《乘法分配律》的教学反思

时间:2024-05-24 12:41:11 教学反思 我要投稿

《乘法分配律》的教学反思

  身为一名刚到岗的教师,课堂教学是重要的工作之一,通过教学反思可以很好地改正讲课缺点,那么什么样的教学反思才是好的呢?下面是小编为大家收集的《乘法分配律》的教学反思,仅供参考,大家一起来看看吧。

《乘法分配律》的教学反思

《乘法分配律》的教学反思1

  这两天学习乘法分配律,孩子们的普遍感觉是比乘法的交换律和结合律应用起来难一些。作业中的错误也很多,主要错在一下几点:

  1、78×(100+5)

  =78×100+5…………这种错误在于学生没有教好的理解

  乘法分配律:括号外面的数要分别乘括号内的两个数,再把两个积相加。

  2、85×99+85

  =85×(99+85)…………这种错误的原因在于个别孩子

  对式子中的数据理解不好,不明白加号后面的

  85表示的是1个85,可以看成85×1。

  3、104×25

  =(100+4)×25

  =104×25…………这种错误的原因在于有的孩子对乘法分配律的引用不熟练,变式之后又按照顺序进行计算,回到了原式。

  4、76×54+76×47-76

  =76×(54+47)-76…………有这种做法的孩子属于对乘法分配律的应用不够灵活,当遇到部分积较多的时候,不能较好的应用分配律进行简便算。

  5、25×32×125

  =(25×4)+(8×125)…………个别学生在做题时有一种惯性,学完乘法分配律之后,所有的题目都用分配律进行计算,不能灵活的选用运算律进行简便计算。

  综合学生出现的错误之处,可见大部分孩子对运算律能够较

  好的理解,只是在应用时不能够灵活的应用。直接应用规律进行简便算的能准确理解,而需要变式的题目则不能较好的应用,也有个别孩子因为理解不清而不会应用。根据学生的情况,我采用相应的措施,以便让孩子们真正理解,灵活应用。

  一、个别指导。

  对分配律不理解的孩子,我进行个别的指导。具体是举一些相关的实际问题,让孩子用两种不同的方法进行解题,在解题、比较的基础上理解两部分积表示的意义,理解括号外的数要分别乘括号内两个数的道理,这样借助具体事例,形象的进行理解、概括,有助于学生对乘法分配律的掌握。

  二、对比练习。

  针对有的孩子把分配律和结合律混淆的'情况,我设计针对性的练习,让孩子在练习中记性比较、分析,从而掌握。如:

  25×3×17×4 25×3+17×25

  比较两个算式的不同之处,说说算是中分别有什么运算,运用什么运算律才能简便计算,这样在比较的过程中学生能够慢慢区分乘法结合律与乘法分配律的不同,继而再灵活应用规律进行计算。

  三、针对练习。

  针对学生不能灵活应用规律进行计算的问题,我设计针对性的练习,让孩子在练习中说说自己的想法,比一比怎么计算更加简便,这样在比较、练习的过程中进一步掌握简便计算的方法。

  如:125×48

  因为刚学过乘法分配律,学生在计算125×48时,也应用分配律:125×40+125×8,针对这样的情况,我让学生再想一想还有没有其它简便计算的方法,引导学生用乘法结合律进行简便计算:125×8×6,再比一比:哪种方法更简便?这样在比较的过程中引导学生体会:用简便方法进行计算时,一定要先观察题目中各个数的特点,根据题目的特点选择合适的运算律进行简便计算,这样才能保证计算的简便与正确。

  通过对孩子错因的分析与相应的指导、练习,孩子们对乘法的运算律理解掌握也越来越好,作业的错误明显减少。看来,只要我们善于分析、引导,只要我们对孩子有耐心、有信心,孩子们就一定能够学会、学好!

《乘法分配律》的教学反思2

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律并能初步应用这些定律进行一些简便计算的基础上进行教学的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,因为乘法分配律不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。

  上课时,我以轻松愉快的闲聊方式出示我们身边最熟悉的教学资源,以教室地面引出长方形面积的计算,两种方法解决问题,得出算式:(8+6)×2=8×2+6×2,从上面的观察与分析中,你能发现什么规律?通过观察算式,寻找规律。让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。

  这堂课由具体到抽象,大多需要学生体验得来,上下来感觉很好,学生很投入,似乎都掌握了,可在练习时还是发现了一些问题。如:学生在学习时知道“分别”的意思,也提醒大家注意,但在实际运用中,还是出现了漏乘的现象。针对这一现象我认为在练习课时要加以改进。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。乘法分配律在乘法的运算定律中是一个比较难理解的定律,通过这一节课的.学习,学生对乘法分配律的大致规律能理解,也能灵活运用,但是要求用语言来归纳或用字母表示乘法分配律的规律,有部分学生就感到很为难了。感觉他们只能意会不能言传。课本中关于乘法分配律只有一个求跳绳根数的例题,但是练习中有关乘法分配律的运用却灵活而多变,学生们应用起来有些不知所措,针对这种现状,我把乘法分配律的运用进行了归类,分别取个名字,让学生能针对不同的题目能灵活应用。

  乘法分配律大致上有这样三类:

  一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要进行平均分配,都要和8相乘。不能只把其中一个数字与8相乘,这样不公平,称不上是平均分配法,学生印象很深刻,开始还有部分学生只选择一个数与8相乘,归纳方法后学生都能正确应用了。

  二、提取公因数法。如:25*40+25*60=25*(40+60)解题关键:找准两个乘法式子中公有的因数,提取出公因数后,剩下的另一个数字该相加还是该相减,看符号就能确定了。

  三、拆分法。如:102*45=(100+2)*45=100*45+2*45这类题的关键在于观察那个数字最接近整百数,将它拆分成整百数加一个数或者整百数减去一个数,再应用乘法的分配率进行简算。有了归类,学生再见到题目就能依据数字或运算符号的特征熟练进行乘法分配律的简算了。

《乘法分配律》的教学反思3

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是所有运算定律中变化最多的,因此它是学生最难理解与运用的定律。因此我在教学中让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。

  一、在对本课的教学目标上,我定位在:

  (1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  (2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  二、在本课教学过程的设计上

  我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。顺延之前学习乘法交换律和乘法结合律的情境举例:利用植树活动情境“一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇水”。提出问题:“一共有多少名同学参加了这次植树活动”。让学生尝试通过不同的方法得出:

  (4 + 2)×254×25 + 2×25

  = 6×25 = 100 + 50

  = 150(元)= 150(元)

  此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:

  (a + b)× c = a × c + b × c

  三、在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。

  1、在完成课本36页做一做时,对应这3道判断题,

  (1)、判断56×(19+28)=56×19+28,让学生感知到乘法分配律要分给括号里的每一个数,强调乘法分配律的“公平性”。

  (2)、判断32×(7×3)=32×7+32×3,让学生注意到乘法结合律和乘法分配律的区别:通过对运算定律意义的`描述,和算式的特点,提炼出最简洁的区分方法:乘法结合律是连乘情况下的,乘法分配律除了乘法还有加法(后继教学还会出现减法),容易使我们混淆的原因是,它们都是乘法的运算定律都有乘法出现,更关键是它们都出现了小括号。

  (3)、判断64×64+36×64,借助64个64和36个64,一共是64+36=100个64,让学生理解乘法分配律逆向使用,在一些情况下,计算会变得十分简便。

  2、在完成较简单的课本36页做一做后,进行一些扩展型的练习:

  通过(250—25)×4,让学生感受到,乘法分配律除也可以两个数的差与一个数相乘。对于分配之后,再把两个积相减。同时复习强调我们熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8

  由于本节课的知识运用的难度较大,学生对乘法分配律可以基本掌握,但是对于其万般变化,还是有点力不从心,而该运算定律对学生后继学习,尤其是小数和分数计算时有一定影响,所以还需要学生在本节课后进行深入的学习,教师也需要针对乘法分配律的每一种题型,结合学生的掌握情况进行更系统深入的讲解。

《乘法分配律》的教学反思4

  今天静下心来观看了省赛课中葛老师执教的《乘法分配律》一课。她巧妙引领。葛老师非常自然的借助孩子们喜爱的农场游戏,引入问题“谁能帮老师算算一共有多少菜?你能列出综合算式吗?先求什么,后求什么?”一方面教师问题的指向性简练明确可以引导学生列出综合算式,另一方面借助情景能有效的帮助学生理解算式的道理,明确意义。更为巧妙的是此情景内容丰富可以列出不同的算式:

  2×3+3×4和(2+4)×32×5+8×5和(2+8)×5(10+15)×4和10×4+15×4为后面的“观察、分类和探究”做好铺垫。

  大胆放手。在第一个“求菜”的情境中,是在教师的引导下学生顺利完成了学习的过程,然而后面的“求花”和“求果树”就是放手让学生自己探究了,很自然的激发了学生的探究欲望,分别列出了两组算式:(2+8)×5和2×5+8×5以及(10+15)×4和10×4+15×4。

  这样在学生喜爱的农场情景中,巧妙的引发出六道算式,为进一步的`观察和探究埋下了伏笔。

  得出6个算式后,葛老师再次抛出问题:“这六个算式让你分分类,你打算分几类?理由是什么?”然后葛老师又引导学生同桌先讨论,然后集体汇报,于无形中让学生经历了各个层面的探究活动。让学生观察——猜想——举例验证——,和从“特例”进行验证等一系列的活动,最后归纳出一普遍性的规律。

  当结论得出后,葛老师并不是将字母表示进行简单的灌输,而是巧妙的借助点子图将用字母表示乘法分配律的过程变为因需而设,从而呼之欲出。最后教师还通过乘法的意义加深学生对乘法分配律的理解,并且教师还通过两组以前学过的两位数乘一位数和两位数乘两位数来打通乘法分配律与以前知识的联系。

  总之,本节课在学习方式上自主学习与合作探究并存,在思维发展上,教师引导与放手相结合,整个学习过程,因需而设,充满了探究。

《乘法分配律》的教学反思5

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。

  1、在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。

  结合学生的'掌握情况我觉得教学此内容需要注意以下几点:

  1、区分乘法结合律与乘法分配律的特点,多进行对比练习。乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

  3、多练。针对典型题目多次进行练习。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

  《乘法分配律》教学反思11

  乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

  在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

  在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。

  通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

  所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

《乘法分配律》的教学反思6

  师:出示教学挂图并提问:从图上你知道什么?

  生:张阿姨买5件夹克衫和5条裤子,一共要付多少钱?

  师:能自己列式解答吗?(教师巡视,学生解答)

  让用两种不同方法解答的学生分别板演。

  师:说说65×5+45×5这种解答方法是怎样想到的?

  生:先算买夹克衫和买裤子各用多少元?

  师:(65+45)×5这种方法呢?

  生:先算买一套衣服用多少元?

  师:比较这两种方法,有什么不同和相同呢?

  生:想的方法不同导致列的算式不同,但结果相同

  师:结果相等的两个算式可以用什么连接?

  生:等号揭示:(65+45)×5=65×5+45×5

  师:仔细观察等号两边的算式,它们有什么联系吗?(从数,运算符号思考)

  生:结果相等,都有三个数,5左边出现了1次,右边出现了两次,左边先加再乘,右边先乘再加……

  师:等号左边先算什么?右边呢?

  生:等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。

  师:你能模仿着写出几组这样的算式吗?学生试写

  学生列举验证,教师将学生列举的等式写在黑板上,并让学生说出等式两边的得数。

  师:还有很多同学想说,像这样的例子举得完吗?

  师:由此你想到些什么?

  生:这里有规律。

  师:我们可以用什么来表示这种普遍存在的规律呢?

  生:(字母、符号、文字)

  师:试着写一写吧

  生:(a+b)×c=a×c+b×c

  (△+○)×□=△×□+○×□

  师:小结:像这样两个数的和与一个数相乘,也可以用这两个数分别与这个数相乘,再把他们的积相加,这就是乘法分配律。(指着算式说)

  顺着读,(任何事物都要从正反两面去看)反过来读乘法分配律

  反思:

  乘法分配律一课是苏教国标版教材四年级下册的内容,是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上学习的。学生接触过加法、乘法的验算和口算等方面的知识,对此有较多的感性认识,这是学习乘法分配律的基础。教材安排这个运算律是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的.规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。教材有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律地认识由感性逐步发展到理性,合理地构建知识。

  课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察——举例——得出结论”这一数学学习全过程。学生掌握了学习方法,就等于拿到了打开知识宝库地金钥匙。由于乘法分配律是本课教学难点。教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生联想到是否具有普遍性。从而得到猜想:是不是所有的三个数都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。本课从学生的学习情况来看,通过本课的学习不但掌握了乘法分配律的知识,更重要的是学会了数学方法,并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。

《乘法分配律》的教学反思7

  本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。在充分感知的基础上引导学生比较这几组等式,发现有什么规律?这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。如:书上第55页的第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。

  关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:

  首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。

  其次,我在学生解决完例题的.问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

  最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。

  不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。

《乘法分配律》的教学反思8

  小学数学《乘法分配律》教学反思教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,我认为在教学中应该注意这些问题:

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  教学中通过解决买水果济青高速公路全长约多少千米?这一问题,结合具体的生活情景,得到了(110+90)2=1102+902这一结果。这时我们往往比较注意了等式两边的外形结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。所以这里我们不仅要从解题思路的角度理解两个算式是相等的,还要从乘法的意义的角度理解,即左边表示200个2,右边也表示200个2,所以(110+90)2=1102+902

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)25与(404)25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

  如:计算12588;10189你能用几种方法?

  12588 ①竖式计算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。

  10189 ①竖式计算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到用简便算法进行计算成为学生的一种自主行为,并能根据题目的.特点,灵活选择适当的算法的目的。

  4、多练,针对典型题目多次进行练习。

  练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如3698+72;6825+68+6874,3212525等。

《乘法分配律》的教学反思9

  乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。

  一、抓住重点。让学生理解乘法分配律的意义。

  教材按照得出两道算式,把两道算式写成等式,分析两道算式之间的联系,写出类似的几组算式。发现规律,用语言或其他方式交流规律,给出用字母式子表示的运算律。这样的安排,便于学生经历观察、分析、比较和根据的过程。能使学生在合作交流的过程中,对简洁分配律的认识由感性逐步上升到理性。教学用书上写道:教学的重点和关键应是引导学生自主发现规律,用语言或其他方式与同伴交流规律。

  在教学时,我是按照如上的步骤进行教学的。可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。

  我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。

  总之,这个关键今天并没有完成好。

  二、考虑学生的学习情况,尊重他们的主观感受。

  在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的.是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板书在黑板上,只是在规范的那一道上面画了个星,告诉学生,乘法分配律的表示一般性采用的是这一条。

  三、练习中注意乘法分配律的变式。

  乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1)和74×20+74。一定要学生说清楚括号中的1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。

  今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45x5+65x5和(45+65)x5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45x5+65x5=(45+65)x5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。想想做做第1题只有几个学生把第3小题填错,其实包括后面的练习中,把AxC+BxC改写成(A+B)xC的正确率要比把(A+B)xC改写成AxC+BxC的正确率高,可能还是学生受以前:45个5加65个5也就是(45+65)个5的理解方法的限制而没学会用自己的语言表述乘法分配律,从而也没能真正掌握乘法分配律含义的缘故吧。

  想想做做第2题的第3小题74x(21+1)和74x21+74部分学生没有发现它们是相等的,我让认为相等的学生表述理由,学生能把算式改写成74x21+74x1再运用乘法分配律变形成74x(21+1),学生理解后我补充77x99+77=□(□○□)让学生填空,完成情况好多了,在拓展练习时补充了AxB+B=□(□○□)和AxB+B=□(□○□)让学生进一步真正理解乘法分配律的意义。但学生在完成想想做做第5题时,学生多习惯列式48x3+48x2来计算,却不能灵活运用所学知识列成(3+2)x48来计算,虽然运用乘法分配律进行简便计算是下一课的学习内容,但我也由此反思出我教学的不足之处,在例题教学时只关注了得出等式,却忽略了让学生比较等式两边的算式哪边比较简便。于是在第4题的算算比比中才补上了这一点。

《乘法分配律》的教学反思10

  首先结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的`思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学生学得轻松,学得主动。

  通过这节课的教学我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

《乘法分配律》的教学反思11

  “乘法分配律”的学习是在学习了乘法交换律和乘法结合律之后进行的,对于乘法分配律的理解和应用上都比前两个运算定律更有难度,学生在新课学习和知识的应用的过程中思路还比较清晰,但是在作业的过程中出现的好多问题,让人感觉孩子并没有对定律有真正意义上的理解。如:(40+4)×25,有时,只用40×25,后面只加上4就行了,还有的把这道题目改成了连乘题,根据孩子出现的问题和练习中出现的困惑,我认真的设计的这节练习课。

  第一,理清思路,,建构完整的知识体系。在本节课中,我和学生们一起回顾了乘法的几种运算定律,比较每种运算定律的字母公式,来区分乘法交换律、乘法结合律和乘法分配律之间的外形结构特点,引导学生发现,乘法结合律是几个数连乘,而乘法分配律是两数的和乘一个数或者是两个积的和.从运算符号上我们很快就可以找到它们的不同。乘法交换律和乘法结合律都只有乘号,而乘法分配律有不同级的两种运算符号。

  第二,优化练习题,实行精练。针对学生在乘法分配律学习后在理解上的困难,及乘法分配律在练习形式上的多变,我找出课本、课堂作业本以及一些课外辅导资料上的乘法分配律的计算题,把他们进行概括总结,把不同类型的乘法分配律的方法进行练习,讲解。让学生对不同的`乘法分配律的解决方法都进行尝试,帮助理解,加深记忆。

  第三,一题多法。例如25×44,学生在利用乘法分配律拆分其中一个数据的时候,有多种方法,有的学生把25拆成20+5,有的是拆了40+4,还有的把25×44转化成25×4×11,这些方法都可以,让学生分辨出每一种方法所运用的运算定律,从而加深学生对知识的认识和理解,在此基础上,选出最佳方案。

  乘法分配律的练习实在是多种多样,变幻无穷,要想更好的掌握,关键还是要理解,需多练.

《乘法分配律》的教学反思12

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律是四年级学习的重点,也是难点之一。也是一节比较抽象的概念课,教学时我根据教学内容的特点,为学生提供了多种探究方法,激发了学生的自主意识。

  上课时,我以轻松愉快的闲聊方式出示我们身边最熟悉的教学资源,以教室地面引出长方形面积的计算,两种方法解决问题,得出算式:(8+6)×2=8×2+6×2,从上面的观察与分析中,你能发现什么规律?通过观察算式,寻找规律。让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。从而让学生知道乘法分配律给大家计算带来的便利。从而感受数学的美。

  这堂课由具体到抽象,大多需要学生体验得来,上下来感觉很好,学生很投入,似乎都掌握了,可在练习时还是发现了一些问题。如:学生在学习时知道“分别”的意思,也提醒大家注意,但在实际运用中,还是出现了漏乘的现象。针对这一现象我认为在练习课时要加以改进。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。

  乘法分配律在乘法的运算定律中是一个比较难理解的定律,因此在上课前我作了充分的准备。因为学生在三年级时已经学过求长方形周长的两种通过一节课的学习,学生对乘法分配律的大致规律能理解,也能灵活运用,但是要求用语言来归纳或用字母表示乘法分配律的规律,有部分学生就感到很为难了。感觉他们只能意会不能言传般。课本中关于乘法分配律只有一个植树的.例题,但是练习中有关乘法分配律的运用却灵活而多变,学生们应用起来有些不知所措,针对这种现状,我把乘法分配律的运用进行了归类,分别取个名字,让学生能针对不同的题目能灵活应用。

  乘法分配律大致上有这样三类

  一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要进行平均分配,都要和8相乘。不能只把其中一个数字与8相乘,这样不公平,称不上是平均分配法,学生印象很深刻,开始还有部分学生只选择一个数与8相乘,归纳方法后学生都能正确应用了。

  二、提取公因数法。如:25*40+25*60=25*(40+60)解题关键:找准两个乘法式子中公有的因数,提取出公因数后,剩下的另一个数字该相加还是该相减,看符号就能确定了。

  三:拆分法。如:102*45=(100+2)*45=100*45+2*45这类题的关键在于观察那个数字最接近整百数,将它拆分成整百数加一个数或者整百数减去一个数,再应用惩罚的分配率进行简算。有了归类,学生再见到题目就能依据数字或运算符号的特征熟练进行乘法分配律的简算了。

  以这个为切入点,从而比较顺利地引入新课,正好那天是植树节所以我又创让“打比方”成为数学课堂的闪光点。

  凡是教过小学数学乘法运算律的教师都会体会到“乘法分配律”是乘法运算律中最难掌握的。学生在做练习题中错误最多。所以课前我对教材进行了身队深度的剖析和思考。最后想出了用打比方突破课堂难点。虽然我们的“比方”有时看来似乎有点不恰当,但是这种比方对开发学生的想象力,推理能力以及拓展思路竟达到了意想不到的效果。我是这样做的:

  我由解决问题引出乘法分配律的等式,但我没有急于给学生灌注这叫乘法分配率,而是写下了这样一个式子;{姐姐+我}×妈妈=姐姐×妈妈+我×妈妈然后提问:“谁能解释为什么我这样写吗?思维活跃的学生马上就会回答:“因为妈妈是你和姐姐共有的,所以你和姐姐都有资格和妈妈在一起。”......学生们的学习兴趣一下被调动起来了,他们明白了数学原来也是通俗易懂的。然后我再让他们阅读教材,给这个看似“不恰当”的比方定性为“乘法分配率”。归纳整合为字母算式:(a+b)×c=a×c+b×c,这时我再此让学生展开联想,让他们学着老金刚怒目在自己身边和生活中进行举例,学生很快举出(上衣+裤子)×人=上衣×人+裤子×人,(铅笔+圆珠笔)×本子=铅笔×本子+圆珠笔×本子等例子等不是十分贴切,但却富有情趣,孩子在编例子的同时,其实已把握了乘法分配律的特征,学生就不会出现(a+b)×c=a×c+b的错误,在生动活泼的“打比方”中,既带给了学生体验学习的快乐,又让我们枯燥深奥的数学概念成为形象而具体的理解形成,这种教法我在教“乘法交换律”时也用到过,我在结尾时把它总结为“左右搬家”然后讲了个铺子搬家的故事,学生们在津津乐道的故事中,在形象贴切的“打比方”中学懂了数学知识,收到了良好的效果,真正使数学课堂贴近生活。

  设了这样一个情境,“一共有25个小组参加植树乘法分配律在乘法的运算定律中是一个比较难乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。

  以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,提出问题:共有多少名同学参加了这次植树活动?通过两种方法和算式的比较,使学生初步感知乘法分配律。

  展示知识的发生过程,引导学生积极主动探究。先让学生根据问题,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式,让学生观察,初步感知“乘法分配律”。然后要求学生照样子说出几组这样的等式,引导学生再观察,让学生说明自己发现的规律。这样学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。

  最后让学生比较乘法交换律和结合律与分配率的最大区别,前者只在连乘的同一级运算中运用,后者是在两级运算中运用,所以,看清题目是一级运算还是两级运算对决定算法非常重要。这节课虽然成功引导学生发现了定律,但教完之后,在练习过程中还有部分学生掌握不好,在后一阶段依然要加强练习,边练习边总结算法,使学生达到熟能生巧的程度。

《乘法分配律》的教学反思13

  1、情境的创设激发了学生的计算热情。

  让学生在生动具体的情境中学习数学,这是新课标倡导的新理念。我联系学生的生活实际,创设了学生熟悉的购买家具的场景,配上我生动的语言叙述,一下子就把学生代入到了一个有数学味的问题情境中,吸引了所有学生的注意。紧接着的问题如果你是小红,你想买什么家具呢?根据小红家的需要,你们能提出哪些数学问题?更是激发了学生的思维,学生个个积极动脑,跃跃欲试。在学生充分提出各种问题的`基础上,我选择了有代表性的一个问题让学生独立解决,极大地激发了学生的计算热情。这一环节的教学,让学生经历了因用而算、以算激用的过程,将算与用紧密结合。

  2、多层的设计有利于学生数学模型的建立。

  首先让学生通过独立计算,交流计算方法,叙述计算过程等一系列的笔算乘法的技能训练,形成一定的算理。然后通过比较124和2132这两题,它们最大的区别是什么?在乘的时候,有什么不同呢?如果是四位数、五位数乘一位数,你认为该怎么乘呢?这两个问题的讨论、交流,引导学生进行整理反思,让学生能通过两位数乘一位数迁移到三位数乘一位数,进而自然联想到四位数、五位数乘一位数的计算方法其实都是一样的,从而帮助学生将零散的知识串起来,有利于学生数学模型的建立。

  需要改进的地方是:在学生探索出笔算方法后,我因为担心学生没有听懂,怕学生做错,说错,故而引导太细,学生的学习主动性调动的不够。如果我能充分相信学生,大胆放手,让学生独立地去想,去做,去说,相信学生的。表现会更出色。

《乘法分配律》的教学反思14

  设计理念:

  《乘法分配律》是小学数学教材中一个经典的教学内容,它不是单一的乘法运算,还涉及到加法运算,在理论算术中又称之为乘法对加法的分配性质。在重视数学基础知识和基本技能的小学传统教学理念下,十分重视对数学性质、定律的传授,及运用性质和定律进行简便计算。随着《数学课程标准》的正式使用,在教学中必须把教学目标、教学重点重新定位,教学方式及学生的学习方式都要有所创新有所突破。根据这一意图,在确定教学目标的时候,我将传统的“使学生理解并掌握乘法分配律”,变更为“通过经历探索乘法分配律的活动,发现乘法分配律,能根据实际情况灵活运用乘法分配律进行一些简便计算。”摒弃传统的重结论的记忆、算法的模仿,而注重在让学生发现、感悟、体验数学规律的过程上,并且学会用辩证的思维方式思考问题,真正落实学生的主体地位。让学生在课堂上经历数学研究的基本过程:感知——猜想——验证——总结——应用。在教学过程中根据学生的情况善导,使学生学会科学的学习方法,不断发展和完善自己,激发学生的创新灵感。

  课堂实录:

  一、设计情境,初步感知规律

  1、课件出示:

  本学期学校来了4位新教师,总务处需要为老师购买办公桌椅,了解到的价格情况:办公桌第张100元,每把椅子40元,请同学们用所学的数学知识,帮助总务处算一算,为新教师购买办公桌椅一共要多少钱?

  2、学生列式计算汇报:

  (100+40)×4100×4+40×

  4=140×4=400+160

  =560(元)=560(元)

  3、表扬学生用两种数学方法解决问题的同时,引导学生观察两个算式:“计算结果相等,就可以用等号连接两个式子。”

  二、比赛激趣,引发猜想

  1、比赛(分男女两组)::

  65×17+35×17(65+35)×17

  28×42+62×42(28+62)×42

  40×25+4×25(40+4)×2

  5做后讨论,感到计算结果相同,但计算的简便有所不同。

  2、两题中自己选择一题计算:

  (62+38)×8862×88+38×88

  说说自己选择的理由。

  【让学生经历两轮的竞赛,探讨取胜之法,感知乘法分配律的特征,初步形成乘法分配律应用的可逆性的表象。】

  三、开拓思维,验证猜想

  1、观察前面五组题目,鼓励学生用自己的方式来表示自己的发现。

  生1:(A+B)×C=A×C+B×C

  生2:(○+□)×△=○×△+□×△

  生3:(老+师)×邱=老×邱+师×邱

  ??

  2、提问:同学们肯定已经在这里找到了一个规律,可是,是不是所有的数学都适合这个规律呢?你能不能再举例证明自己的猜想呢?

  学生自由举例。

  在学生所举例子的基础上,引导学生从乘法的意义上去理解算式。

  以98×21+2×21=(98+2)×21为例:

  左边表示98个21加上2个21,一共100个21,左边也是100个21。等号两边的形式虽然不同,但所表示的意义是一样的。其他算式所表示的道理也是一样的。

  3、归纳:尝试用数学语言概括规律,再对照书本,规范语言。

  四、辩证思考,灵活运用

  1、怎样简便怎样算

  (1)(8+92)×537×42+63×

  42(2)101×4518×16+17×16

  (3)(100+40)×432×5+8×

  5学生先观察,再交流方法。

  生1:像第(1)组的'题目,还是用乘法分配律比较简单。

  生2:101×45这题,101接近100,我把101改写成(100+1),然后运用乘法分配律,计算就很简便。

  师生一起加以肯定。

  生3:18×16+17×16这一题我觉得怎样算都不简便。

  生4:我觉得这题运用乘法分配律,先求出18+17的和比较简便,因为这样只算两步,按照原来的运算顺序要算三步。

  师:乘法分配律是通过改变原来算式的运算顺序,使计算方便,虽然18×16+17×16计算时没有出现整十整百数,但改变运算顺序后,计算比原来方便了。

  生5:第(3)组的两道题目其实这样直接算也比较简便,不一定要用乘法分配律。

  师:(赞赏地)说得好!在计算的时候要根据数字特点灵活运用乘法分配律,不要盲目使用。

  【比较是一种很好的教学手段,它能帮助学生形成辩证的思维观念,深刻理解知识内涵】

  2、开放题

  63×15+()×()=(+)×()

  学生汇报。

  教师从两个方面来定位:A是否符合乘法分配律;B是否能在计算上简便。

  教学反思:

  1、知识的学习不是简单的“搭积木”的过程,而是一个生态式“孕育”的过程。在设计教

  案时,我们必须从学生的生活经历、知识背景、学习能力、情感与态度等方面解读教材,让学生在现实具体的情境中体验和理解数学。通过学生经历运用数学知识为学生解决问题和男女生比赛等的练习,引导学生观察、发现、验证、归纳,初步了解感知规律,再次通过练习、描述、完善认识,达到对规律的理解,建立模型,最后又在熟悉的情境中深化认识认识规律,丰富规律的内涵。

  2、充分体现寻找规律、描述规律、应用规律、发展规律的过程。确定教学目标时,我将传统的“使学生理解并掌握乘法分配律”,拓展为“通过经历探索乘法分配律的活动,发现乘法分配律”,在关注结果的同时,更多关注学生获得结果的过程。学生从对规律的初步了解、深入理解到应用和拓展,是一个从琐碎到整合,正表述到逆表述,从单一到开放,从静态到动态的过程。其间培养了学生从“猜想与验证”等探究的方法。

  3、学生对知识的应用从新课的学习开始就会形成一种思维定势:学生会认为只要应用乘法分配律就能使所有的计算都变得简便。应用乘法分配律进行简便计算,就是要得到一个整十整百数,这样才叫简便。而忽视了乘法分配律的真正内涵——改变原来式子的运算顺序,结果不变。在教学中,我有意识地选择了第(3)组两种情况,让学生明白,乘法分配律不是简便计算,是两个相等算式之间的结构特征,只有当数据比较特殊时,可以运用乘法分配律来改变计算顺序,使原先的计算变得简便。这种科学的辩证思想的建立,对学生具体问题具体分析,灵活地选择合理的方法计算是十分有利的。其次,运用乘法分配律,可以用两种方法解决实际问题,增加解决问题的能力。

《乘法分配律》的教学反思15

  乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证……。

  现在的课程改革重点之一就是如何促进学生学习方式的变革,让他们可以用自己的眼睛去观察,用自己的脑子去思考,用自己的语言去表述,成为一个独特的个体。并强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。本着对新课标的学习和认识,我对“乘法分配律”这一堂课在实践理念方面作如下的探索。

  1.在对本节课的教学目标上,我定位在:

  (1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

  (2)初步感受乘法分配律能使一些计算简便。(3)培养学生分析、推理、概括的思维能力。

  2.在本节课的教学过程的设计上,我尽量想体现新课标的一些理念。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。在课的开始,我通过口头讲故事创设情境“森林超市”,“招聘广告”,设置悬念,激发学生的学习欲望和学生学习数学的兴趣:你们去过森林超市吗?想不想去看一看?小狗开了一家森林超市,想通过招聘广告应聘一名营业员呢!我们一起来看一看。小兔、小猪看到广告后,前来应聘,小熊决定进行考试过三关,择优录取。小狗还想邀请同学们一起参加这个活动,你们愿意吗?学生已迫不及待地说想。

  接着我分别让班上的一组、二组分别和三组、四组扮演小猪和小兔进行解题比赛,学生学生们积极性极高并争先恐后地做题,同时让学生说说你是怎么做的?学生尝试通过不同的方法先后得出:

  (1)50×8+125×8 =400+1000=1400(元),(50+125)×8=175×8=1400(元);

  (2):(55+45)×5 =100 ×5 =500(元),55×5+45×5=275+225=500(元);

  (3)15×4+3×4 =60+12=72(元),(15+3)×4=18×4=72(元)。

  此时教师让学生观察通过不同的计算方法得到了相同的结果,这两个算式用“=”连接。通过不同计算得到相同的结果,让学生从中初步感受了乘法分配律的模型。为了让学生切实体会生活中确实有乘法分配律的知识。在此我又设置了一个问题:上面两题的结果,左边和右边的式子也有相同的形式,这里是否存在着规律?让学生带着一点疑惑,又急着想证明的愿望继续探究。这时学生心中已具有了乘法分配律的模型。当学生有了上面的真实感受,让学生列举出类似的等式已水到渠成。让学生观察刚才得到的一系列等式,小组讨论:从这些等式中你发现了什么规律?并要求同桌尝试合作学习进行一人任意找三个数写出等号左边的式子让另一个写出等号右边的式子,几题过后再交换写式子,让他们亲自感受乘法分配律,从而概括出乘法分配律。

  3、在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。针对平时学生练习中的.错误,在判断题中我安排了(25×7)×4=25×4+7×4,让学生通过争论明白当(25×7)×4时用乘法结合律简算;当(25+7)×4时用乘法分配律简算。在填空题目中,我设计了

  ①(10+7)×6=()×6 +()×6 ;

  ②8×(125+9)=8×()+8×();

  ③7×48+7×52=()×(+)

  通过练习让学生更深入地理解乘法分配律的概念,也为后面利用乘法分配律进行简算打下伏笔。

  总之,在本堂课中新的教学理念有所体现,但在具体的操作中还缺乏成熟的思考,对学生的积极性没有充分调动起来,而且在生活情境的创设中对情境的趣味性、兴趣性、情境性不能很好的体现,情景创设题目有点多,需减少一题,留给学生思考的时间还不够。这一系列问题有待我在今后的教学过程中不断的改进和提高。最后,衷心地感谢各位领导的指导并提出建议!

【《乘法分配律》的教学反思】相关文章:

乘法分配律教学反思03-23

乘法分配律教学反思优秀04-14

乘法分配律教学反思(通用10篇)01-31

乘法分配律教学反思汇编15篇02-19

乘法分配律教案02-17

【精选】乘法分配律教案11-22

四年级《乘法分配律》数学教学反思12-08

《乘法分配律》教案优秀03-28

乘法分配律的应用教案04-12

乘法分配律教案优秀11-15