圆锥的体积教学反思

时间:2024-07-03 08:05:24 教学反思 我要投稿

圆锥的体积教学反思大全[15篇]

  作为一位刚到岗的教师,教学是重要的工作之一,我们可以把教学过程中的感悟记录在教学反思中,那么问题来了,教学反思应该怎么写?下面是小编收集整理的圆锥的体积教学反思,欢迎大家分享。

圆锥的体积教学反思大全[15篇]

圆锥的体积教学反思1

  教学过程

  一、复习旧知,铺垫孕伏

  1、(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?

  2、复习高的概念。

  (1)什么叫圆锥的高?

  (2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

  评析:

  圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。

  二、创设情境,引发猜想

  1、 电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去“动物超市”购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2、 引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积“后,就会弄明白这个问题。

  评析:

  数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。

  三、自主探索,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

  出示思考题:

  (1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

  (2)你们的小组是怎样进行实验的?

  1、小组实验。

  (1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。

  (2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。

  2、大组交流。

  (1)组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:

  ①圆柱的体积正好是圆锥体积的3倍。

  ②圆柱的体积不是圆锥体积的3倍。

  ③圆柱的体积正好是圆锥体积的8倍。

  ④圆柱的体积正好是圆锥体积的5倍。

  ⑤圆柱的体积是等底等高的圆锥体积的3倍。

  ⑥圆锥的体积是等底等高的圆柱体积的1/3。

  ……

  (2)引导整理信息。

  指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

  (3)参与处理信息。

  围绕3倍关系的情况讨论:

  ①请这几个小组同学说出他们是怎样通过实验得出这一结论的?

  ②哪个小组得出的结论更加科学合理一些?

  圆锥的体积是等底等高的圆柱体积的1/3。

  (突出等底等高,并请他们拿出实验用的器材,自己比划、验证这个结论。)

  ③引导学生自主修正另外两个结论。

  3、诱导反思。

  (1)为什么有两个小组实验的结果不是3倍关系呢?

  (2)把一个空心的圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?

  4、推导公式。

  尝试运用信息推导圆锥的体积计算公式。

  (1)这里sh表示什么?为什么要乘1/3?

  (2)要求圆锥体积需要知道哪两个条件?

  5、问题解决。

  童话故事中的`小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。

  评析:

  圆锥体积公式的推导,教师敢于大胆放手,让学生自主探索,经历“再创造”的过程。学生在教师的引导下,通过观察、实验、猜测、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式。特别是数学交流体现得很充分,有学生与教师之间的交流、学生与学生之间的交流以及小组或大组的多向交流,这种交流是立体、交叉型的,它能催化学生的意义建构。在有的小组实验失败后,引导学生在反思中不断进行自我调控,在调控中增强了体验的力度,有效培养了学生的元认知能力。

  四、运用公式,解决问题

  1、教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?

  2、学生尝试行算,指名板演,集体订正。

  3、引导小结:不要漏乘1/3;计算时,能约分时要先约分。

  五、巩固练习,拓展深化(略)

  六、质疑问难,总结升华

  通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?

  回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示、

  总评

  1、摸得清,考虑周。教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。设计教案时,能充分估计教学过程的复杂性,考虑学生在课堂上可能发生的“意外情况”,以顺应学生的学习过程,力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。

  2、理念新,设计巧。教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的童话情境——狐狸和小白兔换雪糕,并把这一故事情节贯穿整节课的始终。教学中尽量做到一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。

  3、重建构,促发展。建构主义学习观认为,学习是学习者主动建构内部心理表征的过程,不同的学习者可能以不同的方式来建构对事物的理解,产生不同的建构结果,本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。多样化的数学活动,如实验、交流、反思、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。

圆锥的体积教学反思2

  我认为这节课的设计与教学具有下面的特点:

  一、在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒水实验,而是通过师生交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望。学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然。

  二、在实验时,让学生小组合作亲自动手实验,以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体制的计算方法。这样的学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  但是,这节课学生是在教师预设引导中探究。为什么要学的'疑念,怎样学的策略,可能还不够突显,与学生生活联系还不是很紧密的。学生的问题意识不强,都有待探究。

圆锥的体积教学反思3

以前教学圆锥的体积时,由于教具的制作非常麻烦,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳,计算圆锥的体积时容易忘掉乘。学生对等底等高这一重要条件掌握并不牢固,理解很模糊。在本次课中,新课一开始,我就让学生观察,根据学习体积的经验,先判断四个圆锥的体积大小,引导学生猜测圆锥的体积和它的什么有关,学生联系到了圆柱的体积,都能说出圆锥的体积跟它的底面积和高有关系,在猜想中激发学生的学习兴趣,使学生明白学习目标。

  为了让学生理解等底等高是判断圆锥的体积是圆柱体积的三分之一的前提条件,同时为了节约教学时间,我设计了这样的教学片断:让学生思考,圆锥与学过哪个立体图形的关系最近?为什么?学生很容易找到圆柱,接着我又拿出几个不同的圆柱,问:考考你们的眼力,选择哪个来研究这个圆锥的体积比较好?将学生选的圆柱进行验证,发现与圆锥是等底等高,告诉学生在选择实验材料时要尽量选择有些相同条件的,这样实验时可以少走弯路,实验的结果准确些,在这个过程中加深了对等底等高这个条件的理解。这时,让学生进行小组合做,实验探究,经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的.三分之一。这样让学生置身于有目的的实践中,增加对实验条件的选择及信息的归纳。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是优化实验过程所产生的效果。

  在小组合作学习中,为了增强实效性,避免走形式,在课前,我引导学生制作等底等高的一组圆柱和圆锥,使每个学生都能真切的参与实验、参与到探究中去,让他们以这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

  通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利以学生认识发展规律为依托:发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在认识实践再认识、再实践中理解运用知识。在教学环节中以学生探究为基础引导学生在探究中总结规律,并运用规律解决实际问题,激发学生探究的兴趣感受到数学的应用性,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。

  本节课的教学中比较遗憾的时,在制作课件时考虑不周全,几个圆锥的相关数据不准确,比例不合适,对学生的学习造成了不必要的麻烦,影响了学生的判断结果,这些看似细节的环节,却反映了在备课时的粗心大意,对学生也会产生不良的影响,今后要注意,时刻记住:细节决定成功!

圆锥的体积教学反思4

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。

  1、复习迁移,做好铺垫

  由于圆锥体的体积是在学生学过圆柱体的体积的基础上安排教学的,为了让学生回忆圆柱体的体积计算公式,以便为知识的迁移和新知识的学习做好铺垫,我制作了一张图文并茂的图文片向学生展示了一个圆柱体图形,并在图形下面用醒目的文字向学生提出问题:这是什么形体?它的体积应怎样计算?这样一张集文字、图形、声音于一体的图文片,很容易引起学生注意,营造学习气氛。

  2、创设情境,引入新知

  数学来源于生活,我取材于生活以创设情境,使教学过程与生活实际密联系起来,我制作了一张图文并茂的图文片向学生展示了晒谷场上一堆圆锥形的谷子,并在显眼的位置向学生巧设问题:这堆谷成什么形体?你们能求出这堆谷的体积吗?这样,激发了学生的求知欲望,把学生引入到新课探索的活动中。

  3、实验操作,推导公式

  圆锥体积的推导,是本节课的教学难点,为了让学生直观感知圆锥的`体积与它等底等高的圆柱的体积的关系。首先让学生用工具做实验,初步感知,再呈现我制作的图文片向学生演示:用圆锥装满水倒入和它等底等高的圆柱里的过程。并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式。

  4、自学尝试,解惑答疑

  为了提高学生解决实际问题的能力,我把课本上的例1制成一张图文片,配上悠闲的乐曲,让学生尝试解答。试做时,我则进行巡视,如有问题,个别辅导,接着指名回答。这样,能够把较多的时间留给学生,培养学生的自学能力,使他们从中体验到学习的成功的乐趣。

  圆锥的体积教学反思

  本节课《圆锥的体积》以谈话法、实验法为主,讨论法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识,而且在教学中我注重如何有效的引导学生探究。

  例如,在上课开始,我是让学生回忆圆柱体积公式的推导过程,

  让学生猜测圆锥的体积也可以借助我们已经学过的图形来验证,培养学生的迁移类推能力。到学生猜测出用圆柱的体积来帮助研究圆锥时,再进一步让学生猜测圆柱与圆锥之间的关系,激起学生的学习兴趣,然后马上让学生自己以小组为单位去验证自己的猜测是否正确,让每个学生都经历一次探究学习的过程。每个学生都经历了“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,按自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。

  在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。而且在探究出圆锥体积公式的基础上,再让他们想办法计算出他们小组实验用的圆锥的体积,又一次给了学生探究的空间,使他们对不光能得出圆锥的体积公式,而且知道怎么应用它。

  充分发挥了学生的个性潜能。在学习中充分发挥学生的潜能,让他们按自己的观察进行猜测估计,按自己的设想操作学习,对自己学习情况进行总结,反思,在全体学生思维火花的相互碰撞中,出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。

圆锥的体积教学反思5

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  成功之处:

  1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的.三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:V圆锥=1/3圆柱

  =1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d*2)2h(知道直径和高)

  =1/3π(c*2*π)2h(知道周长和高)

  2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  不足之处:

  由于课前把制作的U盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。

  再教设计:

  上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。

圆锥的体积教学反思6

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果。

  在平时的`课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。

  教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和成功的场所。

圆锥的体积教学反思7

  对于《圆锥体积》的教学,我前些年按传统的教法:用空心圆柱、圆锥装沙的实验,得出圆锥体积的计算公式,的确有不妥之处,其一用“容积”偷换“体积”的概念,淡化了学生对“体积”的理解。其二在实验中,把“容积”看作近似地等于“体积”有失科学的严密性,对培养学生严谨的科学态度不利。由于自己的守旧,一直没能突破,没想到今日的突破收到意想不到的效果。也引发我的进一步思考:

  1、在日常的教学中,我们教师常常提醒学生,学习不能死守书本、不知变化、人云我云,要不拘泥、不守旧。那么我们教师自己更应该打破条条框框、突破教材、创造性的灵活地使用教材。

  2、陶行知先生倡导“手脑联盟”,他说“人生两个宝,双手和大脑”就是要学生手脑并用。在小学数学教学中,如果我们教师能给学生创造人人参与,既动手又动脑的.情景,就能最大限度的激发学生的学习兴趣,激发学生的创新思维。让不同的学生在活动中得到不同的发展。

  3、实验后的交流是培养学生思维的有力的催化剂。在交流中,学生通过比较、思考,加深了对公式的理解,不仅理解了圆柱体和圆锥体之间的关系,而且培养了学生的思维能力、表达能力、概括能力。

  总之,我们教师只有在教学活动中,努力创造条件,让学生主动参与、发现和揭示数学原理和方法,我们的数学课堂就一定能生成更多的精彩!

圆锥的体积教学反思8

  最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:

  1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。

  2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。

  3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想—验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算

  方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。

  4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的'铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。

  从教学层面上讲,我觉得要注意这么几点:

  1、让学生经历知识的生成,理解公式的由来。

  2、熟记相关公式和一些常见数据,提高计算的正确率和速度。

  3、注意知识的拓展应用,体现数学的应用价值,发展学生的思维能力。

圆锥的体积教学反思9

  一、教材说明:

  《圆锥的体积》一课的教学,是在掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

  二、三维目标解析:

  教学目标是:

  1、初步掌握圆锥体积的计算公式,并能运用公式正确地进行计算。2、通过圆锥体积公式的推导,培养学生动手操作与小组协作的能力。

  目标解析:

  1、情感的发展

  小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。

  2、思想的发展

  小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的.活动情境,让学生亲自实践,大胆探索。

  3、通过练习,形成技能。

  三、教法设计:

  1、让学生经历发现、提问、解决问题的全过程

  复习有关圆柱体积知识后,教师出示一堆煤:将这堆煤倒在地上,会变成什么形状情境导入。教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  2、让学生在现实情境中体验和理解数学

  在实验前让学生先猜想,再通过小组合作演示实验、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,

圆锥的体积教学反思10

  在本课的教学中,我首先让学生猜想圆锥的体积可能与它的什么有关系,再来猜想圆锥的体积可能和什么立体图形的体积有关系,通过学生自主的实验操作,探究出圆锥和圆柱在等底等高情况下的倍数关系,再通过学生的讨论,推导出圆锥的体积公式,最后应用探索出的结论解决生活中的实际问题。

  一、 让学生经历猜想—实验—验证—结论的实践探索的全过程。

  新课程标准明确指出,数学学习内容应当“有利于学生主动地进行观察、试验、猜测、验证、推理与交流等教学活动”数学史上许多重大的发现都离不开猜想。著名科学家牛顿说过“没有大胆的猜想就做不出伟大的发现”所以,在课初,猜想圆锥的体积与他的什么有关系,再来猜想圆锥的体积和什么图形的体积有关系,然后通过学生的动手实践验证了自己的猜想,并应用新知解决了问题。这样,即向学生渗透“猜想---验证‘ 的数学思想,有极大的调动了学生的求知欲,使学生经历了知识形成的全过程,学会了怎样学习。

  二、给学生一个“合作交流、自主探究”的空间。

  新课程标准明确指出,有效地数学学习活动不能单纯的依耐模仿和与记忆,动手实践、资助探索与合作交流是学生学习数学的重要方式。书学者们课程,不但需要观察,还需要试验。有些知识单凭解说是无法让学生真正理解的,只有通过试验,才能深刻领悟其中的内在奥秘。

  在探究圆锥体积计算方法的学习过程中,教师把动手的主动权交给了学生,让学生动手实践,自主探索,合作交流,主动地获取知识改变了一教师讲解、师范为主的教学方式。学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。教师只是学习的组织者、引导者与合作者,是平等中的.首席。在整个探究过程中,学生获得的不仅是数学知识,而且更多的是探究学习的科学方法,探究学习的喜悦。在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  三、让学生在学习中体验数学的应用价值

  人人学有价值的数学,人人都能获得必要的数学,不同人在数学商获得不同的发展,这是新课程标准的基本理念。生活知识数学化,数学知识生活化,我们所学得只是最重要应用于生活实际。为了体现“学有用的数学”这一理念,教学中,我设计了买冰淇淋、奥运火炬、“神五”等与圆锥体积有关的问题,使得数学问题生活化、趣味化。课后,又设置了在边长4分米的正方体木料里笑一个最大圆锥的问题,教室里放置一个最大圆锥的问题,使得课堂知识回归生活,引发学生思考。这样,极大的激发了学生的求知欲望和探索精神,使得数学学习不再枯燥,,而变得更精彩。

圆锥的体积教学反思11

  【教材解读】

  《圆锥的体积》这部分知识是小学阶段学习几何知识的最后一部分内容,也是人们在生产生活中经常遇到的几何形体,教学这部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础,我认为《圆锥的体积》这部分内容在本单元中占有十分重要的地位。

  【学情分析】

  高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,组织学生探索规律,归纳总结,体验知识的生成和形成。

  【教学目标】

  1. 通过学生动手操作实验发现等底等高的圆锥体积之间的关系,从而得出圆锥体积的计算公式,并能运用所学知识解决实际问题。

  2. 培养学生的动手操作能力和探究意识,发展学生的空间观念。

  3. 通过生活中的故事,培养学生良好的思想品德。

  【重点难点】

  1.圆锥的体积公式的推导过程

  2.进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。

  【教学策略】

  1.加强实践操作:

  《数学课程标准》中要求“在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换”。所以,在教学中,设计了多次实验环节,让学生自己动手,亲身经历圆锥体积公式的推导过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。

  2. 整合课程资源,创造性地使用教材;

  数学课程要关注学生的生活经验,在引入新知时,我创设了一个贴近生活的情境,使枯燥的数学问题变为活生生的生活现实,让学生的课堂气氛充满了乐趣和活力,在探究圆锥体积公式时,设计了两次试验,使学生更加明白了:只有“等底等高”的圆锥和圆柱体积才能有3倍的关系。引导学生由表及里,层层逼近的过程,进行深的信息加工。

  3.鼓励学生独立思考,引导学生自主探索,合作交流。

  在教学中,我积极鼓励学生独立思考,自主探索,小组合作交流,通过小组合作完成实验过程,实验过程中培养学生敢于质疑,乐于交流与合作的能力。

  【教学过程】

  一、创设情境,引发猜想

  1.播放录像。

  夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2.引导学生围绕问题展开讨论。

  二、自主探索,操作实验

  同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。

  1.小组实验。

  (1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)

  (2)同组的学生做完实验后,进行交流

  2. 集体交流。

  (各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)

  3、深入探究“等底等高”

  4. 推导公式。

  同学们尝试一下,用V、S、h、表示圆锥的体积公式?(生独立写公式)

  5. 问题解决。

  同学们再回到故事中,你们应该知道小雅和小林怎样交换才公平合理了吧?它需要什么前提条件?

  三、运用公式,解决问题

  1、教学例3。

  工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数)

  2. 学生尝试计算,指名板演,集体订正。

  汇报:(1)沙堆底面积3.14×(4÷2)2

  =3.14×4

  =12.56(平方米)

  (2)沙堆的体积1/3×12.56×1.2

  =4.19×1.2

  ≈5.02(立方米)

  答:这堆沙子大约5.02立方米?

  四、实践应用,拓展深化

  1、填空。

  1)一个圆柱体积是10立方米,和它等底等高的圆锥体积是( )立方米。

  2)一个圆柱钢材能溶铸成( )个与它等底等高的圆锥体。

  2、判断。

  1)圆锥体积是圆柱体积的1/3。( )

  2)圆柱体积一定比圆锥体积大。( )

  3)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1( )

  4)圆锥体积等于和它等底等高的圆柱体积的1/3。 ( )

  3、圆锥的底面积是7.8平方厘米,高是2厘米,体积是多少立方米?

  4、神舟五号宇宙飞船的上端是一个圆锥形,它的底面直径是2米,高2.1米,你能求出它的体积吗?

  5、哈南双语幼儿园的屋顶是圆锥形,测量出它的底面周长是12.56米,高是6米,它的体积是多少?

  五、质疑问难,总结升华

  通过这节课的学习,你们有哪些收获?

  【板书设计】

  圆锥的体积

  1/3

  V=1/3Sh

  例3

  工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆 沙子大约多少立方米?(得数保留两位小数)

  (1)沙堆底面积 3.14×(4÷2)2

  =3.14×4

  =12.56(平方米)

  (2)沙堆的体积 1/3×12.56×1.2

  =4.19×1.2

  ≈5.02(立方米)

  答:这堆沙子大约5.02立方米?

  【教学资源】

  义务教育课程标准实验教科书教师教学用书

  【教学反思】

  今天上了《圆锥的体积》这节课,反思整堂课的教学,自我感觉较为满意的是以下几点:

  1.大胆猜测,培养猜测意识

  假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中把生活中的故事引入数学课堂,让学生大胆猜想它们的体积可能会有什么样的关系?使课堂充满生机、乐趣,激发了学生的求知欲,然后让学生借助学具进行实验、探究。事实证明这样教学设计不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。

  2.操作验证,培养科学的.实验观。

  数学不仅是思维科学,也是实验科学。教学中,学生能通过观察、猜测、实验、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式:V=1/3Sh。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己的实验结论,培养了学生科学的实验观。

  3.重视课堂资源的生成

  教学中“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”这一教学环节不是预先设计的。它是课堂中随机生成的,却饱含着教师和学生真实的、情感的、智慧的、思维和能力的投入,有互动的过程,气氛相当活跃。在这个过程中既有资源的生成,又有过程状态生成,让学生在实践中进一步明确了:只有等底等高,圆锥的体积才能是圆柱体积的三分之一。 总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们不仅收获了知识更体验到了探究成功的喜悦。

  【教学评析】

  1.教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。

  2.教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的生活情境,并把这一故事情节贯穿整节课的始终。教学中做到了一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。

  3.本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时圆柱体积不是圆锥体积的3倍,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。

  4.多样化的数学活动,如实验、交流、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。

  5.在数学课堂上教师不失时机的进行德育教育,体现了在学科中“情感态度价值观”的培养,在学科中渗了透德育教育,为数学课堂增添了亮丽的一笔。

  6、本节课教师引领学生积极探究新知,学生成为课堂上真正的主人,学生积极参与、自主合作探究知识,实现了学习方式的多样化。课堂上师生互动,注重学生的态度和情感的体验。回归常态教学,教学真实、扎实、朴实,构建了充满生命活力的课堂。

  《圆锥的体积》课堂实录

  一、创设情境,引发猜想

  1.播放录像。

  师:夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2.引导学生围绕问题展开讨论。

  师:小林对小雅说:“我的雪糕可好吃了,我们来换一换吧!”小雅看了看她的雪糕,又看了看自己的雪糕,小雅陷入了沉思……”同学们,故事先讲到这。如果此时小雅和小林换了雪糕,你觉得小雅有没有上当?

  生:我觉得小雅上当了,小林的雪糕小。

  师:好,你的眼力真不错。如果这时小林手上又多了一个同样大小的圆锥形雪糕。小雅这时和小林换雪糕,你们觉得公平吗?

  生:公平。

  生:我觉得还是不公平,小雅还是吃亏。

  师:同学们有不同的看法了,假如你现在就是小雅,小林手中的圆锥形雪糕有几个时,你才认为公平合理,才肯与他交换?

  生:四个。

  生:五个。

  生:三个。

  师:小雅究竟用几个跟小林怎样交换才公平合理呢?(学生沉默,几秒后有学生举手) 生:老师如果知道他们的体积就好办了,可是我们只会求圆柱的体积,不会求圆锥的体积。(学生均点头)

  师:你的想法非常好。那圆锥的体积怎样计算呢?大家想知道吗?

  生合:想。

  师:好,这节课我们就一起来探究一下圆锥的体积这部分知识。(板书)

  二、自主探索,操作实验

  师:下面,请同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。

  1.小组实验。

  (1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)

  (2)同组的学生做完实验后,进行交流

  2. 集体交流。

  师:下面请各个小组同学汇报你们是怎样实验得出结论的。

  (各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)

  3、深入探究“等底等高”

  师:各小组的结论都是一样的:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。那老师就奇怪了,你们各小组间的圆柱和圆锥的大小不一样啊,结论怎么会一样呢?难道你们手中的圆柱和圆锥之间有什么奥妙吗?想知道吗?快探究一下吧!(生合作探究)

  师:你们发现了什么?

  生:我们发现圆柱和圆锥的底面积相等高也相等。

  师:这用四个字概括就是“等底等高”。

  生:我们也发现圆柱和圆锥等底等高。

  师:也就是说只有圆柱和圆锥是等底等高的时候,圆锥体积才是圆柱的体积的1/3。 生:(举手提问)老师,圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?

  师:这名同学提得问题非常有价值,他问:“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”大家说是吗?

  生:我认为圆柱和圆锥不等底等高,他们的体积不会是3倍的关系了。(大多数同学点头,同意他的观点。)

  生:我和他的意见不同,我认为圆柱和圆锥不等底等高,他们的体积还是三倍的关系。(有几名学生表示同意)

  师:有的同学认为是,有的同学认为不是。那么这样,小组间调换一下圆锥,使你手中的圆

圆锥的体积教学反思12

  一、教学内容:义务教育课程标准实验教科书(北师大版)六年级下册第11~13页

  二、教学目标:

  1、知识技能目标:

  ◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;

  ◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

  2、思维能力目标:

  ◆提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

  3、情感态度目标:

  ◆使学生在经历中获得成功的体验,体验数学与生活的联系。

  三、教学重点、难点:

  重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

  难点:探索圆锥体积的计算方法和推导过程。

  四、教具准备:

  1、多媒体课件。

  2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。

  五、教学过程:

  (一)创设情境,导入新课

  1、故事情景引发猜想

  电脑呈现出动画情境(伴图配音)。

  炎热的夏天,小明和小强去“广场超市”的 冷饮专柜买冰淇淋,圆锥形的冰淇淋标价是0.8元,圆柱形的标价2元。于是,他们两个为买哪一种形状的冰淇淋争执起来。同学们,你们能帮他们解决到底买哪种形状的冰淇淋更合算吗?(图中圆柱形和圆锥形的雪糕是等底等高的。)

  (学生回答自己的猜想,有说买圆锥形的,有说买圆柱形的)

  教师:学完今天的内容后,同学们就能正确解决了!

  2、圆锥实物揭示课题

  ①教师出示一筒 沙,师:将这筒沙倒在桌上,会变成什么形状?

  (学生猜想后教师演示)

  ②师:在这堂课上,你希望学到哪些知识呢?

  (生自主回答,确立学习目标)

  ③揭题:圆锥的体积

  师:好,我们一起努力吧!

  (二)自主探索,合作交流

  1、直观引入直觉猜想

  (1)教师演示刨铅笔:把一支圆柱形铅笔的笔头刨成圆锥形。

  (2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?

  ①教师鼓励学生大胆猜想。(生说可能的情况)

  ②师:你们是怎样理解“相应的”一词的?说说你的看法。

  生说后,师总结:“相应的”,即圆锥与圆柱是等底等高的。(用实物演示给生看)

  2、实验探索发现规律

  (1)小组讨论填写材料单,有顺序地领取材料

  学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、米、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子、米等,等底不等高和等高不等底的圆柱形和圆锥形容器各一个)

  (2)小组合作实验,并填写实验报告单。

  实验方法

  发现结果

  第一次实验

  第二次实验

  第三次实验

  结论:

  (3)汇报结果,实物投影展示实验报告单。

  (4)组际交流,得出结论:

  结论1:圆锥的体积v等于和它等底等高圆柱体积的三分之一。

  结论2:等底不等高的圆锥体与圆柱体,圆锥的体积是圆柱体积的二分之一。

  结论3:等高不等底的圆锥体与圆柱体,圆锥的体积是圆柱体积的'四分之一。

  结论4:圆柱的体积正好是圆锥体积的3倍。

  结论5:圆柱的体积是等底等高的圆锥体积的3倍。

  ……

  师:同学们实验的结论各不相同,到底哪组的结论对呢?

  (各小组纷纷叙述自己小组的实验过程、结论;说明自己小组的准确性,学生的思维处于高度集中状态)。

  (5)参与处理信息。

  围绕三分之一或3倍关系的情况讨论:

  师:我们先来看得出三分之一或3倍关系的这几个小组;请小组代表说说他们是怎样通过实验得出这一结论的?

  (请他们拿出实验用的器材,自己比划、验证这个结论。突出他们小组的圆柱和圆锥是等底等高的)

  师:其他小组得出的结论不同,是不是由于实验过程或结论有错误呢?我们也请小组代表说说你们的看法。

  (生说明他们的过程和结论都是对的,只是他们的圆锥和圆柱不是即等底又等高的)。

  师:总结以上各个小组的看法,我们可以得出什么样的结论?

  生1:圆锥的体积等于和它等底等高圆柱体积的三分之一。

  生2:圆柱的体积是等底等高的圆锥体积的3倍。

  生3:我认为第一种说法较合理,强调了圆锥体积的求法。

  ……

  师总结并板书:

  圆锥的体积等于和它等底等高的圆柱体积的1/3。

  3、启发引导推导公式

  师:对于同学们得出的结论,你能否用数学公式来表示呢?

  生:因为圆柱的体积计算公式v=sh;所以我们可以用1/3 sh表示圆锥的体积。

  师:其他同学呢?你们认为这个同学的方法可以吗?

  生:可以。

  师:那我们就用1/3 sh表示圆锥的体积。

  计算公式:v= 1/3 sh

  >师:(1)这里sh表示什么?为什么要乘1/3?

  (2)要求圆锥体积需要知道哪两个条件?

  生回答,师做总结

  4、简单应用尝试解答

  例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?

  (生独立列式计算全班交流)

  (三)巩固练习,运用拓展

  1、试一试

  一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?

  2、练一练

  计算下面各圆锥的体积:

  3、实践性练习

  师:请你们将做实验时装在圆柱容器里的沙(或米)倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。

  4、开放性练习

  一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)

  (四)整理归纳,回顾体验

  1、上了这些课,你有什么收获?(互说中系统整理)

  2、用什么方法获取的?你认为哪组表现最棒?

  3、通过这节课的学习,你有什么新的想法?还有什么问题?

  (五)问题解决。(电脑呈现出动画情境)

  小明和小强到底买哪种形状的冰淇淋更合算呢?

  师:谁能帮他们解决这个问题呢?

  (学生说出买圆柱形的冰淇淋更合算的理由。)

  六、板书设计:

  圆锥的体积

  圆锥的体积等于和它等底等高的圆柱体积的1/3。

  七、设计反思:

  《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:

  (1)密切数学与生活的联系,富有儿童情趣。

  从学生熟悉的生活故事引入,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。最后的问题解决回归于生活,实现了丛生活中来,又服务于生活的指导思想。

  (2)在经历“错误”之中历炼思维

  在平时的课堂教学中,学生往往会出现很多错误性的东西,比如:错误的认识、错误的过程、错误的结论等。很多老师不是“遇错即纠”,就是“遇错即批”,其实大可不必,因为错误之中也有可以充分利用的宝贵资源。“授人以鱼,不如授之以渔”。学生学习数学不仅要学会题的解法,更要懂得解法的来龙去脉。我们要利用“错误”这一资源让学生思考问题,经历碰壁,最终找到解决问题的方法,把思考的实际过程展现给学生,让学生经历思维的碰撞,真正关注学习的过程,帮助他们理解和掌握数学思维和方法。

  为了使学生对“等底等高”这一条件能牢固掌握并深刻理解,在分发学具时,我有意将等底等高、等底不等高和等高不等底的三组不同的圆锥形和圆柱形容器分发给各小组,学生通过动手操作后,得出的结论大不相同,在学生汇报的过程中,意见发生了重大分歧,不同结论的各小组都坚持自己的结论准确无误,认知出现了激烈的冲突,此时,我并没有给出评判,而是要求学生认真去观察、比较、发现各自小组的圆锥和圆柱有什么相同或不同的地方,通过观察、比较,最后终于得出只有在等底等高的条件下圆锥的体积才等于圆柱体积的三分之一。这样做既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是利用“错误”这一资源产生的效果

  (3)学习过程中揭示了一般科学的研究方法:

  提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、思想和方法,更发展了学生的反思意识、小组自我评价意识。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,学生体验到了成功的快乐。

  纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出。

圆锥的体积教学反思13

  教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学目标是让学生通过观察实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。由于六年级的学生对圆锥的认识和圆柱的体积的知识掌握较牢固,学生感到简单易懂,因此学起来并不感到困难。

  新课一开始,我用课件出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后课件演示实验过程,让孩子从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,这样学生对知识的掌握就水到渠成了。对圆锥的体积建立了鲜明的印象之后,再应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  当然,教学是一门缺陷艺术,在教学之后我感到遗憾

  的是,没让学生动手实际操作,我想如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会更多的知识,更重要的是能培养学生的能力。 1、探究圆锥体积计算方法的学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的'价值。

  2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

  通过本节课的教学,让我真正体会到了让学生通过动手实践去发现新知识的好处,学生自己去发现的新知识,是一种真正的理解,不是老师硬灌输给他的,他们能灵活用知识解决问题,这使我熟悉到新课改提倡的:“动手实践、自主探索、合作交流是学生学习数学的重要方式。“在今后的教学中我将用新课程的理念指导我的教学,提高课堂教学效率。

圆锥的体积教学反思14

  1、通过课堂评价促进小组探究学习的有效性

  我将班上同学分成了9个小组,在课堂开始前告诉同学们在今天的小组学习中会选出一个优秀小组,并且从合作,纪律,发现三个方面进行评价,组长安排组员活动 体现小组合作性,巩固了小组合作探究的实效性,活动时间结束时从纪律方面进行评价,有效的组织了教学,使学生的兴奋点得到有效控制,尽快投入到公式的推到 过程中,在推到过程中鼓励同学们表达自己的观点,从发现方面对学生进行评价提高学生的积极性。

  2、层次清楚,步步深入,重点突出

  在教学圆锥的体积时,我首先复习了圆柱的体积的计算过程,再用生活中的问题引入学习圆锥体积的必要性,调动了学生的积极性。然后要学生用自己的学具动 手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公 式解决生活中的实际问题,加深学生印象。

  3、激发学生的求知欲

  新课一开始,我就让学生比较两堆沙的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  4、全体学生的积极参与,突出学生的主体作用

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

  5、课堂教学后的改进

  关于两堆沙的'多少的比较课让学生有更多的发展空间,例如从价钱,重量等方面考虑,在这些都不知道的情况下才通过求体积的方法,事实上从价钱上来看更简单一些,要让学生有选择合适的方法解决问题的能力。

  在操作活动过程中,指向性过于直接,在第二次教学中我做了一些新的尝试。简单的导入,我出示了一组圆柱和圆锥,先让学生猜一猜学生它们体积的关系,因为学 生都有预习,圆锥体积是圆柱体积的三分之一很快从学生口中脱出。那我们就来做个试验验证一下!我给六个小组分别准备了等底等高、等底不等高、等高 不等底、既不等底也不等高的圆柱和圆锥,当然,实验还没结束,学生中的问题就出来了,我们做的正好是三分之一、怎么回事?我们的是二分之一?, 我们的是四分之一是不是书上写错了?学生思维出现激烈的碰撞,这时我没有评判结果,适时让学生观察、对比、通过合作、讨论,等底等高这一 前提,这样让学生在看似混乱无序的实践中,增加对实验条件的辨别,既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展,而不必苦口婆 心地强调等底等高,对三分之一的认识也深入学生之心,圆锥体积计算漏乘三分之一的错误将得到很好的纠正。而这些目标的达成完全是灵活机智地利 用错误这一资源,所产生的效果,这节教学虽没以前那么顺利,但我觉得今天的学生才真正掌握了知识。因为学生更需要经历知识形成的全过程。真正关注学生 学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验, 这样,我们的课堂才是学生成长和体验成功的乐园!

圆锥的体积教学反思15

  课前,我给每组学生准备一盆沙和等底等高的空心圆柱体、圆锥体各一个。课堂上组织学生4人一组,利用手中的学具一起来探索圆柱和圆锥体积之间的关系。

  学生们有的将圆锥中装满沙倒入圆柱中;有的将圆柱中装满沙倒入圆锥中……很快推导出圆锥的.体积公式。在交流中,学生经常把“等底等高”漏掉,作业时不注意“等底等高”条件,错误率也很高。

  反思:教师为了让学生快速完成操作推导出公式,给学生准备学具,只让学生来体验得出结果的一部分操作。这样做截断了知识的本源,学生忽视了对“等底等高”这一重要条件的认识,因而对发现的规律认识不全面,最终运用规律去解决新问题时也错误百出。其实,教师可以让学生准备“等底等高”的圆柱、圆锥;不等底不等高的圆柱、圆锥,这样4组来装沙操作。这样的探究具有很强的选择性、探索性和创造性,学生在不断地测量、比较、猜测、验证中发现“只有圆柱与圆锥等底等高”,圆锥的体积才是圆柱体积的1/3。

  收获:

  ①探究活动时,教师应避免探究问题开放中“材料过少”的现象;

  ②探究的问题应该在材料准备上开放;

  ③让学生在充足、具有比较性的实验操作材料的基础上达到全面探究的目的。

【圆锥的体积教学反思】相关文章:

圆锥的体积教学反思05-20

《圆锥的体积》教学反思06-12

《圆锥的体积》教学反思04-03

圆锥的体积教学反思04-06

圆锥的体积教学反思范文11-19

圆锥的体积教案02-13

《圆锥的体积》教案03-24

《圆锥的体积》优秀教案07-04

圆锥的体积教案15篇02-13