反比例函数教学反思

时间:2024-06-18 17:57:06 教学反思 我要投稿

反比例函数教学反思

  身为一名刚到岗的人民教师,我们要在课堂教学中快速成长,写教学反思能总结教学过程中的很多讲课技巧,那么大家知道正规的教学反思怎么写吗?下面是小编精心整理的反比例函数教学反思,希望能够帮助到大家。

反比例函数教学反思

反比例函数教学反思1

  一、教材分析

  反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

  二、学情分析

  由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

  三、教学目标

  知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

  解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

  四、教学重难点

  重点:理解反比例函数意义,确定反比例函数的表达式.

  难点:反比例函数表达式的确立.

  五、教学过程

  (1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

  (2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

  位:m)随宽x(单位:m)的变化而变化。

  请同学们写出上述函数的表达式

  14631000(2)y= tx

  k可知:形如y= (k为常数,k≠0)的`函数称为反比例函数,其中xx(1)v=

  是自变量,y是函数。

  此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

  当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

  举例:下列属于反比例函数的是

  (1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

  已知y与x成反比例,则可设y与x的函数关系式为y=

  k x?1

  k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

  已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

  例:已知y与x2反比例,并且当x=3时y=4

  (1)求出y和x之间的函数解析式

  (2)求当x=1.5时y的值

  解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

  和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

  通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

  六、评价与反思

  本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

反比例函数教学反思2

  公开课上完了,总的感觉有成功的地方,也有不足之处。我认为本堂课成功的做法有以下几方面:

  一、定位较准,立足于本校学情。

  由于学生基础较差,本节复习是按知识点复习,目的是落实知识点和掌握一些基本的题型,通过教学来看目标已达成。

  二、习题设计合理,立足于思维训练。

  本节课每个知识点都设计了针对性的变式练习,通过练习学生的解体技巧、方法、思维都得到了训练。

  三、注重了数学思想方法的渗透。

  在反比例函数的性质教学时,紧紧抓住关键词语,突破难点。性质强调“在同一象限内”,而我们学生往往忽略这个问题,无论是怎样的两点,都直接用性质,对此,采用讨论的观点,结合图像观察,让学生看到理解到:在同一象限内可直接用性质,不在同一象限内,一、二象限的点的纵坐标永远大于三、四象限内点的纵坐标。这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结出这其中体现出的数学思想方法:分类讨论和数形结合的思想方法。

  四、大胆尝试信息技术教学。

  “班班通”走进了课堂,信息技术的教学正冲击着传统的数学课堂,虽然白板的功能还没完全了解,使用的也不够熟练,但也能体现出信息技术在数学教学的灵活性、直观性,对本节课“反比例函数的性质”等多处教学都起到一定的作用,提高了课堂效率。

  不足之处:

  一、预见性不够。这主要体现在知识回顾中的第二题,本来打算一点而过,结果学生的回答偏离了老师的预想,老师势必站在学生的角度给他们一一纠正,从而浪费了时间,自己对于突发事件的处理灵活性还不够,掌控课堂的能力有待提高。

  二、对学生的'情感关注太少。本来想营造一种和谐的课堂气氛,学生因为紧张回答问题不积极,不敢大胆发表自己的观点,课堂气氛死气沉沉,没有焕发出学生的激情。如果在一开始就用生动活泼激趣的语言导入课题,在教学过程中对少数同学的回答能及时给予表扬和激励,不但能消除学生的紧张情绪,也能激发学生的兴趣,坚定学习的信心。

  三、角色转换不彻底。在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.不能大胆放心把课堂交还给学生。

  今后还需要改进的地方:

  一、在上课过程中,要始终关注学生的情感。因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。

  二、不断学习新的教育理论,不断更新教学观念,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

  三、注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。

  四、努力学习多媒体软件设计和制作,把它作为教师备课、教学改革的工具,使电脑、网络、光盘、白板等现代媒体成为像黑板、粉笔一样的得心应手的工具,恰如其分地应用于日常课堂教学中,真正为教学服务。

  有反思才会有进步,作为身处课程改革第一线的教育工作者,应迅速转变传统的教育观念,勇于创新,积极接受挑战。

反比例函数教学反思3

  一、本节课的教学内容为反比例函数的图像与性质的新授课第三节课,在“数形结合”的主线下,使学生具有了自我更新知识的能力,具有了可持续发展的能力。

  二、首先简单复习了反比例函数与一次函数的表达式、图像、图像象限和增减性,其次利用基础训练的五个题目求反比例函数表达式和图像及增减性,复习一下代入法和待定系数法;

  三、例题精讲,在例题的处理上我注重了学生解题步骤的培养;同时通过题目难度层次的推进;拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题;达到在课堂中就能掌握比较大小这类题型。但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。

  例题在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对所学的一次函数坐标等方面可以有一点的复习。从整体来看,时间有点紧张,尤其是最后一个与一次函数相结合的综合性题讲解得太少,学生还不太能理解,导致小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势

  四、不足:虽然在题目的`设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性,本节课的时间分配上还可以再调整;总之,我会在以后的教学中注意细节问题的。

反比例函数教学反思4

  一、教学设计符合学生的认知规律,以学生的实践活动作为学生思维的切入点,创建了活泼而富有活力的课堂氛围。.重视对学生能力的培养。除培养学生积极思考、主动发言的能力外,还培养了学生的审美能力、空间观念,发展了创造力,丰富了想象力以及动手操作能力,并对“割、补”有所了解。.学生在教师的引导下自主体验、建构知识,实现了知识的再创造。学生通过小组活动,在合作学习中增强与他人的合作意识。

  二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。

  三、本节课知识点的传授主要采用了与正比例函数相对照的方式进行的,这是根据现代建构主义的理论,从思维的最近发展区,通过有关知识的联想激活学生原有的函数知识,巧妙的引导学生发现正,反比例函数之间的区别与联系,掌握新知。由于本章内容是学生第一次接触函数思想,是学生认知上的一个难点,所以本节课引入时引导学生观察变量之间的对应关系,为下节函数内容做好铺垫。

  四、为了调动学生的积极性,整堂课采用了小组竞赛的形式,尤其关心后进生的学习状况,适时的给予鼓励,使每位学生都学到对自己有用的数学。

  五、用多媒体教学解决重点难点。

  数学学科的特点是逻辑严密、思维抽象。初中学生的认知发展尚未成熟,缺乏逻辑严谨性,导致思考问题不全面,从而对数学中抽象的性质定理较难理会,而多媒体教学技术可以通过其图象及数据的处理功能在教师的操作下,层层深入地引导他们运用形象思维和直觉思维来处理问题,减少学习困难。在本节课的`重点难点的解决过程中我都利用了几何画板的动态演示功能,在学生讨论反比例函数性质时,学生通过观察函数图象得出:“当k>0时,y值随自变量x的增大而减小;当k<0时,y值随自变量x的增大而增大”。这个结论是不完善的,必须补上“在每一象限内”这一条件。我处理这个问题时是利用多媒体图象的分解和组合技术通过在函数图象的两个分支上各取一个点,引导学生去比较相应的x、y值的变化情况,让他们自己领会出应将上述结论改为“在每一象限内,当k>0时,y值随自变量x的增大而减小;当k<0时,y值随自变量x的增大而增大”。

  二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。

反比例函数教学反思5

  这节课主要是通过学生自主探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历了一次自主获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法。自主探究学习是近年来兴起的一种全新的教学方式,它主要着力于学生的学,鼓励学生以类似科学研究的模式,进行主动探索。它把目标指向学生的创新能力、问题意识,以及关注现实、关注人类发展的意识和责任感的培养,而不仅仅是知识的传播和掌握.其有利于改变学生学习数学的方式,它强调“做中学”,力图通过学生“做”的主动探究过程来培养他们的创新精神、动手能力和解决问题的能力。而立足于课堂,深入钻研教材,是数学课堂教学中实施探究性学习的基础。

  带着这样的思路,我设计了《反比例函数的图象与性质》教案。对教学中体会较深的内容体会如下:

  首先,为达到自主探究、培养学生的动手能力、观察能力和问题意识的教学目的,教师要努力为学生创设必要的情境。人们的`学习往往从问题开始,因为这样的学习具有方向性与原动力。一节高质量的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“教学情境设计”设计成由若干个有一定逻辑顺序的问题。即通过复习反比例函数的定义——各自举一个反比例函数,同桌互相检查——画出它的图象。使他们经历观察实验、猜测发现、交流反思等理性思维的基本过程,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。

  其次,如何把复杂抽象的数学问题变为具体化、形象化的问题,让学生在学习时充满激情,过程中充满乐趣,在活跃的课堂气氛中,渐入佳境。在教学的过程中,我把信息技术和数学教学的学科特点结合起来,利用多媒体的动画演示让学生通过观察、探究发现反比例函数图象的性质,从而把复杂抽象的数学问题变为具体化、形象化的问题,让学生成为课堂的真正主角,教师从课堂的主宰者变为引导者。让学生来发现、归纳和总结反比例函数图象的性质规律。这样有利于提高学生的学习积极性。我们知道“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。利用多媒体信息技术图文并茂、声像并举、能动会变、形象直观的特点为学生创设各种情境,可激起学生的各种感官的参与,调动学生强烈的学习欲望,激发动机和兴趣。这充分说明了多媒体信息技术在教学中的作用。

  再次,关注教学过程,注意抓住一切有利的教育机会,对学生的疑问和解决问题能力进行引导和培养。比如在做能力测试题第

  (1)已知反比例函数y=(3k-6)x,如果在每个象限内y随着x的增大而减小,那么k的取值范围是______时,学生回答的答案是(k>2),是正确的,但进一步提问为什么时,答案却是因为当k=2时,3k-6=0不符合题意,此时我就进一步提出k<2行吗?解决此问题的关键是什么?从而培养了学生解决问题能力

  不足和遗憾之处:

  (1)反比例函数的图象可以进一步地利用有理数的乘法及各象限坐标的特点来验证说明。

  (2)因为时间关系,最后没有进行总结。

  反思二:

  刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图像,二是由图像得出反比例函数的性质。后者只需观察即可直观得出,显然画反比例函数的图像是本节课的重点,从教学目标的角度分析,本节课更应侧重于画图像技能的培养。

  准确、美观的画出反比例函数的图像,也应是本节课的难点,原因之一画函数的图像第一步是列表,列表时取哪些点?不取哪些点?取多少?密集程度如何?对刚接触反比例函数的学生来说,都是必须解决好的问题,否则划出的图像必然是五花八门,错误百出。原因之二,学生画函数图像的经验源于正比例函数和一次函数,由于二者的图像均为直线,所以有可能对画反比例函数图像造成一定的干扰。

  本节课在难点的处理上,我首先在列表时,直接给定了x的取值,这就把列表时应有的困惑化为无形,学生只需由y=4/x计算y值而已。其次,学生在坐标系中描完点后,我运用多媒体及时矫正,把问题分散,同时又为下面的连线清除了计算上的障碍。在此一句具有启发性的问话:这些点是否在一条直线上?怎样连接这些点?把学生分散而不着边际的思维集中在正确的轨道上来,图像的正确率自然大大增加。紧接着跟上矫正:同学们所画图像与老师图像不太一致,请对照老师正确的图像小组讨论,由于前面层层铺垫,加之有正确的图像作比较,学生很容易发现自己画图中的错误,最后概括总结注意点水到渠成。但仔细想想在学生对答如流的表面下,却掩盖了本应解决好的问题,这些问题暂时不暴露,就永远不会暴露吗?这对画图像技能的培养必然带来负面影响,在这里就出现了一个很现实的问题:教学中作为老师的我们,是掩盖问题还是暴露问题,答案是显然的。但我对这节课在以下方面还是很满意的:如列表时直接给定x的取值,连线时启发性的问话,使学生思维定向,避免了错误的不断尝试,使学生尽快步入正确学习的轨道,节省了学习时间等等……在教学中给我的感觉明快顺畅,但是这与教学中质疑解惑并不矛盾,有效教学的标志不仅是顺畅,更重要的是对问题的深入思考,最终达到技能的形成和情感目标的实现。

  回忆以往我在处理这个问题时的方法:列表、描点、连线由学生独立完成,然后老师提出问题,画反比例函数应该注意什么?列表时注意什么?为什么有的点取得密集?有的点取得疏松?描点时注意什么?连线时注意什么?用折线段连结所描的点可以吗?等等

反比例函数教学反思6

  师:请谈谈你的收获与体会。

  生1:通过这节课的学习,我学会了用反比例函数去解决一些实际问题。

  生2:我还了解了有关杠杆定律的一些知识,为以后学习物理奠定了基础。

  生3:各个问题的形式虽然不一样,我们可以归于函数模型解决,今天就是利用反比例函数模型解题的。

  师:学习了本节的内容,这位同学有一种建立数学模型解题的意识。

  生4:用数学知识还可以解决一些物理问题。

  生5:数学来源于生活,生活中处处有数学,运用数学可以解决很多问题,这更坚定了我学好数学的信心。

  教师归纳:1.解决有关反比例函数实际问题的流程如下:

  2.利用反比例函数解决实际问题时,既要关注函数本身,又要考虑变量的实际意义。

  反思:教师引导,学生争先恐后谈收获,特别强调了建立函数模型解决实际问题的思考方法。然后教师归纳出解决实际问题的.流程图,以及所要引起注意的问题,起到了画龙点睛的教学效果。这样的课堂小结能放能收,还能上升到数学思想方法的高度进行思考,无疑是成功的。

反比例函数教学反思7

  通过一节新课“反比例函数”(北师大版九年级上册第五章第一节)的内容制作教学课件,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。制作起来比较麻烦,但能使课堂教学达到预想不到的效果。课后仔细回味,从教学设计到课堂教学觉得有很多值得反思的地方。

  一、教学设计

  备课时,我认真研读教材,认为本节课无论是重点和难点都要让学生掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”的复习。

  为了更好地让学生掌握“反比例函数”的.概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“做一做”的有关问题,让学生体会在生活中有很多反比例关系。

  情景设置:

  第143页实例:电流I,电阻R,电压U之间满足关系式U=IR,当U=220 V时。

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表:

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  学生通过填表发现:

  当R越来越大时,I越来越小。当R越来越小时,I越来越大。

  变量I是R的函数。变量I是R的函数.由IR=220,得b=220/R.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数。

  设计意图:与前面复习内容相呼应,让同学们能在“做一做”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同,从而自然地引入“反比例函数”概念。

  二、课堂教学

  在这节课中,由于备课充分,我信心十足,因此课堂气氛比较活跃。我认为最成功之处是比较充分地调动了学生的积极性、主动性。由于学生的兴趣得以激发,所以,在教授新课的过程中,师生得以互动。

  在复习“函数”这一概念的时候,很多学生感到比较陌生,显然不是忘记了就是不知道如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数的图象做了很好的铺垫。

  三、经验感想

  在这节课中,我们学习了反比例函数定义,并归纳总结出反比例函数的表达式为(k为常数且k不等于0)。还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数。一句话,多媒体教学也起到了举足轻重的作用。在电脑课件的帮助下,学生表现积极踊跃有活力,效率比较高。但是,也有不足之处,在今后的教学中,要注意不能靠以往的经验来讲课,一定要精心设置,进一步探索和挖掘教材和考点,使每一位学生都能成为真正的组织者、参与者、合作者、促进者。

反比例函数教学反思8

  我在反比例函数的意义的教学中做了一些尝试。由于学生有一定的函数知识基础,并且有正比例的研究经验,这为反比例的数学建模提供了有利条件,教学中利用类比、归纳的数学思想方法开展数学建模活动。

  一、创设情景,引入新课。

  我选择了课本上的探究素材,让学生从生活实际中发现数学问题,从而引入学习内容。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种相互交流、相互合作、相互帮助的'关系,让学生主动、自觉地去观察、分析问题再组织学生通过充分讨论交流后得出它们的相同点,概括、发现规律,在此基础上来揭示反比例的意义,构建反比例的数学模型就显得水到渠成了。

  二、深入探究,理解涵义

  为了使学生进一步弄清反比例函数中两种量之间的数量关系,加深理解反比例的涵义,体验探索新知、发现规律的乐趣。我设计了例题1使学生对反比例的一般型的变式有所认识,设计例题2使学生从系数、指数进一步领会反比例的解析式条件,至此基本完成反比例的数学的建模。以上活动力求问题有梯度、由浅入深的开展建模活动。教学中按设计好的思路进行,达到了预计的效果。此环节暴露的问题是:学生逐渐感受了反比关系,但在语言组织上有欠缺,今后应注意对学生数学语言表达方面的训练。

  三、应用拓展:

  设置例题3的目的是让学生得到求反比例函数解析式的方法:待定系数法。提高学生的分析能力并获得数学方法,积累数学经验。设置两个练习,让学生充分理解并掌握反比例函数的应用。

  另外课堂中指教者的示范作用体现的不是很好,板书不够端正,肢体语言的多余动作,需要在今后的教学过程中严格要求自己,方方面面进行改善!本次公开课得到备课组长刘燕老师的认真指导。

反比例函数教学反思9

  常见的错误:

  (1) 没有注意定义中的条件;弱视题设条件;

  (2) 思考不全面,造成漏解、误解;

  (3) 根据函数图形性质判断函数图像在坐标系中位置,系数与图像的位置关系不容易判断;

  (4) 抛物线与x轴的交点数由 决定,而学生不易把此知识点与一元二次方程联系起来应用;

  为了减少因审题不当,而出现错误解答,在复习时,我们要求学生,在读题时让学生把关键字词化着重记号。

  例1:已知一次函数 的图像与y轴的`交点为(0,-4),求m

  错解:将坐标(0,-4)代入函数解析式,得 ,解之得m=1或m=2.

  错误原因:上述解法没有紧扣一次函数定义中“ ”这一条件,当m=2时,m-2=0,此时函数就不是一次函数,故应舍去。

  正解:m=1

  例2:当x为何值时,函数 与x轴只有一个交点?

  典型错误原因:因为函数 与x轴只有一个交点,所以 =0,即4+4m=0,解得m=-1.

  错因分析:认为 必是二次函数,忽略了m=0这种情形。

  正确答案:因为函数 与x轴只有一个交点, 所以m=0或 =0,解得m=0或m=-1.

  总结:(1)正确判断函数的类型;

  (2)注意各种函数的条件;

  (3)注意理解题意,把关键字词作标示,引起学生解题时注意,答题时全面考虑问题;

反比例函数教学反思10

  实际问题与反比例函数的第三课时,主要是进行学生训练,从学生的训练情况看,涉及到反比例函数的知识内容学生掌握得还是很好的,主要是利用反比例函数的增减情况确定“至少”与“至多”问题的确定。但是,从学生的练习情况看,对课本55页的6、7两题和61页的第11题的最后一问,不少学生用算术方法分步列式进行计算的,在理解上有难度,在解决和应用上方法单一,没有用方程思想解决问题,说明了学生的数学能力有待加强。

  分析其原因,最重要的一点是学生阅读和理解实际问题的.意思不够,不能整体把握题目的意思,因此采用逐个击破的处理方法,一个一个地列出表示各个不同意义的计算式,向目标逼近。不少同学就不能解决这样的问题。可以看出,教师还是要在学生遇到复杂问题时,给他们鼓励,教育他们耐心地研读问题(有学生没有静心理解题义);给他们方法,指导他们断句和分层,圈点关键词,整体把握数量关系;给他们示范,这里主要是对提问的处理,可以直接设元,还可以间接设元。

  在课前预设的最后一题中,学生用面积关系解决问题的解题经验不够,对于已知本题AP与DE垂直,要探究两个变量AP与DE的函数关系,应该想到三角形APD的面积,而三角形APD的面积是矩形ABCD面积的一半,学生解决本题有难度。

反比例函数教学反思11

  一、教材分析

  1、教学目标:

  (1)、能用列表、描点的方法探究反比例函数的图象,并会画出反比例函数的图象。 (2)、进一步理解函数的3种表示方法,即列表法、解析式法和图象法及各自的特点。

  (3)、经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法。

  2、重点:画反比例函数的图象。

  3、难点:根据反比例函数图象初步感知反比例函数的性质。

  二、教后反思

  1、优点: (1)、让学生经历“回忆——对比——猜想——分析——验证”的思维过程。先让学生画一次函数y=2x+4的图象。回忆函数图象的画法(列表,描点,连线),再让学生猜想 的图象,并引导学生围绕图象点的横纵坐标的符号特征,来预测它的图象,并与y=2x+4的图象进行对比,最后,学生带着疑问进行探索,画 的图象,并最终验证了自己的猜想。

  (2)、在学生亲手画出一次函数y=2x+4的图象后,通过对比辨析反比例函数的图象概念及其特点,使学生得到深刻的认识和理解。

  (3)、无限接近的`理解。这是难点,学生没有生活经验。为了增加学生的感性认识,我拓展介绍了“无限可分和无限接近”的概念。并用直尺进行演示,使学生对于“无限”的理解有了实例的依托。

  (4)、在讲解 的图象是中心对称图形时,列举了特殊的点来对比认识其中心对称性,让学生真正理解。

  2、不足:

  (1)、反比例函数图象的概念出示过早,特别是图象的两个分支在“一、三或二、四”象限时,学生没有感性认识。

  (2)、学案设计有缺陷。直角坐标系和表格准备不当,给学生在操作画图时带来了不必要的干扰。影响了教学效果。

  (3)、习题练习不充分,讲解时学生的主动性没有发挥。

  3、改进:

  (1)、学生画函数图象时,细节不够重视,教师可在课前把范例准备好,

  以便学生能够对比发现自己的不足,进而改进。

  (2)、对于反比例函数图象的画法,可让学生先小组讨论完成,这样有助于学生对反比例函数的深入理解,也可为后续学习其性质和应用增加一些思维锻炼。

  (3)、学案设计要简明,要求和步骤应在学案上清楚表明,以便学生能够清楚认识学习的任务和步骤,也方便教师掌握教学进度。 也许您也喜欢下面的内容:

反比例函数教学反思12

  首先我复习了各知识考点,包括5个方面:

  1、反比例函数的解析式(3种形式),强调系数不为0。

  2、反比例函数的图像(双曲线)及画图像注意问题、在此我比较了两点法画一次函数图像、从7点法(中间为顶点)画二次函数的图像、6个点或8个点画反比例函数的图像,并从对称性说明为什么。

  3、反比例函数的性质(包括位置、变化趋势即增减性、面积不变性)

  4、求反比例函数解析式的方法即待定系数法;1设2代3解4答

  5、反比例函数应用。

  在习题的选择上注意了平时教学中学生易混点、易错点,进行了归类总结,包括有:解析式的确定、由解析式确定函数图象、K的正负问题、比较大小问题、两类函数图象的共存问题、已知两类函数函数值结合图像确定自变量的取值范围、求面积问题、面积不变性问题、交点问题、反比例与方程(组)的关系问题等。

  本节课的'效果还是不错的,我认为成功之处有以下几点:

  1、目标明确,课堂就有劲头。本节课,目标为理解反比例函数的概念,掌握反比例函数性质。对与这样两个目标,我们的学生要想十分熟练,也比较困难,我们就像在用三等马与别人的上等马在赛跑。但是,由于目标少,起点低,也可以比较系统的分层地掌握好两个目标。现在看,效果还是不错的。

  2、抓住一个知识点做足变式。对于反比例函数的一般形式:y=k/x(k≠0),其主要考点有两个,一个是利用一般形式给出一点,求出准确的表达式;另一个就是考察k≠0的应用。同时还有两个变式:k=xy和y=kx—1,

  第一个变式非常重要,容易结合图像在坐标系内构成矩形或三角形,比较面积的大小。实际就是k=xy的应用。我把这个问题分成6种情况,分别结合图示,由浅入深展示给学生,学生在环环相扣螺旋上升的问题面前没有退缩,也没有放弃,而是饶有兴趣的解决了问题。我感觉非常成功。也给了我十分的信心和动力,支撑我在今后备课过程中,不断思索如何才能让学生学到今天这个程度。

  3、性质教学,紧紧抓住关键词语,突破难点。性质强调“在同一象限内”,而我们学生往往忽略这个问题,无论是怎样的两点,都直接用性质,对此,我用讨论的观点,也是螺旋上升出现问题,结合图像观察,让学生看到理解到:在同一象限内可直接用性质,不在同一象限内,一、二象限的点的纵坐标永远大于三、四象限内点的纵坐标。这样,非常明了的让学生把最容易混淆的知识分清了。

反比例函数教学反思13

  这节课,我讲授的内容是《反比例函数的图像和性质》第二小节,讲完之后感受颇深:这节课从学生的角度出发,针对下面的中学实际儿设计的,没有流于形式,教学目的就是“用”,所以第三环节“自主检测”是检查以下学生对性质的理解和运用情况,“思考”则是对性质的进一步探究:

  ①题是学生直接观察图像,并给解释清楚;

  ②题让学生动手操作,容易得到轴对称性;

  ③题中心对称性,学生不易观察,但设计了动画演示;“例题解答”是对方法和性质的总结实践,使学生懂得在平时解题中要善于总结和积累。“走进中考”是为了让学生认识中考题型,是教学为中考服务,这样既激发了学生学习的积极性,有给予了学生冲刺中考的动力!

  但也让我感到不足之处很多;

  1、把学生估计过高,欠缺对学生的引导铺垫

  2、准备仍不充分,觉得轴对称性通过学生的.折叠很容易得到,故认为动画不用演示,所以没有设计动画演示,这使课上时间浪费较多。

  3、应该让学生成为课堂的主人许多东西应该让他们自主探究并总结。

  4、习题设计应该少而精。

  5、课堂有前松后紧的感觉,时间没有合理分配。

  通过这节课的讲解我发现学生存在一个普遍现象:

  1、回答问题时思路不清,语言不规范。

  2、学生不会写解题过程,书写还需改进。我看清自己在教学方面的不足之处,知道了自己今后努力的方向,“路漫漫其修远兮,吾将上下而求索

反比例函数教学反思14

  一、满意之笔

  1、对于这节复习课,我尝试着把相关的概念,以习题的形式呈现在学生面前,使学生自觉地动脑、动手、动口,全身心地投入学习活动中,在练习中加深对概念的认识和理解,在理解的基础上,提高运用概念分析、解决问题的能力。这就是基本概念习题化。这样既做到了以学生为主体,也使复习课不在枯燥乏味。

  2、在一次函数与反比例函数的复习中,我抓住两条联系主线:

  一是函数性质与图象的联系(数与形的结合),

  二是函数与方程、不等式的.联系。这既是解决函数有关问题的方法,也是学会函数的关键。

  二、遗憾之处

  1、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力,使整节课现的手忙脚乱。

  2、观念还没有彻底改变。教师自问自答的现象时有发生,不舍得给学生充分的思考时间。这也表现在小组讨论时的时间过短,不能展开讨论,使之流于形式。

反比例函数教学反思15

  本节课是在学习了反比例函数的性质之后的一节习题课。这节课的教学目标是帮助学生理解并灵活应用反比例函数的性质,初步掌握数形结合思想,会结合函数图像比较大小,巩固用待定系数法求函数解析式,培养学生的学习兴趣,发展学生的能力。

  课标要求是:让学生通过交流、合作、讨论的方式,积极探索,改进学习方法,提高学习质量,逐步形成正确地数学价值观。在整个教学过程中,应始终注重学生的参与意识,注重学生对待学习的态度是否积极;注重引导学生从数学的角度去思考问题。

  但是在本节实际教学过程中,教师对教材研究不够深,则导致重点把握的不好,教学目标不明确,也没有留足够的时间和空间让学生去思考、交流,直接剥夺了学生展示自己的机会。结果学生只是被动的接收,主动的去学习、探究就少了,学生运用数学方法分析、解决实际问题的能力没有得到很好的训练。

  在习题的设计上虽然注重了梯度和形式,但是习题选择只是把课本中的例子进行了相应的数字改变,这样造成学生只是照课本的例子书写步骤,没有真正的理解了本节课的教学内容。最终使得学生模糊不清,导致有的学生一节课下来,一无所获。

  通过这节课让我意识到在以后的课堂教学中,应该把握教学重点、围绕教学目标,应注重发展学生的'应用意识。通过丰富的实例引入数学知识,引导学生应用数学知识解决实际问题,体会数学的应用价值。尽量留给学生更多的空间,更多的展示自己的机会,让学生在充满情感的、和谐的课堂氛围中,在老师和同学的鼓励与欣赏中认识自我,找到自信,体验成功的乐趣,从而树立了学好数学的信心。同时多研究教材和学生,准备足了课,这样才能达到良好的学习效果和教学效果。

  总之,接下来的就是努力,努力,在努力!一切为了学生的成长,也为了自己快速的成长。

【反比例函数教学反思】相关文章:

反比例函数教案01-15

反比例函数教案优秀05-08

反比例函数教案(精选10篇)11-27

反比例的意义教学反思03-24

反比例教学反思集锦12-22

《反比例意义》教学反思11-29

《反比例的意义》教学反思03-14

对数函数教学反思04-02

指数函数教学反思04-30