了将平行四边形转化成长方形的.三种方法,并通过操作加以演示推导。在学生探究后,我出示了第四种方法,还让学生观察这几种方法有什么相同点,从而让学生明确自己刚才所运用的转化的思想方法。在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
四、巩固练习,深化应用。
我设计了具有针对性的习题组。练习设计的优化是优化教学过程的一个重要方面。本课的习题设计灵活运用公式,引导学生熟练利用平行四边形的面积公式解决生活中的实际问题,让学生在练习的同时提高应用知识解决问题的能力。 虽然本节课能以学生为主体,教师主导,但课堂上能够对学生起到导向和引领的有效的评价语言还需要进一步提升。教学是一门有着缺憾的艺术。做为教者的我们,只有用心思考,不断改进,我们的课堂才会日臻具有艺术性!
【平行四边形的面积教学反思】相关文章:
平行四边形面积教学反思04-06
平行四边形的面积教学反思04-14
《平行四边形的面积》教学反思04-14
平行四边形面积的教学反思04-23
《面积》的教学反思06-09
《平行四边形面积》教学反思范文05-17
平行四边形面积的计算教学反思12-28
数学《平行四边形的面积》教学反思05-22
平行四边形的面积教学反思(精选23篇)12-30